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Abstract

In the context of priority-based allocation of objects, we formulate methods to

compare assignments in terms of their stability. We introduce three basic properties

that a reasonable stability comparison should satisfy. We show that, for any stability

comparison satisfying the three properties, the top trading cycles mechanism is mini-

mally unstable among efficient and strategy-proof mechanisms when objects have unit

capacities. Our unifying approach covers basically all natural stability comparisons and

establishes the robustness of a recent result by Abdulkadiroğlu et al. (2020). When

objects have non-unit capacities, we characterize the capacity-priority structures for

which our result is preserved.

1 Introduction

Many resource-allocation problems include objects, such as houses, offices, jobs, or school

seats, endowed with priority orderings over agents, and a mechanism elicits agents’ preferences

and allocates the objects based on the preferences and the priorities. In such problems,
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respecting preferences is captured by the efficiency property, which requires that there is no

other assignment at which an agent is better off while no agent is worse off. On the other

hand, respecting priorities is captured by the stability property, which requires that there

is no “blocking pair” of an agent and an object such that the agent prefers the object to

his assignment and he has a higher priority than another agent who receives that object.

Unfortunately, no mechanism can guarantee efficiency and stability at the same time: there

exist problems without an assignment that is both efficient and stable.1

In their seminal paper, Abdulkadiroğlu and Sönmez (2003) propose to use the deferred-

acceptance (DA) mechanism or the top trading cycles (TTC) mechanism in the context of

school choice, depending on whether you want to guarantee stability or efficiency. Both

mechanisms are strategy-proof : for each agent, it is a weakly dominant strategy to report

his preferences truthfully. On the other hand, the DA mechanism is stable but inefficient

whereas the TTC mechanism is efficient but unstable. However, the DA mechanism is

“constrained efficient” as it chooses the agents-optimal (with respect to the Pareto dominance

comparison) stable assignment (Gale and Shapley, 1962). Two natural questions arise: (1)

What are methods to compare assignments—possibly two unstable assignments—in terms of

their stability? (2) Is the TTC mechanism “minimally unstable” with respect to any natural

stability comparison?

We address these questions by introducing three basic properties that any reasonable

stability comparison should satisfy. The first property stability-preferred imposes the follow-

ing requirement: any stable assignment should be strictly more stable than any unstable

assignment. The second property separability imposes a requirement only on the domain of

problems where each object has unit capacity and formalizes the following idea. Suppose

that an assignment µ is more stable than another assignment ν, while for a set of agents and

their assigned objects, ν is stable but µ is unstable. Then, µ should be strictly more stable

than ν when restricted to the other agents and objects (to be able to justify that µ is overall

more stable than ν). The third property consistency imposes a requirement also only on

the domain of problems where each object has unit capacity and formalizes the following

idea. Suppose that an assignment µ is more stable than another assignment ν while for a

set of agents, µ and ν assignments coincide and these agents and their assigned objects are

included in blocking pairs only among themselves at both µ and ν. Then, µ should still be

more stable than ν when restricted to the other agents and objects (since the removal of a

part where the two assignments coincide should not affect the overall stability comparison).

1This follows from an example in Roth (1982). It is more explicitly shown in Abdulkadiroğlu and Sönmez
(2003).
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Our main result, Theorem 1, states that given any stability comparison satisfying stability-

preferred, separability, and consistency, the TTC mechanism is minimally unstable among

efficient and strategy-proof mechanisms when all objects have unit capacities, i.e., there is no

other efficient and strategy-proof mechanism that is more stable than the TTC mechanism

with respect to any stability comparison satisfying the three properties.

Our paper is not the first one to address these questions. In a recent paper, Abdulkadiroğlu

et al. (2020) propose to compare assignments in terms of their stability by comparing the

sets of blocking pairs at these assignments, and calling an assignment more stable than

another assignment if the set of blocking pairs in the former assignment is a subset of the

set of blocking pairs in the latter assignment. Using this natural stability comparison, they

show that the TTC mechanism is minimally unstable among efficient and strategy-proof

mechanisms when each object has unit capacity, establishing the first “minimal instability”

result for the TTC mechanism in the literature.2 The stability comparison in Abdulkadiroğlu

et al. (2020) satisfies our three properties and therefore their result follows as a corollary to

ours. Moreover, our result shows that the TTC mechanism is minimally unstable when each

object has unit capacity with respect to many other—from our axiomatic perspective, to

all—natural stability comparisons. For example, a natural alternative is to count the number

of blocking pairs, which induces a complete comparison method (as all assignments can be

compared by counting blocking pairs). One may also consider comparison methods that

are not based on the set of blocking pairs, but based on alternative sets such as the set of

blocking triplets as in Kwon and Shorrer (2019),3 or the set of blocking agents as in ?.4

On the technical front, our main proof arguments are considerably different than the

corresponding ones of Abdulkadiroğlu et al. (2020).5 A key step in the proof is to show that

any efficient and strategy-proof mechanism that is more stable than the TTC mechanism

must satisfy a mutual-best property : if an agent and an object mutually top-rank each other

2Abdulkadiroğlu et al. (2020) use the “justified envy minimality” terminology instead of “minimal
instability”. In the context of our paper, which is the same as the context of Abdulkadiroğlu et al. (2020),
stability has a fairness interpretation and a blocking pair is equivalent to an instance of justified envy. In a
recent paper, Romm et al. (2020) show that in different contexts, the concepts of blocking and justified envy
may diverge.

3A blocking triplet includes, in addition to a blocking pair, an agent who violates the priority of the
agent in the blocking pair. Kwon and Shorrer (2019) show that TTC mechanism is minimally unstable
among efficient and strategy-proof mechanisms in one-to-one matching when stability comparison is based on
comparing (in the set-inclusion sense) sets of blocking triplets.

4A blocking agent is an agent who is involved in at least one blocking pair. In ?, we drop strategy-proofness
and investigate efficient and minimally unstable Pareto improvements over the deferred acceptance mechanism
for several natural stability comparisons.

5They are also different from the main arguments in the characterizations of the TTC mechanism in
different contexts, such as by Ma (1994), Svensson (1999), ?, and ?.
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in their preference and priority orderings, then the agent should receive the object.6 If the

stability comparison is based on comparing the sets of blocking pairs in the set inclusion sense

as in Abdulkadiroğlu et al. (2020), then the mutual-best property is immediate: suppose that

the agent is not assigned the object; then, they constitute a blocking pair, while they are not

a blocking pair under the TTC mechanism, contradicting that the mechanism is more stable

than the TTC mechanism. Such a conclusion is not immediate if the stability comparison

is, for example, based on counting blocking pairs. In Section 4 after stating Theorem 1, we

provide a detailed sketch of the proof.

In some applications such as school choice, objects do not have unit capacities, and

Theorem 1 fails. In fact, it follows from Example 1 in Abdulkadiroğlu et al. (2020) that for

any stability comparison that satisfies stability-preferred, the TTC mechanism is not minimally

unstable among efficient and strategy-proof mechanisms.7 In Theorem 2, when each object

has non-unit capacity we characterize the capacity-priority structures for which the TTC

mechanism is robustly minimally unstable among efficient and strategy-proof mechanisms.

Our result reveals that the TTC mechanism is not robustly minimally unstable when each

object has at least two copies,8 except for the capacity-priority structures for which the TTC

mechanism is always stable, in which case it is trivially robustly minimally unstable.

Our paper is related to the literature on understanding the implications of efficiency and

strategy-proofness in object allocation such as, among others, Pápai (2000), Pycia and Ünver

(2017), Kesten (2010), and Kesten and Kurino (2019). Another related paper is Bonkoungou

and Nesterov (2020) who use natural stability comparisons to explain some school choice

reforms. Finally, although the investigation of stability comparisons in two-sided matching is

new, there is a related literature on stability comparisons for roommates problems such as,

among others, Abraham et al. (2005).9

The paper is organized as follows. Section 2 introduces priority-based object allocation

problems. Section 3 defines stability comparison methods, introduces basic properties for

stability comparisons, and provides examples of natural stability comparisons. Section 4

6To our knowledge, mutual-best property was first studied in ? in this context.
7For the multi-capacity case, Abdulkadiroğlu et al. (2020) provide a justification for the TTC mechanism

from a different perspective and show that the TTC mechanism outperforms serial dictatorship, an obvious
efficient alternative, by admitting fewer blocking pairs in an average sense when every possible priority profile
is considered or when participants’ priorities are drawn uniform randomly. Note that this justification has a
cardinal nature, and we believe that incorporating stability comparisons with cardinal nature complements
this alternative justification.

8In fact, not minimally unstable for any stability comparison that satisfies stability-preferrred.
9Abraham et al. (2005) define almost stable matchings as matchings that minimize the number of blocking

pairs, which is the roommates problem counterpart of the blocking pairs cardinality comparison considered in
this paper and also in ?.
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defines the TTC mechanism and states our main results. Section 5 concludes. The Appendix

contains the proofs relegated from the main text.

2 The Model

Let N denote the set of potential agents and C denote the set of potential objects. We call a

tuple (N,C,R, q,�) a problem, where

• N ⊂ N is a finite set of agents,

• C ⊂ C is a finite set of objects,

• R = (Ri)i∈N is a preference profile, which is a profile of linear orderings over C ∪ {∅}
where ∅ represents an outside option for the agent,10

• q = (qc)c∈C is a capacity profile with qc ∈ N for each c ∈ C,

• �= (�c)c∈C is a priority profile, which is a profile of linear orderings over N .11

The strict part of a preference ordering Ri is denoted by Pi.
12 Object c is acceptable to

agent i if he prefers it to his outside option, i.e., c Pi ∅. Object c has unit capacity if qc = 1,

and otherwise object c has non-unit capacity. The strict part of a priority ordering �c is

denoted by �c. Let E (N,C) denote the set of all problems (or economies) including N as the

set of agents and C as the set of objects, and let E denote the set of all problems including

any finite sets of agents and objects.

Given a problem E = (N,C,R, q,�) ∈ E , a set of agents N ′ ⊆ N and objects C ′ ⊆ C,

we call E|(N ′,C′) as the restriction of E to (N ′, C ′), where E|(N ′,C′) is obtained from E by

simply removing N\N ′ and C\C ′, and also removing them from q, R, and � while keeping

relative orderings of the remaining agents and the relative orderings and capacities of the

remaining objects the same.

Given a problem E = (N,C,R, q,�) ∈ E , an assignment is a mapping µ : N ∪ C →
N ∪ C ∪ {∅} such that

10Formally, a preference ordering is a complete, transitive, and anti-symmetric binary relation over C ∪{∅}.
Binary relation Ri over C∪{∅} is complete if, for every c1, c2 ∈ C∪{∅}, c1Ric2 or c2Ric1. It is transitive if, for
every c1, c2, c3 ∈ C ∪ {∅}, c1Ric2 and c2Ric3 imply c1Ric3. It is anti-symmetric if, for every c1, c2 ∈ C ∪ {∅},
c1Ric2 and c2Ric1 imply c1 = c2.

11Formally, a priority ordering is a complete, transitive, and anti-symmetric binary relation over N .
12That is, if c1, c2 ∈ C ∪ {∅}, c1 6= c2, and c1 Ri c2, then c1 Pi c2.
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(i) for each i ∈ N , µ(i) ∈ C ∪ {∅},

(ii) for each c ∈ C, µ(c) ⊆ N such that |µ(c)| ≤ qc, and

(iii) for each i ∈ N and each c ∈ C, i ∈ µ(c) if and only if c = µ(i).

Let A(E) denote the set of all possible assignments at the problem E. Note that A(E) is

determined by (N,C, q).

An assignment µ Pareto dominates another assignment µ′ if for each i ∈ N , µ(i) Ri µ
′(i)

and there exists i ∈ N such that µ(i) Pi µ
′(i). An assignment µ is efficient if it is not

Pareto dominated. Note that efficiency implies individual rationality : for each i ∈ N ,

µ(i) Ri ∅.

A pair (i, c) ∈ N × C blocks µ if c Pi µ(i) and [|µ(c)| < qc or there exists j ∈ µ(c) such

that i �c j]. Let

B(µ) = {(i, c) ∈ N × C : (i, c) blocks µ}

denote the set of blocking pairs at µ. In addition, for each i ∈ N , let Bi(µ) = {c ∈ C : (i, c) ∈
B(µ)} denote the set of objects together with which agent i constitute a blocking pair, and

for each c ∈ C, Bc(µ) = {i ∈ N : (i, c) ∈ B(µ)} denote the set of agents together with whom

object c constitute a blocking pair.

An assignment µ is stable if it is individually rational and includes no blocking pair.

Unfortunately, there exist problems without an assignment that is both efficient and stable

(Roth, 1982).

A mechanism associates each problem with an assignment. When we say that a

mechanism satisfies a certain assignment property, such as efficiency, we mean that at each

problem, the assignment prescribed by the mechanism satisfies the property.

A mechanism ϕ is strategy-proof if reporting true preferences is a weakly dominant

strategy for each agent in the preference revelation game induced by ϕ, that is, for each

problem (N,C,R, q,�), each i ∈ N and each preference ordering R′i,

ϕi(N,C,R, q,�) Ri ϕi(N,C, (R
′
i, R−i), q,�).

When (N,C, q,�) is clear, we often denote a problem simply by its preference profile R.

Now, using our convention, the above simply says ϕi(R) Ri ϕi(R
′
i, R−i).

Remark 1 Given an assignment µ, i has justified envy towards j if µ(j) = c Pi µ(i) and
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i �c j. Note that any efficient assignment is stable if and only if it contains no justified envy

(i.e., no agent has justified envy towards any other agent).

3 A Unifying Approach to Stability Comparisons

A stability comparison is a function f associating with each problem E ∈ E a binary

relation over assignments &E
f ⊆ A(E) × A(E). We use the convention and write µ &E

f ν

instead of (µ, ν) ∈&E
f , and µ �E

f ν instead of [µ &E
f ν and not ν &E

f µ]. We read µ &E
f ν as

“µ is f -more stable than ν at E” and µ �E
f ν as “µ is strictly f -more stable than ν at E”.

Note that we do not impose any structure on a stability comparison (such as completeness

or transitivity).13 Later we will describe several examples of stability comparison methods.

Also note that, when (N,C, q) is fixed, although the set of assignments is independent of the

preference or the priority profile, the stability comparison may vary with the preference and

the priority profile, that is, stability comparisons depend on the whole problem.

We now introduce three basic properties that a reasonable stability comparison should

satisfy.14

3.1 Stability-preferred

The first property imposes the following requirement: any stable assignment should be strictly

more stable than any unstable assignment.

Stability-preferred: For each E ∈ E and µ, ν ∈ A(E), if B(µ) = ∅ 6= B(ν), then µ �E
f ν.

3.2 Separability

The second property separability imposes a requirement only on the domain of problems

where each object has unit capacity. It formalizes the following idea. Suppose that an

assignment µ is more stable than another assignment ν, while for a set of agents and their

assigned objects, ν is stable but µ is unstable. Then, µ should be strictly more stable than ν

when restricted to the other agents and objects (to be able to justify that µ is overall more

stable than ν).

13Here (i) &E
f is complete if for all µ, ν ∈ A(E) we have µ &E

f ν or ν &E
f µ and (ii) &E

f is transitive if

µ &E
f ν and ν &E

f η imply µ &E
f η.

14We show in Appendix B that none of the three properties is implied by the other two.
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More precisely, suppose that µ is at least as stable as ν and also that there is a set of

agents N ′ whose aggregate assignments15 are the same at µ and ν, i.e., µ(N ′) = ν(N ′) = C ′.

Suppose also that no agent in N ′ is involved in a blocking pair at ν and also no object in

C ′ is involved in a blocking pair at ν, while an agent in N ′ and an object in C ′ constitute a

blocking pair at µ. Then, when restricted to the other agents and objects (N \N ′, C \C ′), µ
should be strictly more stable than ν.

We next provide a formal definition of separability. Given a unit-capacity problem and

a set of agents N ′ with µ(N ′) = C ′, let µ|N\N ′ denote the restriction of µ to N\N ′ and

C\C ′, where µ|N\N ′ is obtained from µ by simply removing N ′ and C ′ while keeping the

assignments of N\N ′ the same as in µ. Note that µ|N\N ′ ∈ A(E|(N\N ′,C\C′)).

Separability: For each unit-capacity problem E ∈ E , each pair of assignments µ, ν ∈ A(E)

such that µ &E
f ν, and each pair of (N ′, C ′) such that µ(N ′) = ν(N ′) = C ′, if Bx(ν) = ∅ for

each x ∈ N ′ ∪ C ′ and (i, c) ∈ B(µ) for some (i, c) ∈ N ′ × C ′, then µ|N\N ′ �E′

f ν|N\N ′ , where

E ′ = E|(N\N ′,C\C′).

3.3 Consistency

The third property consistency imposes a requirement also only on the domain of problems

where each object has unit capacity. It formalizes the following idea. Suppose that an

assignment µ is more stable than another assignment ν while for a set of agents, µ and ν

assignments coincide and these agents and their assigned objects are included in blocking

pairs only among themselves at both µ and ν. Then, µ should still be more stable than ν

when restricted to the other agents and objects (since the removal of a part where the two

assignments coincide should not affect the overall stability comparison).

We next provide a formal definition of consistency.

Consistency: For each unit-capacity problem E ∈ E , each pair of assignments µ, ν ∈ A(E)

such that µ &E
f ν, and each ∅ 6= N ′ ⊆ N such that ν(i) = µ(i) for all i ∈ N ′, if Bi(µ) =

Bi(ν) ⊆ µ(N ′) = ν(N ′) = C ′ for all i ∈ N ′ and Bc(µ) = Bc(ν) ⊆ N ′ for all c ∈ µ(N ′), then

µ|N\N ′ &E′

f ν|N\N ′ , where E ′ = E|(N\N ′,C\C′).
15The aggregate assignment of N ′ at µ is µ(N ′) = {c ∈ C|∃i ∈ N ′ : µ(i) = c}. Note that µ(N ′) = ∅ if

and only if all agents in N ′ are assigned their outside options.
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3.4 Examples of Natural Stability Comparisons

Below, we present some natural stability comparisons satisfying the three properties. Some

of these comparison methods are inclusion methods whereas others are the (corresponding)

cardinal methods. It is easy to show that each of these stability comparisons satisfies all

three properties. We will explain this only for the “blocking pairs inclusion” comparison and

the “blocking pairs cardinality” comparison for illustrative purposes.

3.4.1 Blocking Pairs

The blocking pairs inclusion comparison (pincl) is defined as follows. For each problem E ∈ E
and µ, ν ∈ A(E),

µ &E
pincl ν ⇔ B(µ) ⊆ B(ν).

That is, an assignment is pincl-more stable than another assignment if the set of blocking pairs

in the former assignment is a subset of the set of blocking pairs in the latter assignment.16

The blocking pairs inclusion comparison satisfies stability-preferred because the set of

blocking pairs for any stable assignment, which is the empty set, is trivially a subset of any

other set of blocking pairs.

The pincl comparison satisfies separability because if µ is more stable than ν, then there

cannot be a set of agents N ′ with µ(N ′) = ν(N ′) = C ′ such that no agent in N ′ is involved

in a blocking pair at ν and also no object in C ′ is involved in a blocking pair at ν while an

agent in N ′ and an object in C ′ constitute a blocking pair at µ.

The pincl comparison satisfies consistency because if µ is more stable than ν and if for a

set of agents µ and ν assignments coincide and these agents and their assigned objects are

included in blocking pairs only among themselves at both µ and ν, then the set of blocking

pairs at µ is still a subset of the set of blocking pairs at ν when restricted to the other agents

and objects.

The blocking pairs cardinality comparison (pcard) is defined as follows. For each problem

E ∈ E and µ, ν ∈ A(E),

µ &E
pcard ν ⇔ |B(µ)| ≤ |B(ν)|.

That is, an assignment is pcard-more stable than another assignment if the number of blocking

pairs in the former assignment is no more than the number of blocking pairs in the latter

16Among others, Abdulkadiroğlu et al. (2020), ?, Tang and Zhang (2020) study this stability comparison.
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assignment.17 Note that &E
pincl⊆&E

pcard.

The blocking pairs cardinality comparison satisfies stability-preferred because the number

of blocking pairs for any stable assignment, which is zero, is trivially no more than the number

of blocking pairs at any other assignment.

The pcard comparison satisfies separability because if µ is more stable than ν and there is

a set of agents N ′ with µ(N ′) = ν(N ′) = C ′ such that no agent in N ′ is involved in a blocking

pair at ν and also no object in C ′ is involved in a blocking pair at ν while an agent in N ′ and

an object in C ′ constitute a blocking pair at µ, then µ must have strictly less blocking pairs

than ν when restricted to the other agents and objects since overall µ has no more blocking

pairs than ν.

The pcard comparison satisfies consistency because if µ is more stable than ν and if for

a set of agents µ and ν assignments coincide and these agents and their assigned objects

are included in blocking pairs only among themselves at both µ and ν, then the number of

blocking pairs at µ is still no more than the number of blocking pairs at ν when restricted to

the other agents and objects.

3.4.2 Blocking Triplets

The blocking triplets inclusion comparison (tincl) is defined as follows. Let (i, j, c) ∈ T (µ) if

and only if i �c j, µ(j) = c, and cPiµ(i). For each E ∈ E and µ, ν ∈ A(E),

µ &E
tincl ν ⇔ T (µ) ⊆ T (ν).

That is, an assignment is tincl-more stable than another assignment if the set of blocking

triplets in the former assignment is a subset of the set of blocking triplets in the latter

assignment.18

The blocking triplets cardinality comparison tcard is defined as follows. For each E ∈ E
and µ, ν ∈ A(E),

µ &E
tcard ν ⇔ |T (µ)| ≤ |T (ν)|.

That is, an assignment is tcard-more stable than another assignment if the number of blocking

triplets in the former assignment is no more than the number of blocking triplets in the latter

assignment. Note that &E
tincl⊆&E

tcard.

17Among others, ? study this stability comparison.
18Kwon and Shorrer (2019) study this stability comparison, and in particular show that the blocking pairs

inclusion comparison is independent from the blocking triplets inclusion comparison.
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The blocking triplets inclusion and cardinality comparisons satisfy stability-preferred,

separability, and consistency.

3.4.3 Blocking Agents

The blocking agents inclusion comparison (aincl) is defined as follows. Let BA(µ) = {i ∈ N :

Bi(µ) 6= ∅}. For each problem E ∈ E and µ, ν ∈ A(E),

µ &E
aincl ν ⇔ BA(µ) ⊆ BA(ν).

That is, an assignment is aincl-more stable than another assignment if the set of blocking

agents in the former assignment is a subset of the set of blocking agents in the latter

assignment.

The blocking agents cardinality comparison (acard) is defined as follows. For each E ∈ E
and µ, ν ∈ A(E),

µ &E
acard ν ⇔ |BA(µ)| ≤ |BA(ν)|.

That is, an assignment is acard-more stable than another assignment if the number of blocking

agents in the former assignment is no more than the number of blocking agents in the latter

assignment. Note that &E
aincl⊆&E

acard.

The blocking agents inclusion and cardinality comparisons satisfy stability-preferred,

separability, and consistency. These stability comparisons that are based on the set of

blocking agents is natural because in applications such as school choice, stability has a

fairness interpretation and having a minimal set of, or number of, agents who are treated

unfairly (for at least one object) is a reasonable objective.

3.4.4 Blocking Objects

The blocking objects inclusion comparison (oincl) is defined as follows. Let BO(µ) = {c ∈
C : Bc(µ) 6= ∅}. For each problem E ∈ E and µ, ν ∈ A(E),

µ &E
aincl ν ⇔ BO(µ) ⊆ BO(ν).

That is, an assignment is oincl-more stable than another assignment if the set of blocking

objects in the former assignment is a subset of the set of blocking objects in the latter

assignment.
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The blocking objects cardinality comparison (ocard) is defined as follows. For each E ∈ E
and µ, ν ∈ A(E),

µ &E
acard ν ⇔ |BO(µ)| ≤ |BO(ν)|.

That is, an assignment is acard-more stable than another assignment if the number of blocking

agents in the former assignment is no more than the number of blocking agents in the latter

assignment. Note that &E
oincl⊆&E

ocard.

The blocking objects inclusion and cardinality comparisons satisfy stability-preferred,

separability, and consistency. These stability comparisons that are based on the set of

blocking objects is natural because in applications such as school choice, stability has a

fairness interpretation and having a minimal set of, or number of, objects that are allocated

unfairly (by violating the priority of at least one agent) is a reasonable objective.

4 Results

Given a stability comparison f , we say that a mechanism ϕ is f-more stable than another

mechanism ϕ′ if ϕ′(E) &E
f ϕ(E) for all E ∈ E . A mechanism ϕ is f-minimally unstable

among efficient and strategy-proof mechanisms if there is no other mechanism ϕ′ 6= ϕ

that is efficient, strategy-proof, and f -more stable than ϕ.

A mechanism ϕ is weakly f-minimally unstable among efficient and strategy-

proof mechanisms if there is no efficient and strategy-proof mechanism ϕ′ that is f -more

stable than ϕ and ϕ′(E) �E
f ϕ(E) for some E ∈ E .19

A mechanism ϕ is robustly minimally unstable among efficient and strategy-

proof mechanisms if for any stability comparison f satisfying stability-preferred, separability

and consistency, ϕ is f -minimally unstable among efficient and strategy-proof mechanisms.

The top trading cycles (TTC) mechanism (Abdulkadiroğlu and Sönmez, 2003) is

based on Gale’s TTC algorithm (Shapley and Scarf, 1974) which runs, given a problem, as

follows.

TTC Algorithm:20

19If ϕ is f -minimally unstable among efficient and strategy-proof mechanisms, then ϕ is weakly f -minimally
unstable among efficient and strategy-proof mechanisms (but the converse does not hold as there might exist
a mechanism different from ϕ with the identical f -stability measure). Abdulkadiroğlu et al. (2020) and Kwon
and Shorrer (2019) use the weaker second definition.

20?, ?, and ? propose variants of TTC for the many-to-one setup. For one-to-one problems, all variants
coincide.
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Step 1. Assign a counter for each object which keeps track of how many copies are

still available for that object. Initially set the counters equal to the capacities of

the objects. Each agent points to her top-ranked object. Each object points to the

agent who has the highest priority for the object. Since the number of agents and

objects are finite, there is at least one cycle. (A cycle is an ordered list of distinct

agents and distinct objects (k, ck)k∈{1,...,K} such that for each k ∈ {1, . . . , K},
agent k points to object ck and object ck points to agent k+1 with the convention

that K+ 1 = 1. Moreover, each object can be part of at most one cycle. Similarly,

each agent can be part of at most one cycle. Every agent in a cycle is assigned

a copy of the object she points to and is removed. The counter of each object

in a cycle is reduced by one and if it reduces to zero, the object is also removed.

Counters of all other objects stay the same.

Step t ≥ 2. Each remaining agent points to her top-ranked object among the

remaining objects and each remaining object points to the agent with highest

priority among the remaining agents. There is at least one cycle. Every agent in

a cycle is assigned a copy of the object that she points to and is removed. The

counter of each object in a cycle is reduced by one and if it reduces to zero the

object is also removed. Counters of all other objects stay the same.

Our main result is the following.

Theorem 1 The TTC mechanism is robustly minimally unstable among efficient and strategy-

proof mechanisms when objects have unit capacities.

The proof is in Appendix A. Here, we provide a sketch of the proof and highlight the main

innovative idea in the proof. Take any stability comparison f satisfying the three properties.

We start with the following observation: if TTC is not f -minimally unstable among efficient

and strategy-proof mechanisms, then there must be a smallest number of agents, say n,

such that there exists a mechanism ϕ, different from TTC, that is defined on the domain of

problems including exactly n agents and that is strategy-proof, efficient, and f -more stable

than TTC. Note that n ≥ 3 since at any problem including one or two agents, any mechanism

that is efficient and f -more stable than TTC must coincide with TTC because TTC chooses

the unique efficient and stable assignment and f satisfies stability-preferred.

Suppose that ϕ is an arbitrary mechanism that is strategy-proof, efficient, and f-more

stable than TTC on the domain of problems with an arbitrary set of agents N where |N | = n

and an arbitrary set of objects C. We prove that ϕ coincides with TTC on this domain of

13



problems that include (N,C). Since ϕ, N , and C are arbitrarily chosen, this contradicts that

on the domain of problems with n agents, there exists a mechanism different from TTC that

is strategy-proof, efficient, and f -more stable than TTC, and therefore concludes the proof.

When proving that ϕ coincides with TTC on this domain, the first key step is to show

that ϕ must satisfy a mutual-best property (Lemma 2): If i ∈ N and c ∈ C are such that c

is top-ranked at i’s preference ordering and i has the highest priority at c, then c must be

assigned to i by ϕ as well. If f is a set-inclusion type comparison, such as the blocking pairs

inclusion comparison, then the mutual-best property is almost trivial: suppose otherwise, i.e.,

suppose that c is not assigned to i; then, (i, c) constitutes a blocking pair under ϕ, while it is

not a blocking pair under TTC, contradicting that ϕ is more stable than TTC with respect

to the blocking pairs inclusion comparison. Note that such a conclusion is not immediate if f

is a cardinal type comparison, such as the blocking pairs cardinality comparison, because

not assigning c to i unlike TTC does not immediately imply that the ϕ assignment includes

more blocking pairs than the TTC assignment. Instead, we prove this by constructing a new

domain of problems including fewer agents than n and constructing a new mechanism ϕ′

that is strategy-proof, efficient, and f -more stable than TTC on this new domain of problems

including fewer than n agents, which contradicts that n is the smallest number of agents such

a domain entails.

The mutual-best property, together with efficiency, imply that the ϕ and TTC assignments

of the agents who are assigned at the first step of the TTC algorithm must coincide. The

second key step is to show that ϕ must satisfy a mutual-best property with respect to any

further step of the TTC algorithm (Lemma 4): If i ∈ N and c ∈ C are such that i top-ranks c

and c points to i at some step after the first step of the TTC algorithm, that is, they become

mutually-best at some step after the first step of the TTC algorithm at E, then c must be

assigned to i by ϕ as well. The rest of the proof shows, by induction on the step number in

the TTC algorithm, that for each step of the TTC algorithm, the ϕ and TTC assignments of

the agents who are assigned at that step of the TTC algorithm must coincide. All details are

in Appendix A.

We obtain the following corollaries for several different natural stability comparison

methods, some of which have been shown in the recent literature.

Corollary 1 TTC is f -minimally unstable among efficient and strategy-proof mechanisms

when objects have unit capacities if f is the

i. blocking pairs inclusion comparison21 or blocking pairs cardinality comparison, or

21Theorem 1 of Abdulkadiroğlu et al. (2020) show this result for the weak minimal instability among
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ii. blocking triplets inclusion comparison22 or blocking triplets cardinality comparison, or

iii. blocking agents inclusion comparison or blocking agents cardinality comparison, or

iv. blocking objects inclusion comparison or blocking objects cardinality comparison.

4.1 A Class where TTC is the Unique Robustly Minimally Unsta-

ble Mechanism

We will show that for a fairly large class of mechanisms, the TTC mechanism is the unique

robustly minimally unstable mechanism among efficient and strategy-proof mechanisms,

although Theorem 1 does not imply that TTC is the unique such mechanism in general.

First, we introduce an auxiliary notion. A mechanism ϕ is trivially unstable if it chooses

an unstable assignment for a unit-capacity problem where two agents find only one, and the

same, object acceptable, and all other agents find no object acceptable, i.e., there exists a

unit-capacity problem E = (N,C,R, q,�), a pair of agents i, j ∈ N , and an object c ∈ C such

that i and j find only c acceptable, each other agent finds no object acceptable, i �c j, and

ϕi(E) 6= c. Note that although TTC is not a stable mechanism, it is not trivially unstable.

Lemma 1 If a mechanism is trivially unstable, then it is not f -minimally unstable among

efficient and strategy-proof mechanisms for any stability comparison f that satisfies stability-

preferred.

Proof. Suppose that ϕ is efficient, strategy-proof, and trivially unstable. Then, there exists

a unit capacity problem E = (N,C,R, q,�), a pair of agents i, j ∈ N , and an object c ∈ C
such that i and j find only c acceptable, each other agent finds no object acceptable, i �c j,

and ϕj(E) = c.

Let ϕ′ be defined as follows. For each unit-capacity problem E ′ = (N,C,R′, q,�) such

that E and E ′ coincide besides the preferences of i and j (i.e., R′k = Rk for each k ∈ N \{i, j}),
let ϕ′(E ′) = TTC(E ′). For every other problem E ′′, let ϕ′(E ′′) = ϕ(E ′′). Observe that ϕ′ is

efficient and strategy-proof.

Note that on the domain of problems where ϕ and ϕ′ differ, ϕ′ is stable. Moreover, there

is at least one problem, the problem E, where ϕ′ is stable but ϕ is not stable. Hence, ϕ is

efficient and strategy-proof mechanisms definition.
22Proposition 7 of Kwon and Shorrer (2019) show this result for the weak minimal instability among

efficient and strategy-proof mechanisms definition.

15



not f -minimally unstable among efficient and strategy-proof mechanisms for any stability

comparison f that satisfies stability-preferred.

Now, consider the following class of mechanisms, called the class of generalized TTC

mechanisms. Let h be an arbitrary function that maps each priority profile � to another

priority profile h(�) consisting of the same agents and the same objects with �. Let

TTCh be the mechanism such that for each problem (N,C,R, q,�), TTCh(N,C,R, q,�) =

TTC(N,C,R, q, h(�)). That is, the TTCh outcome at each problem is obtained by running

the TTC algorithm, but under the priority profile h(�) which may be different from the

true priority profile �. Generalized TTC mechanisms (where each member is induced by a

different function) includes the serial dictatorship mechanisms where the same priority profile

is used at each problem, and all objects have the same priority ordering at this common

priority profile. We next show that the TTC mechanism, the one that always operates based

on the true priority profile, is the unique mechanism in this class that is robustly minimally

unstable among efficient and strategy-proof mechanisms when each object has unit capacity.23

Proposition 1 The TTC mechanism is the unique mechanism in the class of generalized

TTC mechanisms that is robustly minimally unstable among efficient and strategy-proof

mechanisms when objects have unit capacities.

Proof. Suppose that h(�) 6= � for some priority profile �. We will show that TTCh is

not f -minimally unstable among efficient and strategy-proof mechanisms for any stability

comparison f that satisfies stability-preferred. Let �′= h(�). Let (N,C) be the set of agents

and objects included in �. Note that there exist c ∈ C and i, j ∈ N such that i �c j and

j �′c i. Then, there exists a unit-capacity problem E = (N,C,R, q,�) such that i and j find

only object c acceptable, each other agent finds no object acceptable, and TTCh
j (E) = c.

Thus, TTCh is trivially unstable. Hence, by Lemma 1, TTCh is not f -minimally unstable

among efficient and strategy-proof mechanisms for any f that satisfies stability-preferred

when object have unit capacities.

4.2 Non-Unit Capacities

When each object has a capacity of at least two, we characterize the capacity-priority

structures for which the TTC mechanism is robustly minimally unstable among efficient

23Abdulkadiroğlu et al. (2020) show a similar result for a smaller class of mechanisms where the h function
is required to satisfy the following property: for any �, �′, and c, if �c=�′c, then �∗c=�∗∗c where �∗= h(�)
and �∗∗= h(�′). That is, the “distorted” priority ordering of an object only depends on the true priority
ordering of the object, but not on the rest of the true priority profile.
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and strategy-proof mechanisms. Given a set of agents N and a set of objects C, let us call

(q,�) a capacity-priority structure for (N,C), where q = (qc)c∈C is a capacity profile

and � = (�c)c∈C is a profile of priority orderings over N . Let TTC(q,�) denote the TTC

mechanism restricted to the domain of problems with the capacity-priority structure (q,�).

For each c ∈ C and i ∈ N , let Uc(i) = {j ∈ N \ {i} : j �c i}. A triple of agents

(i, j, k) ∈ N and a pair of objects (c1, c2) ∈ C constitute a Kesten-cycle (?) if

(a) i �c1 j �c1 k and k �c2 {i, j}, and

(b) there is a (possibly empty) set Nc1 ⊆ N\{i, j, k} such that Nc1 ⊆ Uc1(i)∪(Uc1(j)\Uc2(k))

and |Nc1| = qc1 − 1.

? showed, among other things, that TTC(q,�) is stable (for any preference profile) if and

only if (q,�) does not include a Kesten-cycle. Let us call (q,�) acyclic if it does not include

a Kesten cycle.

Another well-known mechanism, the deferred acceptance (DA) mechanism due to Gale

and Shapley (1962), will be useful in proving our next result. The DA mechanism associates

each problem E with the assignment determined by the following algorithm.

DA Algorithm:

Step 1. Each agent proposes to her top-ranked acceptable object. If there is no

such object, then she is assigned to her outside option. Each object c considers

the set of proposals that it receives. Among them, it tentatively accepts the

highest priority agents up to its capacity and rejects the others. If there is no

rejection, then stop.

Step t ≥ 2. Each agent who is rejected at Step t− 1 proposes to her top-ranked

acceptable object among the ones that have not rejected her yet. If there is no

such object, then she is assigned to her outside option. Each object c considers

the set of agents that it tentatively accepted at Step t− 1 together with agents

that have proposed at Step t. Among them, it tentatively accepts the highest

priority agents up to its capacity and rejects the others. If there is no rejection,

then stop. Otherwise, move to Step t+ 1.

The DA algorithm stops in finitely many steps and the DA assignment, which we denote

by DA(E), is defined by the acceptances at the last step. At each problem, the DA assignment

is stable but not necessarily efficient (Abdulkadiroğlu and Sönmez, 2003).24

24Ergin (2002) characterized the capacity-priority structures for which the DA mechanism is efficient.
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Theorem 2 Let (q,�) be a capacity-priority structure such that all objects have non-unit

capacities.25

i. If (q,�) includes a Kesten-cycle, then TTC(q,�) is not (weakly) f -minimally unstable

among efficient and strategy-proof mechanisms for any stability comparison f that

satisfies stability-preferred.

ii. The mechanism TTC(q,�) is robustly minimally unstable among efficient and strategy-

proof mechanisms if and only if (q,�) is acyclic.

Proof. Part i: Suppose that (q,�) includes a cycle. Then, there exist a triple of agents

(i, j, k) ∈ N and a pair of objects (c1, c2) ∈ C such that

(a) i �c1 j �c1 k and k �c2 {i, j}, and

(b) there is a (possibly empty) set Nc1 ⊆ N\{i, j, k} such that Nc1 ⊆ Uc1(i)∪(Uc1(j)\Uc2(k))

and |Nc1| = qc1 − 1.

Let D1 be the domain of problems with the capacity-priority structure (q,�) such that for

each problem E = (N,C,R, q,�) ∈ D1, each agent in Nc1 finds only c1 acceptable (therefore

top-ranks c1), each agent in {i, j, k} top-ranks c1 or c2 (but possibly finds other objects

acceptable), and every other agent in N \ (Nc1 ∪ {i, j, k}) finds no object acceptable. Let D2

be the remaining set of problems with the capacity-priority structure (q,�).

Let ϕ be defined as follows. For each E ∈ D1, let ϕ(E) = DA(E); and for each E ∈ D2,

let ϕ(E) = TTC(E).

Observe that ϕ is efficient and stable on the domain D1, since each agent in Nc1 is always

assigned to c1 (because they are in the top-qc1 priority class at �c1 among agents who find at

least one object acceptable) and there is never a rejection cycle in the DA algorithm since

qc2 > 1.

We claim that ϕ is strategy-proof. Consider any agent s ∈ Nc1 . Agent s does not have a

profitable manipulation at any problem in D1 since s receives his top choice. Agent s does

not have a profitable manipulation at any problem in D2 neither since by misreporting his

preferences, he either induces a problem also in D2 and such a manipulation is not profitable

by the strategy-proofness of TTC, or he induces a problem in D1 and receives c1 which cannot

25Requiring all objects to have non-unit capacities, as opposed to only some of the objects, ensures that
in a restricted domain that we identify in the proof, the DA mechanism is always efficient, which plays an
important role in the proof.
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be better than what he receives by his truthful report under TTC since he belongs to the

top-qc1 priority class at �c1 among agents who find at least one object acceptable.

Consider any agent s ∈ {i, j, k}. Suppose that s has a profitable manipulation at E. Then

ϕs(E) cannot be s’s top ranked object under E.

Suppose that E ∈ D1. By strategy-proofness of DA, it must be that by profitably

misreporting his preferences, s induces a problem E ′ ∈ D2. Let c be the object s top-ranks

at E ′. Note that c /∈ {c1, c2}.

Case 1: ϕs(E
′) = c. Since this is a profitable manipulation, ϕs(E) is worse than c for s at

E. By qc ≥ 2, the agents in {i, j, k}\{s} must receive c at ϕ(E). But then s must receive his

top-ranked object under ϕ(E), a contradiction.

Case 2: ϕs(E
′) 6= c. Then, by qc ≥ 2, it must be that the agents in {i, j, k}\{s} must

receive c at ϕ(E ′). But then either s receives c1 and at least one agent in {i, j, k}\{s}
top-ranks c1, or the top-ranked object of at least one agent in {i, j, k}\{s} has an available

copy under ϕ(E ′), which are both contradictions to efficiency of ϕ(E ′) = TTC(E ′).

Suppose that E ∈ D2. By strategy-proofness of TTC, it must be that by profitably

misreporting his preferences, s induces a problem E ′ ∈ D1. Let c be the object s top-ranks

at E. Note that c /∈ {c1, c2}. Since ϕs(E) 6= c and qc ≥ 2, it must be that the agents in

{i, j, k} \ {s} receive c at ϕ(E). But then either s receives c1 and at least one agent in

{i, j, k}\{s} top-ranks c1, or the top-ranked object of at least one agent in {i, j, k}\{s} has

an available copy under ϕ(E) (because E ′ ∈ D1), which are both contradictions to efficiency

of ϕ(E) = TTC(E).

It is also easy to see that no agent in N \ (Nc1 ∪ {i, j, k}) has a profitable manipulation

at any problem. Hence, ϕ is strategy-proof.

Finally, note that on the domain of problems where ϕ and TTC differ, ϕ is stable.

Moreover, for the following problem, ϕ is stable but TTC is not stable: each agent in Nc1

find only c1 acceptable, i finds only c2 acceptable, j and k find only c1 acceptable. Hence,

TTC is not (weakly) f -minimally unstable among efficient and strategy-proof mechanisms

for any stability comparison f satisfying stability-preferred.

Part ii: If (q,�) is acyclic, then TTC(q,�) is stable at each problem (?), and therefore

TTC(q,�) is robustly minimally unstable among efficient and strategy-proof mechanisms. The

other direction follows from Part i.

When objects may have multiple available copies, Abdulkadiroğlu et al. (2020) provide an

example of a capacity-priority structure (q,�) such that the DA(q,�) is efficient and stable
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at every problem, while (q,�) is not acyclic (in the sense of ?) and therefore TTC(q,�) is

not stable at every problem. Based on this, Abdulkadiroğlu et al. (2020) show that there

exists a strategy-proof and efficient mechanism ϕ that is more stable than TTC (on the

full domain): simply consider the mechanism ϕ that coincides with DA on the domain of

problems including (q,�), and coincides with TTC elsewhere. Our Theorem 2 reveals that

the failure of the minimal instability of TTC for a given capacity-priority structure when we

allow for multiple available copies per object is not because the DA mechanism is always

efficient while the TTC mechanism is sometimes unstable, but it is solely because the TTC

mechanism is sometimes unstable for the given capacity-priority profile.26

Remark 2 When objects may have weak priorities (i.e., when indifference among different

agents is allowed), the standard approach is to convert the weak priorities into strict priorities

using a predetermined tie-breaker rule and then run the TTC mechanism. With weak priorities,

even when objects have unit capacities, Theorem 1 does not extend for a similar reason as

in the multi-capacity case. Given a tie-breaker rule, it is possible to show that the TTC

mechanism is not minimally unstable among efficient and strategy-proof mechanisms, by

formalizing the following intuition: when the tie-breaker is applied, a priority profile involving

a Kesten-cycle may occur, although with another tie-breaker Kesten-cycles could be avoided.

This was shown in an earlier working paper version of Abdulkadiroğlu et al. (2020).

5 Conclusion

We have formulated natural methods to compare assignments in terms of their stability in

the context of priority-based resource allocation. We have shown that the TTC mechanism is

minimally unstable among efficient and strategy-proof mechanisms in a robust sense—that

is, for any natural stability comparison—when each object has unit capacity. This is a

strong justification for using the TTC mechanism in applications where objects have unit

capacities. When objects have non-unit capacities, we have characterized the capacity-priority

structures for which this justification is preserved, which turns out to be a very limited

set of capacity-priority structures. Overall, our paper sheds further light on how the TTC

mechanism incorporates priorities, contributing to the theoretical literature on understanding

popular resource allocation mechanisms and to the policy debates on which mechanism to

26For non-unit capacities, it is an open question whether for the variants of TTC proposed by ?, ?, and
? a parallel result to Theorem 2 holds. For this, first one would have to characterize the capacity-priority-
structures for which any of these variants of TTC is stable (for any preference profile). This is only known
for the TTC algorithm used here.
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use in practice.
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Abdulkadiroğlu, Atila and Tayfun Sönmez, “School choice: A mechanism design

approach,” American Economic Review, June 2003, 93 (3), 729–747.

, Yeon-Koo Che, Parag A. Pathak, Alvin E. Roth, and Olivier Tercieux, “Effi-

ciency, Justified Envy, and Incentives in Priority-Based Matching,” American Economic

Review: Insights, forthcoming, 2020.
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Appendix A Proof of Theorem 1

Suppose not. Then, there exists a smallest number of agents, say n, such that there exists a

mechanism, different from TTC, that is defined on the domain of problems including exactly

n agents and that is strategy-proof, efficient, and f-more stable than TTC for a stability

comparison f satisfying stability-preferred, separability and consistency. Note that n ≥ 3

since at any problem including 1 or 2 agents, any mechanism that is efficient and f -more

stable than TTC must coincide with TTC because TTC chooses the unique efficient and

stable assignment and f satisfies stability-preferred.

Suppose that ϕ is an arbitrary mechanism that is strategy-proof, efficient, and f-more

stable than TTC on the domain of problems with an arbitrary set of agents N where |N | = n

and an arbitrary set of objects C with unit capacities. We prove that ϕ coincides with TTC

on this domain of problems that include (N,C). Since ϕ, N , and C are arbitrarily chosen,

this contradicts that on the domain of problems with n agents, there exists a mechanism

different from TTC that is strategy-proof, efficient, and f -more stable than TTC, and therefore

concludes the proof. In what follows, let D denote the domain of unit-capacity problems that

have N as the set of agents and C as the set of objects.
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We will sometimes denote a problem simply by its preference profile, i.e., ϕ(R) instead

of ϕ(E), when the rest of the problem in question is clear. Also, when we write Ri : cc′, we

mean cRic
′ and that any other object is unacceptable.

Lemma 2 Let E = (N,C,R, q,�) ∈ D. Let i ∈ N and c ∈ C be such that c is top-ranked

at i’s preference ordering and i has the highest priority at c, that is, they are mutually-best at

the first step of the TTC algorithm at E. Then, ϕi(R) = c.

Proof. Suppose not, i.e., suppose that ϕi(R) 6= c. Let R′i be a preference ordering for i at

which c is the only acceptable object. By strategy-proofness, ϕi(R
′
i, R−i) = ∅. By efficiency,

there exists j1 6= i such that ϕj1(R
′
i, R−i) = c. Let R′j1 be a preference relation for agent j1 at

which c is the only acceptable object. By strategy-proofness, ϕj1(R
′
i, R

′
j1
, R−{i,j1}) = c.

Now, suppose that there exists a preference profile R−{i,j1} of agents N \ {i, j1} such that

ϕc(R
′
i, R

′
j1
, R−{i,j1}) ∈ N \ {i, j1}, i.e., c is assigned to an agent different from i or j1. Let

j2 ∈ N\{i, j1} such that ϕj2(R
′
i, R

′
j1
, R−{i,j1}) = c. Let R′j2 be a preference relation for agent j2

at which c is the only acceptable object. By strategy-proofness, ϕj2(R
′
i, R

′
j1
, R′j2 , R−{i,j1,j2}) = c.

Successive applications of the above argument imply that there exist {j1, . . . , jm} and a

preference profile R∗−{i,j1,j2,...,jm} for agents N \ {i, j1, j2, . . . , jm} such that

• for each t ∈ {1, . . . ,m}, R′jt is a preference relation for agent jt at which c is the only

acceptable object,

• ϕjm(R′i, R
′
j1
, R′j2 , . . . , R

′
jm , R

∗
−{i,j1,j2,...,jm}) = c, and

• for any preference profile R∗∗−{i,j1,j2,...,jm} for agents N \ {i, j1, j2, . . . , jm}, we have

ϕc(R
′
i, R

′
j1
, R′j2 , . . . , R

′
jm , R

∗∗
−{i,j1,j2,...,jm}) ∈ {i, j1, . . . , jm}.

Let R′ = (R′i, R
′
j1
, R′j2 , . . . , R

′
jm , R

∗
−{i,j1,j2,...,jm}). Note that if m = n, then |B(TTC(R′))| =

0 < |B(ϕ(R′))| since i has the highest priority among all agents at c. Moreover, this contradicts

that ϕ is f -more stable than TTC as f satisfies stability-preferred and TTC(R′) �R′

f ϕ(R′).

Thus, m < n.

Now, we will construct a mechanism ϕ′ defined on the domain of problems with agents

N ′ = N \ {i, j1, j2, . . . , jm} and objects C ′ = C \ {c} that is strategy-proof, efficient, and

f -more stable than TTC, which will contradict that n is the smallest number of agents such

a domain entails.

Let ϕ′ be defined as follows. For each preference profile RN ′ of N ′,

23



• If for each j ∈ N ′, Rj agrees with R∗j on the relative orderings of C ′ ∪ {∅}, then

ϕ′(RN ′) = ϕ(R′i, R
′
j1
, R′j2 , . . . , R

′
jm , R

∗
N ′)|N ′

• If for each j ∈ N ′′ ⊆ N ′, Rj agrees with R∗j on the relative orderings of C ′ ∪ {∅}, and

for each j′ ∈ N ′ \N ′′, Rj does not agree with R∗j′ on the relative orderings of C ′ ∪ {∅},
then let ϕ′(RN ′) = ϕ(R′i, R

′
j1
, R′j2 , . . . , R

′
jm , R

′
N ′)|N ′ where for each j ∈ N ′′, R′j = R∗j ,

and for each j ∈ N ′ \N ′′, R′j is a preference ordering which bottom-ranks c and agrees

with Rj′ on the relative orderings of C ′ ∪ {∅}.

Note that ϕ′ is well-defined, in particular when {i, j1, . . . , jm} report (R′i, R
′
j1
, R′j2 , . . . , R

′
jm),

no agent in N ′ can receive object c under any preference profile of N ′. To see that ϕ′ is

strategy-proof, observe that manipulability of ϕ′ would immediately imply the manipulability

of ϕ. Efficiency of ϕ′ also follows directly from efficiency of ϕ. We will next show that ϕ′ is

f -more stable than TTC.

Note that at any problem R (in the domain where there are n agents) such that

(i, j1, . . . , jm) report (R′i, R
′
j1
, R′j2 , . . . , R

′
jm), no agent in (i, j1, . . . , jm) is involved in a blocking

pair at the TTC assignment; moreover, no agent in N ′ is included in a blocking pair together

with c at the TTC assignment. Thus, B(TTCx(R)) = ∅ for all x ∈ (N\N ′) ∪ {c}. On the

other hand, consider the problem R′ = (R′i, R
′
j1
, R′j2 , . . . , R

′
jm , R

∗
−{i,j1,j2,...,jm}). Note that (i, c)

is a blocking pair at ϕ(R′). Since ϕ is f -more stable than TTC, we have ϕ(R′) &R′

f TTC(R′).

Furthermore, by efficiency of ϕ and construction, we have ∪h∈N\N ′{ϕh(R′)} = {c} =

∪h∈N\N ′{TTCh(R′)}. Consequently, by separability of f , at the problem RN ′ (in the domain

where there are n − m agents) where for each j ∈ N ′, Rj agrees with R∗j on the relative

orderings of C ′, ϕ′(RN ′) = ϕ(R′)|N ′ �
RN′
f TTC(R′)|N ′ = TTC(RN ′) (where the equalities

follow from the definition of ϕ′ and TTC).

Now consider any problem R (in the domain where there are n agents) such that

(i, j1, . . . , jm) report (R′i, R
′
j1
, R′j2 , . . . , R

′
jm). Then Bx(TTC(R)) = ∅ for all x ∈ (N\N ′)∪{c}.

If for some i ∈ N\N ′, ϕi(R) 6= ∅, then by efficiency ϕi(R) = c and we use the same arguments

as above. If TTCi(R) = ϕi(R) for all i ∈ N\N ′, then by construction, Bx(TTC(R′)) =

Bx(ϕ(R′)) for all x ∈ N\N ′. Hence, by consistency of f and ϕ(R) &R
f TTC(R), we obtain

ϕ(R)|N ′ &
RN′
f TTC(R)|N ′ . Thus (as R was arbitrary), for any profile RN ′ of N ′ we have

ϕ′(RN ′) &RN′
f TTC(RN ′) (from the definition of ϕ′ and TTC). Hence, ϕ′ is f -more stable

than TTC, contradicting that n is the smallest number of agents such a domain entails.

Lemma 3 Let E = (N,C,R, q,�) ∈ D. Let i ∈ N be an agent who is assigned an object at

Step 1 of TTC(R). Then, ϕi(R) = TTCi(R).

24



Proof. Let I1 denote the set of agents who are assigned an object at Step 1 of TTC(R) and

C1 denote the set of objects that are allocated at Step 1 of TTC(R). Note that if for each

i ∈ I1, ϕi(R) ∈ C1, then by efficiency, ϕi(R) = TTCi(R) for each i ∈ I1.

Suppose that there exists i1 ∈ I1 such that ϕi1(R) /∈ C1. Let c1 ∈ C1 be the object

that is assigned at Step 1 of TTC(R) and points to i1 in Step 1 of TTC(R). Let R′i1 be

a preference ordering for i1 at which TTCi1(R) is top-ranked and c1 is second-ranked, i.e.

R′i1 : TTCi1(R)c1. By strategy-proofness, ϕi1(R
′
i1
, R−i1) 6= TTCi1(R). By Lemma 2 and

strategy-proofness, ϕi1(R
′
i1
, R−i1) = c1.

Note that I1 is still the set of agents who are assigned an object at Step 1 of TTC(R′i1 , R−i1)

and C1 is still the set of objects that are allocated at Step 1 of TTC(R′i1 , R−i1). Now, if for each

i ∈ I1 \ {i1}, ϕi(R) ∈ C1, then efficiency would imply that ϕi(R
′
i1
, R−i1) = TTCi(R

′
i1
, R−i1)

for each i ∈ I1, which would contradict ϕi1(R
′
i1
, R−i1) 6= TTCi1(R) = TTCi1(R

′
i1
, R−i1).

Thus, there exists i2 ∈ I1 \ {i1} such that ϕi2(R) /∈ C1. Let c2 ∈ C1 be the object that

is assigned in Step 1 of TTC(R) and points to i2 in Step 1 of TTC(R). Let R′i2 be a

preference ordering for i2 at which TTCi2(R) is top-ranked and c2 is second-ranked. By

strategy-proofness, ϕi2(R
′
i1
, R′i2 , R−{i1,i2}) 6= TTCi2(R). By Lemma 2 and strategy-proofness,

ϕi2(R
′
i1
, R′i2 , R−{i1,i2}) = c2.

Continuing in a similar fashion, we identify a list of agents (i1, . . . , im) and a preference

profile R′ = (R′i1 , . . . , R
′
im , R−{i1,...,im}) such that {i1, . . . , im} ⊆ I1, ϕi(R

′) ∈ C1 for each

i ∈ I1, and ϕim(R′) 6= TTCim(R′), which contradicts efficiency of ϕ.

Lemma 4 Let k be a number. Suppose that at any problem E = (N,C,R, q,�) ∈ D, if an

agent i is assigned an object at an earlier step than Step k at TTC(R), then ϕi(R) = TTCi(R).

Let E = (N,C,R, q,�) ∈ D. Suppose that i ∈ N and c ∈ C are such that i top-ranks c and c

points to i at Step k of the TTC algorithm at E, that is, they become mutually-best at Step k

of the TTC algorithm at E. Then, ϕi(R) = c.

Proof. Note that the statement is true for k = 1 by Lemma 2. We show the statement for

k > 1. Suppose not, i.e., suppose that ϕi(R) 6= c. Let R′i be a preference relation for agent i

at which c is the only acceptable object. By strategy-proofness and efficiency, ϕi(R
′
i, R−i) = ∅.

By efficiency, there exists j1 6= i such that ϕj1(R
′
i, R−i) = c. Let I<k denote the set of agents

who are assigned copies at an earlier step than Step k at TTC(R). Note that any agent

j ∈ I<k is still assigned the same copy at an earlier step than Step k at TTC(R′i, R−i). Then,

by our supposition, for any agent j ∈ I<k, ϕj(R) = TTCj(R). But then, j1 /∈ I<k. Hence,

by the definition of TTC, i has higher priority than j1 at c since c points to i at Step k of
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TTC(R). Let R′j1 be a preference relation for agent j1 at which c is the only acceptable

object. By strategy-proofness, ϕj1(R
′
i, R

′
j1
, R−{i,j1}) = c.

Now, suppose that there exists a preference profile R−{i,j1,I<k} of agents N \ ({i, j1} ∪ I<k)

such that ϕc(R
′
i, R

′
j1
, RI<k

, R−{i,j1,I<k}) ∈ N \({i, j1}∪I<k). Let j2 ∈ N \({i, j1}∪I<k) be such

that ϕj2(R
′
i, R

′
j1
, RI<k

, R−{i,j1,I<k}) = c. Let R′j2 be a preference relation for agent j2 at which c

is the only acceptable object. By strategy-proofness, ϕj2(R
′
i, R

′
j1
, R′j2 , RI<k

, R−{i,j1,j2,I<k}) = c.

Successive applications of the above argument imply that there exist {j1, . . . , jm} and a

preference profile R∗−{i,j1,j2,...,jm,I<k} for agents N \ ({i, j1, j2, . . . , jm} ∪ I<k) such that

• for each t ∈ {1, . . . ,m}, R′jt is a preference relation for agent jt at which c is the only

acceptable object,

• ϕjm(R′i, R
′
j1
, R′j2 , . . . , R

′
jm , RI<k

, R∗−{i,j1,j2,...,jm,I<k}) = c, and

• for any preference profile R∗∗−{i,j1,j2,...,jm,I<k} for agents N \ ({i, j1, j2, . . . , jm} ∪ I<k), we

have ϕc(R
′
i, R

′
j1
, R′j2 , . . . , R

′
jm , RI<k

, R∗∗−{i,j1,j2,...,jm,I<k}) /∈ N \ ({i, j1, j2, . . . , jm} ∪ I<k).

Let R′ = (R′i, R
′
j1
, R′j2 , . . . , R

′
jm , RI<k

, R∗−{i,j1,j2,...,jm,I<k}). First note that, each j ∈ I<k is

still assigned the same object as in TTC(R) at an earlier step than Step k at TTC(R′).

Hence, by our supposition, for any j ∈ I<k, ϕj(R
′) = TTCj(R

′) = TTCj(R). For later

purposes, let c = c1 and Jc1 = {i, j1, j2, . . . , jm}.

First we show that m < n− |I<k|. Suppose that m = n− |I<k|. Note that N = Jc1 ∪ I<k

and TTCj(R
′) = ϕj(R

′) for all j ∈ I<k. Let C ′ = ∪j∈I<k
TTCj(E

′) denote the aggregate

assignment of I<k. Note that for all j ∈ I<k we have Bj(TTC(R′)) = Bj(ϕ(R′)) ⊆ C ′ and for

all c ∈ C ′, Bc(TTC(R′)) = Bc(ϕ(R′)) ⊆ I<k. But then ϕ(R′) &R′

f TTC(R′) and consistency

of f imply ϕ(R′)|Jc1 &E′′

f TTC(R′)|Jc1 where E ′′ = E ′|(Jc1 ,C\C′) (where E ′ = (N,C,R′, q,�)).

But this is a contradiction to stability-preferred of f because at the problem E ′′ we have

B(TTC(R′)|Jc1 ) = ∅ 6= B(ϕ(R′)|Jc1 ) since i has the highest priority among agents in Jc1 at

c1. Thus, m < n− |I<k|.

Next we show that for all j ∈ Ik\Jc1 we have TTCj(R
′) = ϕj(R

′). If ∪j∈Ik\Jc1TTCj(R
′) =

∪j∈Ik\Jc1ϕj(R
′), then this follows from efficiency of ϕ(R′) and TTC(R′). Thus, for some

j ∈ Ik\Jc1 , ϕj(R
′) /∈ ∪h∈Ik{TTCh(R′)}. Thus, by construction of Jc1 and the induction

hypothesis, ϕj(R
′) /∈ {c} ∪ [∪h∈I≤k

{TTCh(R′)}] (where I≤k = I<k ∪ Ik). Let j = hl belong in

TTC(R′) to a cycle c1 → h1 → · · · → cl → hl → cl+1 → hl+1 → · · · → c1 but ϕhl
(R′) 6= cl+1,

i.e. TTChl
(R′) = cl+1, TTChl−1

(R′) = cl and cl points to hl in the TTC-algorithm. Let
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R̂hl
: cl+1cl and let R̂ be the problem obtained from R′ by only changing the preference

ordering of agent hl to R̂hl
. By strategy-proofness and efficiency, ϕhl

(R̂) = ∅ or ϕhl
(Ê) = cl.

If ϕhl
(R̂) = cl, then ϕhl−1

(R̂) 6= cl. Then let R̂hl−1
: clcl−1 and let R̂′ be the problem

obtained from R̂ by only changing the preference ordering of agent hl−1 to R̂hl−1
. By strategy-

proofness and efficiency, ϕhl−1
(R̂′) = ∅ or ϕhl−1

(R̂′) = cl−1. In the latter case, again we have

ϕhl−2
(R̂′) 6= cl−1, and so on until each agent hl receives cl and we find a contradiction to

efficiency. Thus, at some point for ht ∈ Ik\Jc1 and Rht : ct+1ct we have for the constructed

profile R, ϕht(R) = ∅. Then let R′′ht
: ct and R′′ = (R′′ht

, R−ht).

But then set c2 ≡ ct. Analogous successive applications of the above arguments show

that there exists Jc2 and a preference profile R′′Jc2 such that for all i ∈ Jc2 , R′′i : c2, and a

preference profile R∗−Jc1∪Jc2∪I<k
for agents N \ (Jc1 ∪ Jc2 ∪ I<k) such that

• for each i ∈ Jc2 , R′′i is a preference relation for agent i at which c2 is the only acceptable

object,

• ϕh(R′Jc1 , R
′′
Jc2
, RI<k

, R∗−Jc1∪Jc2∪I<k
) = c1 for some h ∈ Jc1 ,

• ϕh(R′Jc1 , R
′′
Jc2
, RI<k

, R∗−Jc1∪Jc2∪I<k
) = c2 6= TTCh(R′Jc1 , R

′′
Jc2
, RI<k

, R∗−Jc1∪Jc2∪I<k
) for

some h ∈ Jc2 , and

• for any preference profile R∗∗−Jc1∪Jc2∪I<k
for agents N \ (Jc1 ∪ Jc2 ∪ I<k), we have

ϕc2(R
′
Jc1
, R′′Jc2 , RI<k

, R∗∗−Jc1∪Jc2∪I<k
) /∈ N \ (Jc1 ∪ Jc2 ∪ I<k).

Let R′′ = (R′Jc1 , R
′′
Jc2
, RI<k

, R∗−Jc1∪Jc2∪I<k
). If for some profile R = (R′Jc1 , R

′′
Jc2
, RI<k

,

R∗∗−Jc1∪Jc2∪I<k
) and some j ∈ Ik\(Jc1 ∪ Jc2) we have ϕj(R) 6= TTCj(R), then we do the same

as above and find c3 and Jc3 together with a profile R′′′Jc3 (and continue).

Otherwise we have for any problem R = (R′Jc1 , R
′′
Jc2
, RI<k

, R∗∗−Jc1∪Jc2∪I<k
) and all j ∈

Ik\(Jc1 ∪ Jc2), ϕj(R) = TTCj(R).

Now consider R′′ and Ik+1. If for some j ∈ Ik+1\(Jc1 ∪ Jc2), ϕj(R) 6= TTCj(R), then we

find as above c3 and Jc3 , and so on.

Thus, we find {c1, . . . , cq} and mutually disjunct sets Jc1 , . . . , Jcq and I<k such that for

R(q) = (R′Jc1 , R
′′
Jc2
, . . . , R

(q)
Jcq
, RI<k

, R∗−Jc1∪Jc2∪···∪Jcq∪I<k
) and E(q) = (N,C,R(q), q,�) we have

• for each j ∈ Jcp (with p ∈ {1, . . . , q}), R(p)
j is a preference relation for agent j at which

cp is the only acceptable object,

• for each p ∈ {1, . . . , q − 1}, ϕh(E(p)) = cp for some h ∈ Jcp ,
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• ϕh(E(q)) = cq 6= TTCh(E(q)) for some h ∈ Jcq , and

• ϕj(E
(q)) = TTCj(E

(q)) for all j ∈ N\(Jc1 ∪ · · · ∪ Jcq).

Let µ = ϕ(E(q)) and ν = TTC(E(q)). Because ϕ is f -more stable than TTC, we have

µ &E(q)

f ν. Now we will successively remove in the order Jc1 , . . . , Jcq .

If µ(j) = ν(j) for all j ∈ Jc1 , then we have Bj(µ) = Bj(ν) = ∅ for all j ∈ Jc1 and

Bc1(µ) = ∅ = Bc1(ν). Thus, by consistency of f we obtain µ|N\Jc1 &E1

f ν|N\Jc1 where

E1 = E(q)|(N\Jc1 ,C\{c1}). Otherwise, Bj(ν) = ∅ for all j ∈ Jc1 and Bc1(ν) = ∅, but for some

k ∈ Jc1 , Bk(µ) 6= ∅. Furthermore, µ(Jc1) = {c1} = ν(Jc1). But then by separability of f , we

obtain µ|N\Jc1 �
E1

f ν|N\Jc1 where E1 = E(q)|(N\Jc1 ,C\{c1}). Note that in both cases we obtain

µ|N\Jc1 &E1

f where E1 = E(q)|(N\Jc1 ,C\{c1}).

Then, in a similar fashion we continue with Jc2 and obtain µ|N\(Jc1∪Jc2 ) &
E2

f ν|N\(Jc1∪Jc2 )
where E2 = E(q)|(N\(Jc1∪Jc2 ),C\{c1,c2}), and so on until we obtain µ|N\(Jc1∪···∪Jcq−1 ) &Eq−1

f

ν|N\(Jc1∪···∪Jcq−1 )
where Eq−1 = E(q)|(N\(Jc1∪···∪Jcq−1 ),C\{c1,...,cq−1}).

Now, at the problem E(q)|(N\(Jc1∪···∪Jcq−1 ),C\{c1,...,cq−1}), for Jcq we haveBi(ν|N\(Jc1∪···∪Jcq−1 )
) =

∅ for all j ∈ Jcq and Bcq(ν|N\(Jc1∪···∪Jcq−1 )
) = ∅, but for some k ∈ Jcq , Bk(µ|N\(Jc1∪···∪Jcq−1 )

) 6= ∅.
Furthermore, µ(Jcq) = {cq} = ν(Jcq). But then, by separability of f we obtain

µ|N\(Jc1∪···∪Jcq ) �
Eq

f ν|N\(Jc1∪···∪Jcq )

where Eq = E(q)|(N\(Jc1∪···∪Jcq ),C\{c1,...,cq}). This is a contradiction since I<k 6= ∅ (note that

k > 1) and for all j ∈ N\(Jc1 ∪ · · · ∪ Jcq), µ(j) = ν(j).

Concluding the proof: Let E = (N,C,R, q,�) ∈ D. We show by induction on k that,

for any step k of the TTC algorithm at E, the assignment of an agent who is assigned an

object at that step is the same as at ϕ(E).

Base case: For each agent i who is assigned an object at Step 1 of the TTC algorithm at

R, ϕi(R) = TTCi(R). This follows from Lemma 3.

Inductive step: Assume that for each agent i who is assigned an object at an earlier step

than Step k of the TTC algorithm at R, ϕi(R) = TTCi(R). We will show that for each agent

j who is assigned an object at Step k of the TTC algorithm at R, ϕj(R) = TTCj(R).

Let Ik denote the set of agents who are assigned objects at Step k of TTC(R) and Ck

denote the set of objects that are allocated at Step k of TTC(R). Note that if for each i ∈ Ik,

ϕi(R) ∈ Ck, then by efficiency, ϕi(R) = TTCi(R) for each i ∈ Ik.

Suppose that there exists i1 ∈ Ik such that ϕi1(R) /∈ Ck. Let c1 ∈ Ck be the object
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that is assigned at Step k of TTC(R) and points to i1 in Step k of TTC(R). Let R′i1
be a preference ordering for i1 at which TTCi1(R) is top-ranked and c1 is second-ranked.

By strategy-proofness, ϕi1(R
′
i1
, R−i1) 6= TTCi1(R). By Lemma 4 and strategy-proofness,

ϕi1(R
′
i1
, R−i1) = c1.

Note that Ik is still the set of agents who are assigned objects at Step k of TTC(R′i1 , R−i1)

and Ck is still the set of objects that are allocated at Step k of TTC(R′i1 , R−i1). Now, if for each

i ∈ Ik \ {i1}, ϕi(R) ∈ Ck, then efficiency would imply that ϕi(R
′
i1
, R−i1) = TTCi(R

′
i1
, R−i1)

for each i ∈ Ik, which would contradict ϕi1(R
′
i1
, R−i1) 6= TTCi1(R) = TTCi1(R

′
i1
, R−i1).

Thus, there exists i2 ∈ Ik \ {i1} such that ϕi2(R) /∈ Ck. Let c2 ∈ Ck be the object that

is assigned at Step k of TTC(R) and points to i2 in Step k of TTC(R). Let R′i2 be a

preference ordering for i2 at which TTCi2(R) is top-ranked and c2 is second-ranked. By

strategy-proofness, ϕi2(R
′
i1
, R′i2 , R−{i1,i2}) 6= TTCi2(R). By Lemma 4 and strategy-proofness,

ϕi2(R
′
i1
, R′i2 , R−{i1,i2}) = c2.

Continuing in a similar fashion, we identify a list of agents (i1, . . . , im) and a preference

profile R′ = (R′i1 , . . . , R
′
im , R−{i1,...,im}) such that {i1, . . . , im} ⊆ Ik, ϕi(R

′) ∈ Ck for each

i ∈ Ik, and ϕim(R′) 6= TTCim(R′), which contradicts efficiency of ϕ.

Appendix B Independence of the properties

The examples below show that the three properties, stability-preferred, separability, and

consistency, are independent for stability comparison methods.

Example 1 (Only stability-preferred violated) Consider the following stability compar-

ison f with &f= ∅, that is, for any problem E and any µ, ν ∈ A(E), µ and ν are incomparable

in terms of &E
f , i.e. &E

f = ∅. Note that separability and consistency are vacuously satisfied,

while stability-preferred is clearly violated.

Example 2 (Only separability violated) Consider the following stability comparison f .

For any E ∈ E and µ, ν ∈ A(E), let µ &E
f ν if and only if B(ν) is not a proper subset of

B(µ), i.e., B(ν) 6( B(µ). Note that µ �E
f ν if and only if B(µ) ( B(ν).

Clearly, stability-preferred is satisfied. To see that consistency is satisfied, take any

unit-capacity problem E, and any µ and ν such that µ &E ν and for some ∅ 6= N ′ ⊆ N ,

µ(i) = ν(i) for all i ∈ N ′, Bi(µ) = Bi(ν) ⊆ µ(N ′) for all i ∈ N ′, and Bc(µ) = Bc(ν) ⊆
N ′ for all c ∈ µ(N ′) = ν(N ′) = C ′. But then, B(ν|N\N ′) 6( B(µ|N\N ′) and therefore

µ|N\N ′ &
E|(N\N′,C\C′)
f ν|N\N ′.

29



To see that separability is violated, consider the following unit-capacity problem E where

N = {1, 2, 3, 4, 5} and C = {c1, c2, c3, c4, c5}. Only the relevant top parts of the preference

and priority profiles are depicted.

R1 R2 R3 R4 R5 �c1 �c2 �c3 �c4 �c5

c2 c3 c3 c4 c1 1 3 2 3

c1 c2 c4 c5 5 1 3 4

c5 c2 2

Consider

µ =

(
1 2 3 4 5

c5 c2 c3 c4 c1

)

ν =

(
1 2 3 4 5

c1 c3 c2 c4 c5

)
where B(µ) = {(1, c2), (1, c5), (2, c3)} and B(ν) = {(3, c4)}. Let N ′ = {1, 5}. Note that

µ &E
f ν, µ(N ′) = ν(N ′) = {c1, c5} = C ′, no agent in N ′ or no object in C ′ is involved in a

blocking pair at ν, and (1, c1) ∈ B(µ). However, ν|N\N ′ &
E(N\N′,C\C′)
f µ|N\N ′, implying that

separability is violated.

Example 3 (Only consistency violated) Consider the following stability comparison f .

For any problem E ∈ E and µ, ν ∈ A(E), let µ &E
f ν if and only if B(µ) = ∅ or (|B(ν)| ≥ 2

and |B(µ)| ≤ |B(ν)|). Note that µ �E
f ν if and only if B(µ) = ∅ 6= B(ν) or (|B(ν)| ≥ 2 and

B(µ) < |B(ν)|). Also note that when |B(µ)| = |B(ν)| = 1, µ and ν are incomparable in

terms of &E.

By definition, stability-preferred is satisfied. To see that separability is satisfied, take any

µ and ν such that µ &E
f ν, and take any ∅ 6= N ′ ⊆ N such that no agent in N ′ or no object

in C ′ is involved in a blocking pair at ν, µ(N ′) = ν(N ′) = C ′ and Bi(µ) 6= ∅ for some i ∈ N ′.
Note that |B(ν|N\N ′)| ≥ 2 and |B(µ|N\N ′)| < |B(ν|N\N ′)|. Hence, µ|N\N ′ �

EN\N′

f ν|N\N ′.

To see that consistency is violated, consider the following unit-capacity problem E where

N = {1, 2, 3, 4, 5} and C = {c1, c2, c3, c4, c5}. Only the relevant top parts of the preference

and priority profiles are depicted.

R1 R2 R3 R4 R5 �c1 �c2 �c3 �c4 �c5

c2 c2 c4 c4 c5 1 1 3 3 4

c1 c3 c5 2 4 5

c3
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Consider

µ =

(
1 2 3 4 5

c1 c2 c3 c4 c5

)

ν =

(
1 2 3 4 5

c1 c2 c4 c3 c5

)
where B(µ) = {(1, c2), (3, c1)} and B(ν) = {(1, c2), (4, c5)}. Let N ′ = {1, 2}.

Note that ν &E
f µ, ν(i) = µ(i) for all i ∈ N ′, Bi(µ) = Bi(ν) ⊆ µ(N ′) for all i ∈ N ′,

and Bc(µ) = Bc(ν) ⊆ N ′ for all c ∈ µ(N ′) = ν(N ′) = C ′. Yet, ν|N\N ′ and µ|N\N ′ are

incomparable, implying that consistency is violated.
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