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Abstract

Suppose that agents are to be matched to objects and arrive over time without a

definite terminal date. In an optimal matching, the agents linked by chains of trades

might have lifespans that fail to intersect, thus obstructing the execution of these

trades. To overcome this problem, we let matchings be implemented via competitive

markets. Competitive equilibria always exist and any matching in the core can be

competitively implemented. The set of core matchings can be empty but a transfinite

variant of top trading cycles shows that a Pareto-optimal weak-core matching always

exists. Finally if there is minimum positive probability that an agent’s favorite object

is his endowment then, with probability 1, core allocations exist and all competitive

equilibria lie in the core. The full core equivalence of the finite matching model is then

achieved.

JEL codes: C71, C78, D50.

Keywords: matching, competitive equilibria, core, top trading cycles.

∗Thanks
†Address: Department of Economics, Royal Holloway College, University of London, Egham, Surrey

TW20 0EX, United Kingdom. Email: sophie.bade@rhul.ac.uk and m.mandler@rhul.ac.uk



1 Introduction

In classical matching problems, such as the assignment of kidney donors to patients with

end-stage renal disease, the set of objects and the set of agents are both finite. The finite

bounds are however modeling abstractions that ignore that in time additional patients will be

diagnosed and additional donors will appear; these new arrivals can potentially be matched

to some of the original agents. The assignment of workers, such as doctors to hospital

emergency rooms, also violates the fixed bounds of a finite model. The ER needs to be

staffed in the immediate future but both the doctors and the hospitals know that a new day

will come, with more patients that need medical treatment and, due to retirements and new

hires, a somewhat different set of available doctors. Generations thus overlap and effi cient

allocations might require letting a current doctor swap shifts with a not-yet-hired doctor. It

is indeed diffi cult to think of examples of matching where all of the concerned parties could

coordinate at a single point in time. While the lifespans of institutions and perhaps even

of all relevant agents may not stretch into an endless future, a model with results driven by

an exogenously imposed terminal date would be misleading and at odds with how agents

perceive the future.1

We therefore consider a matching model à la Shapley and Scarf [15] with no terminal

date: the set of agents and the set of objects (‘houses’) will both be the set of natural

numbers N. Each agent has a linear order over the set of objects and is assigned the same

index i as the object i that the agent initially owns. Interpreting N as dates, the overlap of

generations is embedded in the preferences of agents: if an agent i prefers an object j over

his endowment then j must appear within some fixed time span around i. Implicitly agent

i is alive only during this time or at least these are the only dates at which i can contract

with other agents.2

Infinite-horizon matching can therefore present a coordination problem: effi ciency may

require exchanges among agents that are never alive at the same time and that consequently

cannot agree to those exchanges. The solution we propose closely follows the original work

1Osborne and Rubinstein [13] argue persuasively that models of infinitely repeated games can more
accurately capture the perceptions of agents in a model that will in fact end up being finite.

2For several results, we will make do with the weaker assumption that an agent facing an arbitrary set of
objects always has a favorite.

1



of Shapley and Scarf. Agents will trade objects in a competitive equilibrium: they will sell

their endowments and use the proceeds to buy preferred objects. In a market, the agents

linked indirectly by sequences of trades never have to meet or even live simultaneously, they

merely need to form accurate expectations of the prices of the objects that appear in the

future.

The Gale top trading cycles algorithm provides the workhorse for matching finitely many

agents with objects. Each agent i points to the agent j that owns i’s most preferred object.

With finitely many agents, the pointings must form at least one cycle and hence, if we

retire this cycle of agents by assigning them the object to which they are pointing, repeated

rounds of pointing will eventually match all agents and objects. The matching that results

lies in the core of the model and, by letting the objects in a cycle share a common price

that descends as the cycles retire, the algorithm constructs a competitive equilibrium that

implements the matching. Since in addition every competitive equilibrium allocation is also

a core matching, full core equivalence obtains.

With infinitely many agents and objects, the standard argument for each of these con-

clusions breaks down. In addition to cycles, pointing can generate a ray in which one agent

i points to a second agent who points to a third, and so on, and no agent in this sequence

points to any preceding agent. Pointing can also lead to a two-sided chain where every agent

has one predecessor and one successor and there are no repeats. While one can mimic the

Gale algorithm by retiring in some round a set of agents that forms a ray or a two-sided chain

rather than a cycle, the argument for why the algorithm will terminate no longer applies.

Textbook methods for finding a core matching can therefore fail and indeed may be doomed

to fail: the core can be empty, in contrast to models of finite matching. In addition, the

matchings generated by the competitive equilibria can be ineffi cient and therefore lie outside

the core, again a contrast to the finite model. Competitive matchings can even be strictly

Pareto dominated. Given the ineffi ciency of equilibria in the overlapping generations model

of general equilibrium theory, this possibility does not come as a great surprise but it is a

problem we will need to address.

Our positive work begins with a change in the rules of the Gale algorithm. First, when

the pointings of a set of agents S forms either a finite or infinite chain then S can be retired
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from the algorithm. When we allow disposal, a chain can have a root agent whose object is

discarded and agents in chains can point to previously discarded objects. Second, we allow

the algorithm to terminate transfinitely. With these rules, we will always find a matching

in the ‘weak’core —the set of allocations such that no coalition S can block by using its own

endowments to make every agent in S strictly better off.

To see which matchings can be achieved when limited lifespans will prevent agents linked

by chains of trades to meet, we show first that our model always has a competitive equilib-

rium and second that any core matching can be implemented by a competitive equilibrium.

Half of core equivalence therefore holds: core matchings can be achieved in equilibrium but

equilibrium matchings can lie outside the core. From the glass is half full perspective, in-

effi cient equilibria are possible but there is at least a rich supply of models with effi cient

equilibria.

Matchings in the weak core unfortunately cannot always be competitively implemented.

But if we take a random draw of models and assume there is a minimum positive probability

that each agent’s favorite object will be his endowment then the standard core will be

nonempty with probability 1. So, restricted to generic models, a desirable matching can

always be reached. The same restriction rules out competitive equilibrium matchings that

lie outside the core. Full core equivalence is therefore restored.

In a finite Shapley-Scarf model, each agent is assigned a distinct object and consequently

no unassigned objects are left over: the issue of disposal does not arise. With infinitely many

agents and objects, objects can remain unassigned, e.g., when every i ∈ N receives object

i + 1 then no one consumes object 1. To follow as orthodox a path as possible, the main

model of the paper assumes free disposal. In section 7, we point out the relatively minor

modifications required when disposal is impossible, such as in any example where workers

are assigned to shifts that must be filled.

As Gale’s top trading cycles are among the most elementary and appealing arguments

in economic theory, we are pleased to report that most of the arguments in this paper

descend from Gale. The only notable exceptions are the Cantor diagonalization used to

prove the existence of competitive equilibria and an acyclic pointing mechanism that we

use to construct competitive equilibria when a Gale-style mechanism of sequential exit is
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unavailable (Theorem 6).

We do however aim to shed light on what drives matching arguments that rely on Gale’s

top trading cycles. The finiteness of the number of agents would appear to be the reason

why a top trading cycles algorithm terminates and why it leads to core allocations. By

allowing algorithms to terminate transfinitely and weakening the definition of the core, we

will see that finiteness is not essential for either conclusion.

2 Related Literature

There is a growing literature on matching over an infinite horizon. In contrast to the

present treatment, most contributions assume that the preferences of agents are randomly

drawn from a pool of possible preferences. Unver [17], Akbarpour et al. [2], and Anderson et

al. [3] study unilateral matching problems where each agent is endowed with one object and

has a ‘dichotomous’preference that exhibits indifference among all objects an agent prefers

to his endowment. The size of the set of agents who are matched to the endowments of

other agents then provides a natural measure of welfare. To consider the trade-off between

this measure and the time agents spend waiting for a match, these papers posit random

processes that govern the entry and exit of agents and the compatibilities of agents with the

endowments of others.

Leshno [10], Bloch and Cantala [7], Schummer [16], Arnosti and Shi [4] and Agarwal et al.

[1] study unilateral matching problems over an infinite horizon without initial endowments,

for example, the allocation of public housing or the kidneys of deceased donors. They show

that the optimal organization of waiting lists for these objects depends on the heterogeneity

of the agents’preferences.

Bilateral matching markets over an infinite horizon have also begun to draw attention.

Motivated by adoption, Baccara et al. [5] study a bilateral matching market in which

prospective parents and children of two possible types stochastically enter the adoption

pool. Following Baccara et al., Doval and Szentes [8] have analyzed a bilateral matching

market of stochastically arriving impatient agents with dichotomous preferences.
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3 Preferences and matchings

At each date i in N = {1, 2, ...}, there is one object i which is owned by an agent who is also

labeled i. Each agent i has a linear preference %i on N and �i will be the associated strict
preference.3 A profile of all agents’preferences is denoted �= (�i)i∈N.

Let the favorite of agent i from a set H ⊂ N be the object j ∈ H such that j %i k for
k ∈ H, let the second favorite be the object s ∈ H such that s %i k for k ∈ H \{j}, and
so forth. When not specified explicitly, the reader should assume that H = N. Our default

assumption will be that each agent i has a favorite from any H ⊂ N with i ∈ H. At times we

impose the somewhat stronger condition that there is a half lifespan L such that each agent

i prefers his endowment to all objects that appear more than L periods from i. Formally,

we will say that lifespans are bounded if there exists a L > 0 such that, for each agent i

and object j, |i− j| > L implies i �i j. Since agents can always consume their endowment,

their rankings of the objects that appear beyond their lifetimes are irrelevant; consequently

when lifespans are bounded we could let agents be indifferent among these goods.

Our assumptions permit a loose interpretation of how agents and objects are associated

with dates. For example, 1, ..., l can designate agents and objects that appear at calendar

date one, l+ 1, ..., 2l can designate agents and objects that appear at calendar date two, etc.

A matching or allocation is a map µ from the set of agents N to set of objects N such

that for each object j ∈ N there is at most one agent i with µ(i) = j. Until section 7,

objects can be freely disposed of. The image of µ therefore need not equal N.

Define ν : S → S to be a submatching if S ⊂ N and ν is one-to-one. The coalition

S ⊂ N blocks matching µ at � if there is a submatching ν such that ν(i) %i µ(i) for all

i ∈ S and ν(j) �j µ(j) for some j ∈ S and strictly blocks µ if there is a submatching ν

such that ν(i) �i µ(i) for all i ∈ S. A matching µ is in the core of � if no coalition can

block µ at � and is in the weak core if no coalition can strictly block µ.
3A binary relation % is linear if it is complete, transitive, and antisymmetric (x % y and y % x imply

x = y). Though �, the asymmetric part of %, is not complete, we will also call � linear.
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4 Top trading cycles

In a finite matching problem, each agent i ∈ {1, ..., n} owns object i. The Gale top trading

cycles algorithm consists of rounds where each agent points to his favorite object among

those still available. At least one cycle S1 must form in the first round and the agents in

one of these cycles receive their favorites and retire from the algorithm. Agents then point

anew to their favorites from the remaining objects and a second cycle S2 retires, and so on.

The matching µ that results must lie in the core. For a proof, suppose some coalition B

can block µ and let Si be the first cycle to retire with an agent i∗ who does better with the

object j∗ that B assigns to i∗ than with µ(i∗). Since µ(i∗) is the favorite of i∗ from the

objects owned by the agents who retire at Si or later, agent j∗ must be in a cycle Sj with

j < i. Since j∗ is therefore in B and B must assign µ(j∗) to j∗, the owner of µ(j∗) must

also be in B. Iterating this argument, B must contain all of Sj. But then B assigns object

j∗ to both i∗ and some agent in Sj, a contradiction.

What happens if we apply classical top trading cycles to our infinite setting? The first

and most obvious fact is that no cycles might form.

Example 1 Suppose for each agent i besides 1 that i’s favorite object is i + 1 and that

agent 1’s favorite object is 3. Letting a solid arrow point from each agent to the agent’s

favorite object, the preference profile is pictured in Figure 1. In this example and all the

examples to follow, we can set agent i’s remaining preference rankings to be consistent with

the bounded lifespan assumption, for instance by letting i’s first unspecified favorite (in this

case the second favorite) be object i. The preferences in the present example would then be:

for each i ≥ 2, i+ 1 �i i �i j for j /∈ {i, i+ 1}, and 3 �1 1 �1 j for j /∈ {1, 3}.

While no cycle appears in Example 1, there are ‘rays,’that is, infinite sequences of agents

(i1, i2, ...) such that, for all j ≥ 1, the favorite of ij is ij+1 and no agent appears more than

once. Example 1 has two maximal rays, (2, 3, 4, ..) and (1, 3, 4, ...). Suppose we mimic

the Gale algorithm by assigning each agent in one of these rays his favorite object and then

retiring the ray from the algorithm. A single agent, either 1 or 2, would remain and so the

second round would assign this agent his endowment.
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Figure 1: An empty core

This removal of a ray rather than a cycle unfortunately voids the argument that the

algorithm must generate a core matching: a subset of agents that retires from the algorithm

could well join some of the surviving agents to form a blocking coalition. If in Example 1,

the first round assigns objects (3, 4, 5, ...) to agents (2, 3, 4, ...) then a subset of {2, 3, 4, ...}

can form part of a blocking coalition: {1, 3, 4, ...} can block by switching object 1 from agent

2 to agent 1. Example 1 in fact has an empty core. If a matching fails to assign objects

(3, 4, 5, ...) to agents (2, 3, 4, ...) then {2, 3, 4, ...} can block and if it fails to assign (3, 4, 5, ...)

to (1, 3, 4, ...) then {1, 3, 4, ...} can block. Since object 3 can be assigned to only one agent,

the core must be empty.

While the emptiness of the core is unwelcome, Example 1 relies heavily on agents who

agree to block allocations even when they gain nothing by doing so. The weak core can

therefore identify more sharply which allocations will survive unchallenged. But since weak-

core allocations can be ineffi cient, our goal will be to show that there are allocations that

both lie in the weak core and are Pareto optimal.

A seemingly harmless feature of top trading cycles stands in the way of Pareto optimality:

when a subset of agents retires from the algorithm it leaves with its endowments. In a finite

model, this property follows from the fact that the objects the retiring subset consumes must

coincide with the objects it is endowed with. But in an infinite model, a ray that retires

from the algorithm can depart with an object that no agent consumes. Ineffi ciency can

therefore result even when a core allocation exists, as the following example illustrates.

Example 2 Suppose the favorite of both agents 1 and 2 is object 1, agent 2’s second favorite

is object 3, and the favorite of each agent i ≥ 3 is object i + 1. See Figure 2 where a solid

arrow continues to point from agents to their favorite objects and a dashed arrow points from
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Figure 2: Ineffi ciency generated by top trading cycles

an agent to his second favorite. In round 1, the ray that matches each agent i ≥ 3 with

object i+ 1 forms. If we remove the objects owned by this ray then in round 2 only the cycle

that matches agent 1 with object 1 can form. In the final round, agent 2 is matched with his

endowment. If we could offer the discarded object 3 to agent 2 then we could achieve both a

Pareto improvement and a core matching.

To show via top trading cycles that Pareto-optimal weak-core allocations exist will there-

fore require some modifications. We will follow Gale in several respects: groups of agents

will retire in sequence with their favorite currently available objects as their assignments and

retirees are not allowed to seize objects from agents who are not currently exiting. Three

changes will be necessary: more groups in addition to cycles will be allowed to retire from

the algorithm, current retirees can point to objects that previous retirees have discarded,

and the algorithm can terminate after transfinitely many rounds.

Let a chain S be a subset of N indexed by a set of consecutive integers. A chain S can

have at most one element with a maximal index, maxS, and at most one element with a

minimal index, minS, but is not required to have either. Chains may therefore be infinite.

Each round of the modified top trading cycles algorithm begins with a set of unas-

signed agents N ⊂ N and a (possibly empty) set of discarded objects D. Let s→N,D t mean

that s ∈ N and t is the favorite object of agent s from N ∪D. Given N and D, a chain S

is admissible if S ⊂ N and, for all s ∈ S,

(1) if s 6= maxS and has index i then s→N,D t where t has index i+ 1, and

(2) if {maxS} 6= ∅ then there is a t ∈ {minS} ∪D such that maxS →N,D t.

So each agent in a chain S except possibly maxS points to another agent in S while maxS
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either points to minS or a discarded object. If maxS →N,D minS then S is a cycle. The

cycles are finite but a finite admissible chain can also arise when maxS points to a discarded

object. An infinite chain can be one of the rays discussed above, where the positive integers

can supply the indices, or a ‘reverse’ray, where the negative integers can supply the indices

and maxS points to a discarded object, or finally a ‘two-sided’chain, where the indices are

the entire set of integers.

Given any nonempty N and an arbitraryD, an admissible chain will always exist. Begin-

ning with some i ∈ N , suppose that i→N,D j →N,D .... This sequence will eventually repeat,

end finitely by reaching an element of D, or form a set of infinitely many distinct agents.

Each case leads to an admissible chain. In the first, we can extract from i →N,D j→̇N,D ...

a sequence that begins and ends with the same element of N and has no other repetitions.

An admissible cycle is thus defined. In the second, the penultimate entry in the sequence

forms a singleton admissible chain. The third case defines an admissible ray. Given a

nonempty N and arbitrary D, modified top trading cycles will select one of the admissible

chains S, match each i ∈ S with i’s successor in S, and remove S from N . Each round thus

defines a set of survivors N \S which will be strictly contained by N when N is nonempty.

The survivors provide the unassigned agents for the next round. If there is a maxS and

maxS →N,D d where d ∈ D then we remove d from D and if S is finite but not a cycle (so

maxS 9N,D minS) then we add minS to D \{d}. This addition and/or removal fixes the

set of discarded objects for the next round.

Modified top trading cycles begins with N = N andD = ∅ and terminates once the set of

survivors is empty. Before addressing whether a matching that results from this algorithm

is Pareto optimal or lies in the weak core, we must consider how and when the algorithm

terminates. There is of course no reason for modified top trading cycles to terminate after

finitely many rounds. But this slowness should not be attributed to the requirement that

only one chain can exit in each round of the algorithm. If we were to let as many chains

as possible exit simultaneously, the following example shows that the algorithm could still

leave infinitely many agents unassigned to chains at the end of each date.

Example 3 For each agent i ≥ 2, i’s favorite object is i− 1 and his second favorite is i+ 1.

Agent 1 has object 2 as his favorite. See Figure 3. In the first round of modified top trading
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Figure 3: Top trading cycles that do not finitely terminate.

Figure 4: Top trading cycles that terminate transfinitely

cycles, only the cycle between agents 1 and 2 forms. In the second round, only the cycle

between 3 and 4 can form, and so on. So, after finitely many rounds, infinitely many agents

remain unassigned.

In Example 3, each agent i is at least assigned to a chain after finitely many rounds.

Somewhat less obviously, modified top trading cycles need not reach an empty set of survivors

following the completion of every finite round.

Example 4 Modify Example 3 by adding new agents with labels 1.5, 2.5, 3.5, .... Each

new agent i has i + 1
2
as his favorite and i + 1 as his second favorite. See Figure 4. As

long as any of the original agents remains unmatched, all the new agents remain unmatched.

Since it takes all of the finite rounds to match the original agents, none of the new agents is

matched until the algorithm reaches a transfinite round.

The final change to the Gale algorithm will therefore be that in modified top trading cycle

the number of rounds can equal an arbitrary ordinal number.4 Letting β be an ordinal, the
4Though 0 is the first ordinal, our examples will always let 1 be the label of the first round.
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set of survivors Nβ of round β is defined recursively. Given Nα for each α < β, the set of

unassigned agents that enters round β will equal
⋂
α<β N

α. If this set is not empty then

some admissible chain S forms and we set Nβ =
(⋂

α<β N
α
)
\S. When β is a successor

ordinal and β therefore has an immediate predecessor β − 1, the set of unassigned agents

that enters round β reduces to Nβ−1. But when β is a limit ordinal —for example ω the

first ordinal that succeeds the finite numbers —we must use the definition provided. So

on the first round ω that follows the rounds associated with the finite numbers, the set of

unassigned agents that enters is given by
⋂
α<ωN

α =
⋂∞
i=0N

i. In Example 4, the ‘new’

agents form the set of unassigned agents that enters round ω.

The set of assigned agents at the end of round β is Nβ
a = N \Nβ. Let µβ indicate the

algorithm’s assignments for these agents: for s ∈ Nβ
a , let µ

β(s) equal s’s immediate successor

in the admissible chain S selected by the algorithm that has s ∈ S. The set of discarded

objects at the end of round β is therefore Dβ = Nβ
a \µβ(Nβ

a ).

Comparably to Gale, modified top trading cycles terminates at the first round α such

thatNα = ∅ and the matching generated by the algorithm is µα. To see that termination is

guaranteed when the rounds extend to arbitrary ordinals, let the algorithm proceed through

ω1 rounds, where ω1 is the first uncountable ordinal. Since each round that begins with a

nonempty set of unassigned agents N eliminates at least one agent from N and since the

set of predecessors of ω1 is uncountable, the set of survivors must be empty following some

round β with β < ω1. Keep in mind that we are not constructing a procedure that agents

will follow in real time: we are showing only that the weak core is nonempty.

To confirm that any matching µ generated by modified top trading cycles is in the weak

core, let N∗ ⊂ N be an arbitrary coalition. Since rounds are assigned only to ordinals, the

set of rounds α such that Nα does not contain N∗ is well-ordered, that is, it has a minimal

element β. So, for any round γ < β, Nγ ⊃ N∗ and β is the first round of the algorithm

where there is a i ∈ N∗ that is not also in Nβ. Let N and D be the sets of unassigned

agents and discarded objects that enter round β. Since µ(i) is the favorite of i from N ∪D

and N∗ ⊂ N , i cannot strictly prefer any object j ∈ N∗ to µ(i). Hence N∗ cannot strictly

block µ.

For Pareto optimality, suppose some matching η Pareto improves on µ. There must then
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be a first chain S that exits the algorithm that contains an agent i with η(i) 6= µ(i) and thus

η(i) �i µ(i). But, since every agent j who exits prior to S receives µ(j) = η(j), η(i) must

then be available when S forms. Hence the algorithm would not be assigning every agent

in S his favorite available object, a contradiction.

We have therefore proved:

Theorem 1 For any profile �, the set of allocations that are Pareto optimal and in the weak

core of � is nonempty.

That the proof above invokes the first uncountable ordinal ω1, a notoriously diffi cult

concept to grasp, is no accident. As we show in the Appendix, in the absence of restrictions

on the order of retirement when more than one admissible chain forms, the procession of

retirements can last as long as any countable ordinal; ω1 is therefore the least upper bound

on the algorithm’s termination date. While countable, the termination dates can be large

countable ordinals: they therefore need not be computable and are also diffi cult to grasp.

But with a simple rule on retirements —always retire first the admissible chain with the agent

that is assigned the smallest natural number —the number of rounds that can occur prior to

the algorithm’s termination is bounded by a comparatively small ordinal, the product ωL.

See the Appendix.

5 An implementation diffi culty and the competitive so-

lution

As Example 1 illustrates, a core allocation can involve exchanges of objects among infinitely

many agents: agent i passes his object to j who passes his object to k ... and so on. If each

agent i is born or enters the model no earlier than L periods before i then the entire set

of agents involved in such an exchange cannot meet to arrange the trade. Exchanges that

form cycles can present the same problem. While an agent i will agree only to trades that

give him an object that appears within L periods of i, the cycle of exchanges that contains

i might extend more than L periods beyond i. If for example L = 2 then the exchanges
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in the cycle 1 7→ 3 7→ 5 7→ 4 7→ 2 7→ 1 (where i 7→ j means that i receives object j) would

involve agents that never live at the same date.

Competitive equilibria can maneuver around this implementation problem. In a market,

agents simply sell the objects they are endowed with and buy the objects they most prefer

given the prices that they anticipate. Equilibrium obtains when agents satisfy their budget

constraints and markets clear.

A competitive equilibrium for � consists of a matching µ and a price sequence p :

N → R+ such that each agent can afford the object to which he is matched, any preferred

object is unaffordable, and unassigned objects are free: for all i, j ∈ N, p(µ(i)) = p(i), if

j �i µ(i) then p(j) > p(i), and if there is no agent k ∈ N such that µ(k) = j then p(j) = 0.

In interpretation, an agent i who first buys or sells at date j accurately anticipates the prices

for the objects that appear later than j, e.g., i sells his endowed object at date i in the

expectation that the proceeds will pay for object k > i.

5.1 Existence of equilibria

Theorem 2 For any � with bounded lifespans, a competitive equilibrium exists for �.

The proof bears some similarity to arguments for the existence of equilibria in the over-

lapping generations model of general equilibrium theory (e.g., Balasko et al. [6]). For any

finite n, the matching model that consists solely of the first n agents in N has a competitive

equilibrium that can be found via Gale top trading cycles. Fix some k ≤ n and consider

the sequence of allocations for the first k agents and the ordering of the prices of the first

k goods as n increases. Since the possible allocations and price orderings can assume only

finitely many values, there must be a constant subsequence of allocations and price orderings.

Restricting attention to this subsequence, we next define a sequence of allocations and price

orderings for the first k+ 1 agents and again go to a constant subsequence. Using a Cantor

diagonalization, we can build a matching for all agents and a corresponding price sequence

and it is easy to confirm that these form a competitive equilibrium. The proof below does

not use a uniform bound on lifespans: we could let each agent i have his own Li.

Proof of Theorem 2. For each positive integer n, we can apply Gale’s top trading cycles
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(TTC’s) to the model that consists of agents and objects 1, ..., n where we restrict each �i

to {1, ..., n}, thus generating a matching µn. Fix an order in which cycles exit the algorithm

by choosing arbitrary order of exit, one cycle per round, if more than one cycle forms at

some stage. For round r, let Sr ⊂ {1, ..., n} be the cycle that is removed from the set of

unassigned agents that enters round r. A competitive equilibrium that supports µn is then

defined by any price vector pn = (pn(1), ..., pn(n))� 0 such that pn(i) > pn(j) if and only if

there are rounds r and r′ such that i ∈ Sr, j ∈ Sr′ , and r′ > r. While there are many such

price vectors, each represents the same ordering vn on {1, ..., n}.

Let En denote (µn,vn). For any n and positive integer k ≤ n, let En[k] denote (µn[k],vn

[k]) where µn[k] = (µn(1), ..., µn(k)) and vn[k] is the subrelation of vn defined by restricting

vn to {1, ..., k}. Since the sequence E[k] = 〈E1[k], ..., En[k], ...〉 can assume only finitely

many values, E[k] or any of its subsequences must have a constant subsequence.

Let 〈E11 , ..., E1n , ...〉 be a subsequence of 〈E1, ..., En, ...〉 such that 〈E11 [1], ..., E1n [1], ...〉

is constant and, for each k ≥ 1, let
〈
E(k+1)1 , ..., E(k+1)n , ...

〉
be a subsequence of 〈Ek1 , ...,

Ekn , ...〉 such that 〈E(k+1)1 [k+ 1], ..., E(k+1)n [k+ 1], ...〉 is constant. Let 〈E〈1〉 , ..., E〈k〉 , ...〉

denote the Cantor diagonalization sequence: E〈k〉 = Ekk for each k. Let µ〈k〉 denote the first

k entries of the matching in E〈k〉 and let v〈k〉 denote the restriction of the price ordering

in E〈k〉 to {1, ..., k}. For all j ≥ k, 〈Ej1 [k], ..., Ejn [k], ...〉 is the same constant sequence

and so, for j ≥ k, the first k entries in µ〈j〉 equal µ〈k〉 and the restriction of v〈j〉 to {1, ..., k}

equals v〈k〉.

Define the matching µ by setting, for each k, the first k entries of µ to equal µ〈k〉.

We set the price sequence p recursively. First let p1 = 1. Then, given pk, let pk+1 =

(pk(1), ..., pk(k), pk+1(k + 1)) where pk+1(k + 1) equals pk(j) if k + 1 ≈〈k+1〉 j and otherwise

set pk+1(k + 1) to lie between min{pk(r) : r �〈k+1〉 k + 1} and max{pk(r) : r ≺〈k+1〉 k + 1}.

Define p by setting its first k entries to equal pk.

To see that (µ, p) is an equilibrium, observe first that since µ〈i+L〉 is determined by TTC’s

and since only agents born between i−L and i+L can have i as an immediate successor in

a TTC chain, µ〈i+L〉 maps exactly one agent in {i − L, ..., i + L} to i. Again because each

µ〈j〉 is determined by TTC’s and since no agent born after i+L can have i as an immediate

successor in a TTC chain, no µ〈j〉 with j > i+L maps a different agent to i. The matching
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Figure 5: A profile and its limit matching

µ therefore matches each object to exactly one agent (with no disposal). Second, since the

prices p(1), ..., p(i + L) represent v〈i+L〉 and v〈i+L〉 represents an equilibrium that supports

µi+L, object i is the optimizing choice for the agent that µ〈i+L〉 maps to i when the agent

faces p.

Examples 5 and 6 below illustrate the equilibria this proof builds. A notable feature of the

constructions is that although the trades a specific agent i conducts stabilize as the number

of agents that enter into the top trading cycles increases, the competitive equilibrium chain

of trades that contains i might not stabilize: it might appear only in the limit. Example 5

underscores this point.

Example 5 The favorite and second favorites of every odd agent i are i + 2 and i + 1

respectively, the favorite of each even agent j 6= 2 is j − 2, and the favorite of agent 2 is

object 1. The favorites are pictured in Figure 5 where as before a solid arrow points from

an agent to his favorite object and a dashed arrow points to the agent’s second favorite.

We apply the proof of Theorem 2 by running Gale’s top trading cycles on the first n

agents. When n is even, the matching µ generated has µ(i) = i + 2 for all odd i except

n − 1, µ(j) = j − 2 for all even j except 2, µ(2) = 1, and µ(n − 1) = n. The chain of

trades thus forms a single cycle. When n is odd, agent n forms a singleton cycle and then

the first n− 1 agents form a cycle. Though the matching that results is a cycle or a pair of

cycles for each n, in the limit the matching is neither a cycle nor set of cycles but the single

two-sided chain formed by the solid arrows.

Given that the equilibria of overlapping-generations economies can be ineffi cient, it is

no great surprise that the competitive equilibria of the present matching model can lead to

ineffi cient allocations as well.
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Example 6 We preserve the favorites of the agents in Example 5 and thus the solid arrows

in Figure 5 that takes agents to their favorites. But now let each agent i’s second-favorite

object be i’s endowment. The profile of preferences � therefore has i + 2 �i i �i j for all

j /∈ {i + 2, i} when i is odd; i − 2 �i i �i j for all j /∈ {i − 2, i} when i > 2 is even; and

1 �2 2 �2 j for all j /∈ {1, 2}.

The core of � is the solid-arrow matching η that takes each agent to his favorite. Since

η strictly Pareto dominates the identity matching ι that gives each agent his endowment, ι is

not even in the weak core. But ι can be sustained as a competitive equilibrium. Let p be any

price sequence such that p(j) > p(i) when j = η(i), for example, the p defined recursively

by setting p(1) = 1 and p(η(i)) = 2p(i) for each i. Then no agent i can afford η(i) and

will instead stick with his second-favorite object, his endowment. So (ι, p) is a competitive

equilibrium and is as well the equilibrium built in the proof of Theorem 2.

5.2 Competitive implementation of the core

Our main optimality result is that any matching in the core can be supported as a competitive

equilibrium. Given �, a matching µ can be competitively implemented if there is a price

sequence p such that (µ, p) is a competitive equilibrium.

Theorem 3 For any profile �, if µ is in the core of � then µ can be competitively imple-

mented.

Theorem 3 and Example 6 together show that half and only half of core equivalence

obtains: markets can reach the core but may also reach other matchings.

To prove Theorem 3, we begin with a classical argument for why the modified top trading

cycles algorithm must generate a core matching. Let µ lie in the core of some profile � and

suppose modified top trading cycles leads to a distinct matching η. In a finite setting, one

would generate a contradiction by considering the first round of top trading cycles at which

the departing S has η(i) 6= µ(i) for some i ∈ S. Since each j ∈ S can still point to µ(j) at

this round, and since therefore η(i) �i µ(i), the coalition S could block µ. To adapt this

argument to our setting, we need to deal with the wrinkle that some agent in S might point
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to a discarded object; we must therefore augment the blocking coalition to include the owner

t of the discarded object, the owner of η(t), and so on.

Lemma 1 If µ lies in the core of some profile � then modified top trading cycles must

generate µ.

Proof. Suppose there is a first round β of modified top trading cycles such that the admis-

sible chain Sβ that exits at β contains an agent s that is not assigned his core matching.

So, letting N and D denote respectively the sets of unassigned agents and discarded objects

that enter round β, s 9N,D µ(s). We can then find a coalition that can block µ. Before

doing so, given some agent t1, define
−→µ (t1) to be the infinite sequence of agents (t1, t2, ...)

that satisfies µ(tj) = tj+1 for j ≥ 1. When no agent j in −→µ (t1) has µ(j) = t1, the agents

in −→µ (t1) must be distinct since µ is one-to-one. Object t1 can therefore be assigned to an

agent outside −→µ (t1) if the agents in
−→µ (t1) consume their core matchings. The blocking

coalition B will consist of the agents in Sβ and, if the favorite of agent maxSβ from N ∪D

is some t1 ∈ D, the agents that form −→µ (t1). If there is such a t1 then all of the agents in
−→µ (t1) retired from the algorithm prior to β. Since in addition β is the first round where the

algorithm does not assign an agent to his core matching, no agent j in −→µ (t1) has µ(j) = t1.

To confirm that B can block µ, let ν be the submatching that assigns each i ∈ Sβ his favorite

from N ∪D and, when there is a t1, leaves each ti in
−→µ (t1) with µ(ti). Since by assumption

each object k allocated prior to β equals µ(j) for some j that retired prior to β, µ(i) ∈ N ∪D

for all i ∈ Sβ. Moreover, by assumption s has a favorite from N ∪D that differs from µ(s).

Hence B can block µ using ν, a contradiction.

To apply this Lemma to Theorem 3, we can roughly follow the Shapley and Scarf strategy

of letting the prices of objects be determined by the round at which their owners depart

modified top trading cycles. With prices that decrease as a function of the ordinals assigned

to the rounds, agents who depart in later rounds will be unable to afford the objects that

depart in earlier rounds, which they might prefer to their core allocations. But a wrinkle

appears here too: we cannot assign a positive price to any discarded object. The solution

is to pre-set a price of 0 for all objects that are discarded or that are assigned to agents that

own discarded objects, and so on.
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Proof of Theorem 3. Let Sα be a chain formed by modified top trading cycles at some

round α. By the Lemma, for each i ∈ Sα the allocation of i is µ(i). If Sα is not a cycle then

Sα is either infinite or µ(maxSα) was discarded in some round that precedes α and then
−→µ (µ(maxSα)) (defined in the proof of the Lemma) must consist of infinitely many distinct

agents. With either possibility, no agent i that in a chain Sβ with β 6= α can prefer any

s ∈ Sα to µ(i) since then the agents in −→µ (i) could block by assigning themselves the objects

in −→µ (s). It is therefore compatible with equilibrium to set p(j) = 0 for all j ∈ Sα. Let C

be the set of cycles generated by the algorithm. We need a price p(S) for each S ∈ C which

we assign to each j ∈ S such that whenever some agent i in some S ∈ C prefers an object

in S ′ ∈ C to µ(i) then p(S ′) > p(S). Since each i prefers µ(i) to objects in all cycles that

retire after S and all noncycle chains, it is suffi cient for prices to decrease as a function of

the ordinals assigned to the rounds. Recall that since the set of agents is countable the set

of survivors of modified top trading cycles must be empty following some round γ where γ

is at most countable. Hence there is a one-to-one map f : γ → N. The following prices will

then do: for each Sα ∈ S, set p(Sα) =
(∑

β≤α 2f(β)
)−1

.5

The Lemma incidentally shows that the core cannot contain more than one matching: if

the core is nonempty then, for any core matching µ, all matchings that can be generated by

modified top trading cycles must coincide with µ.

Corollary 1 For any profile �, the core of � contains at most one matching.

6 Almost sure competitive implementation

Although core matchings can be implemented in competitive equilibrium, the core may be

empty, as we saw in Example 1. And while the weak core is always nonempty, as we saw

5At the cost of revising modified top trading cycles, we can prove Theorem 3 without the default assump-
tion that each agent i has a favorite from any set of objects that contains i. Let an agent i that does not
have a favorite from some H ⊂ N with µ(i) ∈ H point instead to µ(i). Apply this revision to modified top
trading cycles and suppose there is a first round α that does not lead to an admissible chain S such that
every i ∈ S is assigned µ(i). Since each unassigned agent points to some object at round α, some chain S′
must form and it will assign some i ∈ S′ an object j �i µ(i). The same coalition B provided in the proof
can then block µ.
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in Theorem 3, the following example shows that it is possible that neither any matching in

the weak core nor any Pareto-optimal matching can be competitively implemented.

Example 7 We return to Example 1. In any weak core matching µ, at least one agent i ≥ 3

must receive his favorite object, µ(i) = i + 1, since otherwise agents 3, 4, 5, ... would strictly

block. Any Pareto optimal matching shares the same feature. Letting i∗ be the least i ≥ 3

that gets his favorite object, we show that there is no supporting competitive equilibrium. If

i∗ ≥ 4 then p(i∗) = 0 since no agent buys i∗. But p(i∗) = 0 would allow i∗ − 1 to afford i∗.

So suppose instead that i∗ = 3. If p(3) = 0 then both 1 and 2 would buy 3. If p(3) > 0 then

either j = 1 or j = 2 must buy 3. But then p(j) = p(3) > 0 to ensure that j can afford 3

while p(j) = 0 since no one buys j.

Given Theorem 2, there must be a matching η that can be competitively implemented:

every agent consumes his endowment, η(i) = i for each i ≥ 1. As we have seen, η is not in

the weak core.

To avoid the unsatisfactory outcomes of Example 7 and kindred cases, we consider a mild

domain restriction on the preferences of agents that ensures a nonempty core and hence that

some Pareto-optimal matching can be competitively implemented.

Let � be drawn with probability law P from a state space Ω that equals the set of

preference profiles that satisfy our assumptions and the bound L on lifespans. For each

agent i ∈ N and each linear preference �ir on {i − L, ..., i, ..., i + L}, we assume that the

states such that �i, when restricted to pairs in i’s lifespan, equals �ir forms a measurable

event.

For each i ∈ N, let Ei = {�∈ Ω : i �i j for all j ∈ N} be the event that i’s favorite

object is i. We assume that E1, E2, ... are independent and that there is a positive lower

bound for the probability of each Ei, that is, a b > 0 such that P(Ei) ≥ b for each i.

Theorem 4 With probability 1, the core of � is nonempty.

Proof. For any k ∈ N, the event Fk = Ek ∩ · · · ∩ Ek+L has strictly positive probability and

therefore the event F such that F ⊂ Fk holds for infinitely many values of k has probability

1. For � in F and any agent j1, the sequence (j1, ..., jn) such that ji+1 is the favorite object
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of ji must include a cycle for n suffi ciently large. The Gale top trading cycles algorithm

must therefore partition N into cycles, thus identifying an element of the core of �.

Corollary 2 With probability 1, there exists a Pareto-optimal matching for � that can be

competitively implemented.

Theorem 5 With probability 1, every matching for � that can be competitively implemented

lies in the core of �.

Proof. Assume that � lies in the event F defined in the proof of Theorem 4. Let

(µ, p) be a competitive equilibrium and suppose S can block µ using some submatching

ν. Then, for some i∗ ∈ S, ν(i∗) �i∗ µ(i∗). Since � is in F , there is a k∗ > i∗ such

that F ⊂ Fk∗ holds. Define Nk∗ = S ∩ {1, ..., k∗ − 1}. Since the assumption of bounded

lifespans implies that ν is a bijection on Nk∗ , we can apply a variant of the classical Shap-

ley argument that the existence of a blocking coalition leads to two inconsistent require-

ments:
∑

j∈Nk∗ p(ν(j))ν(j) >
∑

j∈Nk∗ p(j)j (since p(ν(j))ν(j) ≥ p(j)j for all j ∈ Nk∗ and

p(ν(i∗))ν(i∗) > p(i∗)i∗) and
∑

j∈Nk∗ p(ν(j))ν(j) =
∑

j∈Nk∗ p(j)j (since ν is a bijection on

Nk∗).

Theorems 3 and 5 together show that full core equivalence obtains with probability 1.

While we gave a direct proof of Theorem 4, the result also follows from Theorems 2 and

5: a competitive equilibrium necessarily exists and, with probability 1, any competitive

equilibrium lies in the core.

7 Matchings without disposal

One of our introductory illustrations of an infinite-horizon matching problem, the allocation

of doctors to emergency rooms, violates free disposal: the ER has a pre-set staffi ng need at

all hours.

To define the core when disposal is prohibited, we say that a coalition S ⊂ N blocks

the matching µ without disposal if there is a submatching ν : S → S that maps onto S

such that ν(i) %i µ(i) for all i ∈ S and ν(j) �j µ(j) for some j ∈ S. Matching µ is in
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the no-disposal core when µ maps onto N and no coalition can block µ without disposal.

Strict blocking and the no-disposal weak core are defined accordingly. A no-disposal

equilibrium (µ, p) is a competitive equilibrium such that µ maps onto N and we now say

that a matching µ can be competitively implemented if there is a p such that (µ, p) is a

no-disposal equilibrium.

While our proof of the nonemptiness of the weak core does not apply to the no-disposal

weak core, the results on competitive equilibria extend. The matching µ of a competitive

equilibrium (µ, p) must now map onto N but it is usually easy to build equilibrium matchings

that satisfy that constraint. Specifically, the equilibria constructed in the proof of Theorem

2 do not dispose of any objects and hence that result holds for no-disposal equilibria with

no adjustments in the proof. Theorems 4 and 5, appropriately reworded to apply to the

no-disposal core, also continue to hold, again with no changes in their proofs.

Regarding Theorem 3, any matching µ in the standard core that does not dispose of any

objects is evidently in the no-disposal core: any coalition that blocks without disposal also

blocks with disposal and hence the set of candidate submatchings that must be ruled out as

blocking coalitions shrinks in the no-disposal case. Any such µ therefore continues to have

a competitive equilibrium.

What about arbitrary matchings in the no-disposal core?

Theorem 6 For any profile � including profiles with arbitrary lifespans, if µ is in the no-

disposal core of � then µ can be competitively implemented.

Proof. Recall from section 4 that each chain is indexed by set of consecutive integers. Given

a chain S, let the subscript of si ∈ S denote the index assigned to si. We may then represent

µ as a disjoint set of chains S where, for each S ∈ S and si ∈ S, µ(si) = si+1 ∈ S and,

when si = maxS, si+1 = minS. Since disposal is prohibited, there are no rays in S. We

first show any si ∈ S ∈ S prefers si+1 to all other objects in S. If to the contrary si prefers

some sj ∈ S to si+1 then there is a subset of S that can block µ: the subset consists of si,

who consumes sj, and each agent sk ∈ S ′, who continue to consume µ(sk), where S ′ equals

{sk ∈ S : j ≤ k < i} when j < i and {sk ∈ S : k < i or k ≥ j} when i < j. It is therefore

compatible with equilibrium to set p(i) = p(j) whenever i and j lie in the same chain S.
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Call this common price p(S).

We show below that the following binary relation R on S is acyclic: S ′RS if and only if

there exists an agent i ∈ S and an object j ∈ S ′ such that j �i µ(i). The transitive closure

of an acyclic R on a set S can be extended to a transitive and asymmetric order R∗ such

that, for all S, S ′ ∈ S, S 6= S ′ implies (SR∗S ′ or S ′R∗S), where ‘extended’means that SRS ′

implies SR∗S ′. As at the end of the proof of Theorem 3, we may set p(S) for S ∈ S so that

SR∗S ′ implies p(S) > p(S ′).

Turning to the acyclicity of R, suppose to the contrary that there is a {S1, ..., Sn} =

S ′ ⊂ S such that S1R · · ·RSnRS1. We say that i is linked to j if j %i µ(i) and that i is

linked via T ⊂ N to j if T is a finite ordered set (r1, ..., rt), i is linked to r1, rk is linked to

rk+1 for k = 1, ..., rt−1, and rt is linked to j. If S is a cycle then, for each pair ri, rj ∈ S,

ri is linked via (ri+1, ri+2, ..., rj−1) to rj. Hence if we suppose that each Si ∈ S ′ is a cycle

then there must be a i in some Sk ∈ S ′, a j in some Sk′ ∈ S ′ with j �i µ(i), and a finite

ordered set T ⊂ N that begins with j such that i is linked via T to i. Since j �i µ(i),

{i} ∪ T can block µ. Alternatively suppose there is an infinite chain S ∈ S ′, which must be

two-sided. Then there must be an infinite chain S∗ ∈ S ′ and cycles S[1], ..., S[t] in S ′ such

that SRS[1]R · · ·RS[t]RS∗. Hence there is a i ∈ S, a k ∈ S[1] with k �i µ(i), a j ∈ S∗, and

some finite ordered set T ⊂ N that begins with k such that i is linked via T to j. Let i ≤S j

mean that, for chain S, the index assigned to i is less than or equal to the index assigned

to j. If S 6= S∗ or i ≤S j, the coalition that consists of i, all ≤S-predecessors of i in S, T , j

and all ≤S∗-successors of j in S∗ can block µ. If S = S∗ and j <S i then the coalition that

consists of j, all k ∈ S with j <S k <S i, i, and T can block µ.

A Appendix: lengthy and slow termination

Proposition 1 For any ordinal α that is at most countable, there exists a profile � such

that modified top trading cycles terminates at round α.

Proof. Suppose α is countably infinite. Let the favorite of each i ∈ N be i, let f be a

bijection from N to α, and, for any i ∈ ω, let the chain that exits in round f(i) consist

of i alone. Termination then occurs at round α. If α is finite, let the favorite of each
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i = 1, ..., α− 1 be i and let the favorite of i ≥ α be i+ 1. Then α admissible chains form in

round 1 and they can exit in arbitrary order.

That most of the chains in the above proof consist of one agent consuming his endowment

is inessential. For example, if the agents can be partitioned into a countably infinite set of

chains and α is countably infinite then there will be a bijection from the set of chains to α

and hence we may again let one chain exit at each of α rounds.

Modified top trading cycles if simple if, for any round α at which some chain S exits

and any admissible chain S ′ that forms at α, minS ≤ minS ′.

If k is a finite ordinal then ωk denotes the ordinal that is order isomorphic to k copies of

ω, say {11, 21, ...}, ..., {1k, 2k, ...}, ordered lexicographically: ia precedes jb in the ordering if

and only if a < b or (a = b and i ≤ j).

Proposition 2 For any �, simple modified top trading cycles terminates at or before round

ωL.

Proof. Apply simple modified top trading cycles to profile � and let µ be the matching that

is generated. Suppose some agents remain unmatched after ωk rounds, where k is finite,

and that chain Sk exits at round ωk.

Lemma. Sk contains infinitely many agents. Proof. If to the contrary Sk is finite then

the set of objects that the agents in Sk prefer to their µ-matches, S∗ = {s ∈ N : s �i
µ(i) for some i ∈ Sk}, is also finite. For Sk to be admissible at ωk, each object s ∈ S∗

must be assigned by µ to an agent that exits at some round ls < ωk. Since S∗ is finite,

l = max{ls : s ∈ S∗} is well-defined and l < ωk. Hence Sk is admissible at any round

greater than l. Simplicity therefore implies that each chain that exits after l and before

ωk contains an agent with index less than minSk. Hence Sk must exit on or before round

l + minSk. Since ωk is a limit ordinal, l + minSk < ωk, giving us a contradiction. �

To see that, for any n ≥ minSk, Sk must visit the set {n+1, . . . , n+L}, suppose instead

that Sk ∩ {n′+ 1, ..., n′+L} = ∅ for some n′ ≥ minSk. Since |j − i| > L implies i �i j, we

have |i− µ(i)| ≤ L for each i ∈ N. Agents drawn from the finite set Sk ∩ {1, ..., n′} could

therefore form an admissible chain at ωk, contradicting the Lemma.
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To conclude, suppose that the algorithm has proceeded through ω(L− 1) rounds, which

implies that the infinite chains S1, ..., SL−1 have exited at rounds ω, ω2, ..., ω(L − 1). Set

n̄ = max[minS1, ...,minSL−1]. For any j ≥ n̄, the set {j, j+1, . . . , j+(L−1)} must contain

one agent from Sk for k = 1, ..., L − 1. Define the infinite set of agents T = {i ∈ N : i

exits in one of the first ω rounds and i ≥ n̄}. Then, for any j ∈ T , every agent in

T j = {j, j + 1, ..., j + (L − 1)} has exited by round ω(L − 1). Since there are infinitely

many distinct T j sets, no further admissible infinite chains can form. No agent can remain

unmatched following a further ω rounds: if there were unmatched agents the Lemma would

imply that no admissible finite chain could form.

The bound provided in Proposition 2 is tight: it is not diffi cult to build profiles where any

application of modified top trading cycles, whether simple or not, cannot terminate before

ωL rounds have passed.
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