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Abstract

A principal incentivizes a group of agents to work by choosing a monitor-

ing structure and a scheme of performance-contingent rewards. The mon-

itoring structure partitions the set of agents into monitoring teams, each

delivering a signal of joint performance. We show that unlike under partial

implementation, the principal always exhausts her monitoring capacity to

optimally implement work as a unique outcome. Optimal monitoring teams

are homogeneous between them: equally sized and with agents allocated in

an anti-assortative fashion. Higher-effort-cost agents receive lower rents,

and they tend to be monitored more closely than lower-effort-cost agents

when the principal’s allocation is constrained.
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1 Introduction

When agents work in a team, incentivizing them can be challenging. Alchian

and Demsetz (1972) explain in their famous article: “With team production it

is difficult, solely by observing total output, to either define or determine each

individual’s contribution [...] [E]ach input owner will have more incentive to shirk

when he works as part of a team, than if his performance could be monitored

easily or if he did not work as a team” (Alchian and Demsetz, 1972, pp.779-80).

Because monitoring agents’ individual performance is costly, the question arises

of how monitoring should be optimally structured: “The costs of metering or

ascertaining the marginal products of the team’s members is what calls forth new

organizations and procedures” (Alchian and Demsetz, 1972, p.780).

We study a principal who incentivizes a team of agents to exert effort. The

principal chooses a monitoring structure that generates information about the

agents’ performance, together with a scheme of performance-contingent rewards.

At one extreme, the principal may only be able to observe a signal of the overall

performance of the team; at the other extreme, she may be able to observe a per-

formance signal for each agent. A finer monitoring structure allows the principal

to better tie observed performance, and thus each agent’s reward, to each agent’s

effort. When the principal is constrained in her monitoring capacity, how should

she allocate monitoring in order to minimize her cost of incentivizing the agents?

The work that followed Alchian and Demsetz (1972) highlighted that, perhaps

surprisingly, the monitoring structure does not matter under certain conditions.

This is the case in the seminal paper of Holmström (1982) under risk neutrality,

and in Picard and Rey (1987) and McAfee and McMillan (1991) featuring adverse

selection in addition to moral hazard; they find that a principal can do as well

when she observes only the overall team’s performance as when she observes each

agent’s contribution. However, their analyses only deal with how to induce effort

as some equilibrium outcome, and they ignore that other equilibria may arise in

which some or all agents choose to shirk fearing that other agents will do so too.1

Based on this observation, Mookherjee and Reichelstein (1992, p.391) suggest that

the value of monitoring may be viewed as avoiding such bad equilibrium outcomes.

1Such a concern is the focus of a growing literature on unique-implementation schemes that
we describe below.
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That is the view that we take in this paper. In a setting in which monitoring

has no value to the principal under partial implementation, we study the problem

of how to optimally ensure effort, namely how to optimally induce the agents to

work as a unique equilibrium outcome. We show that, as posited by Alchian and

Demsetz (1972), monitoring plays a central role. In fact, not only does greater

monitoring allow the principal to uniquely implement work at a lower cost, but

the design of monitoring then becomes a key tool for incentive provision. The

need to address agents’ strategic uncertainty about other agents’ effort decisions

yields a theory of monitoring with clear implications for organizations.

To focus on monitoring, we consider a stylized setup. Each agent privately

chooses whether to work or shirk on an individual task, where working is costly but

increases the probability of task completion. The principal monitors the agents’

performance by assessing the completion of subsets of tasks. Specifically, we define

a monitoring structure as a partition of the set of agents into monitoring teams;

for each monitoring team, the principal is (only) able to verify whether or not all

of its agents have completed their tasks. The principal’s cost of monitoring takes

the form of a capacity constraint, namely a bound on the number of monitoring

teams she can specify.

Our concept of monitoring teams has no a priori revenue implications. The

only defining feature of a monitoring team is that the principal can verifiably

identify the joint success of its agents, separately from others. In our baseline

model, the principal can choose any monitoring partition subject to capacity. In

applications, however, there may be production and organizational constraints

that limit how tasks can be monitored jointly. For example, take a set of agents

tasked with hiring new employees. Their tasks include advertising the job position,

selecting applicants for interview, conducting interviews and making offers, and

persuading those with offers to accept. The principal can monitor subsets of

tasks jointly, but not arbitrarily so; she can separately assess the quality of the

interview pool (first two tasks) and the quality of hires given the interview pool

(last two tasks), but she cannot jointly evaluate job advertising and offer selection

separately from interview selection. Using our framework, we can model these

restrictions as constraints on the allocation of agents to monitoring teams and

study their implications.

The principal’s problem consists of choosing a monitoring structure and an
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incentive scheme in order to uniquely implement work at the least possible cost.

We solve this problem in two steps. In the first step, we provide a characterization

of optimal incentives for any given fixed monitoring structure. The principal

solves for an optimal scheme for each monitoring team separately, specifying a

bonus payment for each agent conditional on the monitoring team producing good

performance. Because such performance depends on the effort choices of all agents

in the monitoring team, agents face strategic risk; the principal’s bonus offers

compensate the agents for this risk in order to guarantee their efforts.

The second step of our solution uses the characterization of optimal incentives

to solve for an optimal monitoring structure. We begin by showing that, unlike

under partial implementation, the principal’s cost of uniquely implementing work

does depend on her monitoring capacity. Intuitively, the larger is an agent’s

monitoring team, the higher is the strategic risk he faces about other agents’ effort

choices, and thus the higher is the compensation he demands from the principal.

Hence, whenever possible, the principal benefits from “splitting” a monitoring

team into two. The implication is that every optimal monitoring structure must

exhaust the principal’s monitoring capacity.

With the number of monitoring teams pinned down by capacity, the question

then is how agents should be allocated across them. Our main broad result is that

the principal benefits from specifying monitoring teams that are homogeneous

with respect to each other. We first show this with regards to size: every optimal

monitoring structure consists of monitoring teams of equal size, subject to integer

constraints. The reason is that agents’ required compensation for strategic risk

is convex in the number of other agents with whom their performance is jointly

monitored. Put differently, if the principal adds an agent to a monitoring team, she

can in principle insure other agents from any additional strategic risk by making

it dominant for the new agent to work, but the cost of doing so is exponential in

the size of the monitoring team.

If all agents are identical, then equally-sized monitoring teams implies identical

monitoring teams. But what if agents differ in their costs of effort? We show that

in this case too, it is optimal to make the monitoring teams homogenous with

respect to each other, which now requires making them heterogeneous within.

Formally, given a monitoring capacity of n, call the n lowest-effort-cost agents rank

1, the next n lowest-effort-cost agents rank 2, and so on. Say that a monitoring
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structure is anti-assortative if no monitoring team contains two agents of the same

rank. We show that an anti-assortative monitoring structure is optimal.2

The logic behind anti-assortativeness is intuitive. When agents are asymmetric

in their effort costs, facing strategic uncertainty about other agents’ effort choices

is relatively more costly to agents whose effort cost is relatively higher. Hence,

the principal benefits from providing higher-cost agents with greater assurance

about other agents’ effort compared to lower-cost agents. Within each monitoring

team, the principal achieves this via the incentive scheme, by offering high enough

bonuses to low-cost agents so that their effort is pinned down no matter what

higher-cost agents do. The reason an anti-assortative monitoring structure is

optimal is that it allows the principal to allocate assurance efficiently not only

within but also across monitoring teams. Indeed, given optimal incentives, the key

feature of an anti-assortative monitoring structure is that no agent faces higher

strategic uncertainty than another agent whose effort cost is comparatively lower,

no matter to which monitoring teams the agents belong.

Our results have implications for the design of monitoring and agents’ pay

in organizations. We find that monitoring is optimally spread evenly across an

organization: the principal specifies equally-sized sections whose performance is

evaluated separately, with each section containing agents from every rank and

thus being diverse within but similar to other sections. This anti-assortativeness

prediction is consistent for example with the findings of Adhvaryu et al. (2020),

who document negative assortative matching of managers and workers in a large

manufacturing firm with production complementarities.3 Moreover, as a conse-

quence of this allocation, we show that the compensation for strategic risk that

agents receive is determined by their ranks. Taking effort costs to be inversely

related to skill, this means that the principal offers higher rents to higher-skilled

agents compared to lower-skilled agents, not just within each section but across

the organization.

While our baseline model of monitoring permits a general characterization,

a shortcoming is that it allows for greater flexibility than what may be feasible

2Moreover, every optimal monitoring structure is anti-assortative absent integer constraints,
i.e., if the number of agents divided by n is an integer.

3Like the agents in our model, these managers and workers are incentivized with bonuses for
high team performance. A survey conducted by Adhvaryu et al. (2020) suggests that a driver
of the observed allocation is the need to ensure a minimum performance standard in all teams.
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in applications. Examples like the hiring one described above suggest that the

principal’s monitoring structure may be constrained by the production technology

and other organizational arrangements. To capture these restrictions, we study a

constrained version of our principal’s problem. We take the agents to be ordered

along a line and we restrict attention to monitoring structures that divide this line

into consecutive segments.4 The principal’s unconstrained problem can be viewed

as one in which she can choose the order of agents along the line, whereas this

order is exogenous in the constrained setting.

The principal’s constrained solution is essentially the same as the uncon-

strained one if all agents are identical. However, if agents differ in their effort

costs, then their fixed location along the line limits the principal’s ability to spec-

ify monitoring teams that are homogenous between them. We show that the main

consequence of this constraint is a differential use of monitoring across agents. In

particular, the principal now tends to place higher-cost agents in smaller mon-

itoring teams compared to lower-cost agents. As above, the principal benefits

from providing greater assurance to agents whose effort cost is relatively higher;

when the composition of the monitoring teams is constrained, she achieves this

by adjusting their size.

By studying the joint design of monitoring and pay, our analysis sheds light

on how these tools are optimally combined to incentivize agents’ efforts. We find

that when the structure of monitoring is constrained, the principal seeks to tailor

monitoring toward higher-cost agents, thus lowering their required compensation

for strategic risk and increasing that of lower-cost agents. As a result, the principal

tends to incentivize low-skilled agents with close monitoring and low rents, whereas

high-skilled agents then enjoy little monitoring and high rents.

Related literature. Our paper relates to three strands of literature. First, we

relate to the literature on monitoring in teams. As described above, Alchian and

Demsetz (1972) proposed that monitoring is the key reason why providing effort

incentives in teams is difficult, but subsequent work challenged their view.5 We

4That is, if a monitoring team contains agents i and j > i, then it must also contain all
agents whose index is in between.

5While Alchian and Demsetz (1972) were particularly interested in the boundaries of the
firm, we take their insights as broad motivation to study how monitoring should be optimally
organized, and how this organization affects the rewards that agents are offered.
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contribute to this literature by highlighting the issue of implementation, clarifying

the role of monitoring, and studying its optimal structure for guaranteeing agents’

efforts.6,7

Second, we relate to the literature on contracting with externalities in multi-

agent settings, pioneered by Segal (1999, 2003). This literature focuses on optimal

unique-implementation mechanisms as we do. Most closely related to our paper

are Winter (2004) and Halac, Lipnowski and Rappoport (2021), both of which

examine how to uniquely induce a team of agents to work when only the overall

team’s success is verifiable. We depart by allowing the principal to obtain finer

information about agents’ performance via a monitoring structure, and by exam-

ining the optimal design of monitoring jointly with that of transfers. As in Winter

(2004), we consider public contracts, and as in Halac, Lipnowski and Rappoport

(2021), we study agents who may be heterogeneous.8

Finally, by examining the allocation of agents to monitoring teams, we relate

more broadly to the literature on matching (dating back to Becker, 1973) and

on the allocation of agents to productive teams. Most of these papers, however,

abstract from incentive provision.9 Among those that do not, we relate most

closely to Kaya and Vereshchagina (2014), Franco, Mitchell and Vereshchagina

(2011), and Kambhampati and Segura-Rodriguez (2020).10 These articles analyze

the matching of low- and high-type workers into two-worker teams, taking both

revenue and incentive considerations into account. They show that even when

revenue maximization calls for positive assortative matching, minimizing the cost

of incentives can lead to negative assortative matching depending on functional

and parametric assumptions.

6Problems of implementation in the provision of team incentives are also discussed in
Mookherjee (1984) and, as noted above, Mookherjee and Reichelstein (1992). Baliga (2002)
shows that a monitor can help eliminate bad equilibria in an adverse-selection setting.

7More tangentially related, there is a literature that studies peer monitoring in teams; see,
e.g., Miller (1997), Strausz (1999), Winter (2010), Miller and Rozen (2014), and Gershkov and
Winter (2015). Rahman (2012) is concerned with the incentives of the monitor herself.

8Heterogeneity is also studied in Bernstein and Winter (2012), Sákovics and Steiner (2012),
and Halac, Kremer and Winter (2020). Moriya and Yamashita (2020) extend Winter’s (2004)
setting by letting the probability of team success depend on an uncertain state.

9Meyer (1994) studies task assignments in a dynamic setting with learning about agents’
abilities. Prat (2002) analyzes whether a team should be homogenous using team theory. Chade
and Eeckhout (2018) examine the matching of agents who differ in their signal informativeness.

10More tangentially related, Moldovanu, Sela and Shi (2007) study how to partition hetero-
geneous agents into status classes according to their efforts, in order to maximize total effort.
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2 Model

Setup. Consider a set of tasks, M = {1, . . . ,m}, each performed by an agent

that we index by his task. The tasks contribute to generating an output via a

production function that we do not model. Each agent i ∈ M privately chooses

effort ei ∈ {0, 1}, where ei = 1 means “work” and ei = 0 means “shirk.” Given ei,

agent i successfully completes his task with probability pei ∈ (0, 1], where p0 < p1,

independent across the agents. Shirking is costless while working entails a cost

ci > 0 to agent i. The heterogeneity in effort costs may arise from differences in

agents’ skills or from differences in the difficulty of their tasks.

A principal monitors the agents’ performance by assessing the completion of

subsets of tasks. Specifically, we define a monitoring structure as a partition π of

the set M , where we refer to the parts S ∈ π as monitoring teams. A monitoring

structure π generates a verifiable signal for each monitoring team S ∈ π, which

contains all the information then available about the performance of agents i ∈
S. We focus on signals that are binary and supermodular, the latter reflecting

that agents’ efforts are complementary in yielding a good performance signal.

In particular, we take the signal for each monitoring team S to simply indicate

whether or not all of its agents have successfully completed their tasks.11 Thus,

given a profile of effort choices (ei)i∈M , S realizes a good signal with probability∏
i∈S pei and a bad signal otherwise.

The principal’s cost of monitoring takes the form of a capacity constraint: the

number n of monitoring teams that she can specify in a monitoring structure

π = {S1, . . . , Sn} is capped by a number n ≥ 1. If n = m, each individual

task can be monitored, so this capacity constraint is non-binding. If n = 1,

the only available signal corresponds to the whole set M of tasks, so the design

of monitoring is moot. We are interested in studying the principal’s optimal

monitoring structure when n is in between these two extremes.

Principal’s problem. Fix an integer 1 ≤ n ≤ m and let Π(n) be the set of

all partitions π of M such that the number of parts is n ≤ n. The principal

chooses a monitoring structure π ∈ Π(n), which generates verifiable signals as

11This signal structure corresponds to the production function in Kremer’s (1993) O-ring
theory and in the benchmark model of Winter (2004). See Section 5.3 for further discussion.
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described above. Additionally, for each monitoring team S ∈ π and agent i ∈ S,

the principal offers the agent an incentive contract to induce him to work.

We consider public contracts and assume that agents are protected by limited

liability, so any payments from the principal must be nonnegative. Note that for

each monitoring team S ∈ π, the principal can only verify whether or not all

agents i ∈ S have completed their tasks, which depends on these agents’ effort

choices only and not those of other agents j /∈ S. Hence, without loss, the contract

for agent i ∈ S simply specifies a bonus bi for the agent if S produces a good signal

and zero payment otherwise.

The bonus offers bS := (bi)i∈S define a simultaneous game among the agents

in S. In this game, each agent i ∈ S chooses whether to work or shirk, with his

payoff being equal to his expected bonus payment, minus his effort cost ci if he

works. The principal wishes to ensure effort at the least possible cost, that is, to

specify a least-cost incentive scheme such that all agents working is the unique

Nash equilibrium of the game induced in each S ∈ π. A technical issue is that the

set of schemes bS that ensure effort in S is open (since bi takes continuous values).

We resolve this by requiring the principal’s scheme to induce a unique equilibrium

only once the bonus offers are increased by any positive amount.12 Formally, say

that (bS)S∈π uniquely implements work (UIW) if, for each S ∈ π and every ε > 0,

all agents i ∈ S working is the unique Nash equilibrium of the game defined by

bS + ε.

Let f(S) := p
|S|
1 denote the probability that monitoring team S realizes a

good signal conditional on all agents i ∈ S working. The principal’s problem is

to choose a monitoring structure and an incentive scheme to minimize her total

incentive cost, subject to the number of monitoring teams not exceeding n and to

uniquely implementing work in each of them:

min
π∈Π(n),(bS)S∈π

∑
S∈π,i∈S

f(S)bi (P)

subject to (bS)S∈π UIW.

As a remark, we observe that in our problem the requirement of unique im-

12This is equivalent to assuming that agents work when indifferent between working and
shirking given their conjectures of others agents’ behavior.
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plementation in Nash equilibria is equivalent to requiring a unique rationalizable

outcome. This follows from the performance signals being supermodular and the

agents being protected by limited liability. Given these, for any monitoring struc-

ture π ∈ Π(n) and incentive scheme (bS)S∈π that the principal chooses, the game

induced in each S ∈ π is a supermodular game, and thus the results of Milgrom

and Roberts (1990) apply. An implication is that our analysis does not rely on

strong assumptions about agents’ ability to predict others’ behavior; it only relies

on agents being rational and this rationality being common knowledge.

Monitoring constraints. Our baseline model places no constraints on the prin-

cipal’s monitoring partition other than her monitoring capacity. In applications,

however, there may be additional restrictions arising from the production tech-

nology and organizational arrangements which limit how tasks can be grouped to

be monitored jointly. Using our framework, we can capture these as constraints

on the principal’s allocation of agents to monitoring teams. We introduce such

constraints and study their implications in Section 4.3.

3 Partial implementation benchmark

Before we solve the principal’s problem in (P), we consider a relaxed version of

this problem which ignores the unique implementation constraint. We show that

if the principal only seeks to implement work as a Nash equilibrium outcome, not

necessarily the unique one, then the design of monitoring becomes trivial: the

principal’s value is independent of the monitoring capacity n and the monitoring

structure π ∈ Π(n).

Suppose that the principal specifies a monitoring structure π ∈ Π(n) and,

for each monitoring team S ∈ π, she only wishes to incentivize all agents i ∈ S
working as some Nash equilibrium of the induced game. In this case, for each

S ∈ π, the principal’s bonus offers need only ensure that each agent i ∈ S prefers

to work rather than shirk when he conjectures that all other agents in S will work.

Formally, for each S ∈ π and each i ∈ S, the bonus bi must satisfy

f(S)bi − ci ≥ f(S)
p0

p1

bi.
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The principal’s optimal bonus offers make these incentive constraints hold with

equality:

bNEi =
p1

p1 − p0

ci
f(S)

. (1)

Substituting the bonuses in the principal’s objective in (P), we obtain that the

principal’s incentive cost is equal to∑
S∈π,i∈S

p1

p1 − p0

ci. (2)

Since this expression is independent of π, the next result follows immediately.

Proposition 1. Under partial implementation, the principal’s cost of incentives

is independent of the monitoring capacity and the monitoring structure.

As discussed in the Introduction, this result is consistent with a previous litera-

ture, most notably the seminal paper of Holmström (1982) in the case that agents

are risk neutral as in our model.13 Proposition 1 says that monitoring agents’

individual performance has no value to the principal. Even if the principal could

costlessly monitor the completion of each individual task, her cost of incentivizing

the agents would be the same as when she is only able to verify whether or not

the whole set of tasks have been successfully completed.

The takeaway from this section is that partial implementation is not well-suited

to study the principal’s monitoring problem. Focusing on partial implementation

not only suffers from the standard selection criticism—the fact that the principal

may be unable to coordinate agents to play her preferred equilibrium when mul-

tiple equilibria exist—but it also fails to capture the incentive benefits of using

finer monitoring structures. This benchmark in hand, we turn to our analysis of

optimal monitoring under unique implementation.

4 Optimal monitoring structure

To solve the principal’s problem in (P), we proceed as follows. First, in Section 4.1,

we provide a characterization of optimal incentives for any given fixed monitoring

13While in our setting this result relies on the signal structure that we have assumed, we view
it as a meaningful benchmark precisely because the literature has shown it to hold under more
general conditions.
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structure. Next, in Section 4.2, we use this characterization to solve for an optimal

monitoring structure. Finally, in Section 4.3, we introduce additional constraints

on the monitoring allocation and study their implications.

4.1 Incentives

Fix a monitoring structure π ∈ Π(n) and consider an optimal incentive scheme

{bS}S∈π. Note that given π fixed, the principal solves for an optimal scheme bS for

each monitoring team S ∈ π separately, in order to minimize the cost of ensuring

work in S. This problem is related to the team problems studied in Winter (2004)

and Halac, Lipnowski and Rappoport (2021).

We begin by showing that if an incentive scheme uniquely implements work

in monitoring team S, then it must make it iteratively dominant for each agent

i ∈ S to work:

Lemma 1. Fix a monitoring structure π ∈ Π(n) and suppose bS uniquely im-

plements work in S ∈ π. Then there exists a permutation (iS1, . . . , iS|S|) of the

agents in S such that, for each j ∈ {1, . . . , |S|}, agent iSj is willing to work if

agents (iS1, . . . , iSj−1) work, no matter what agents (iSj+1, . . . , iS|S|) do.

The logic is simple. If a scheme bS uniquely implements work in S, then there

must be an agent iS1 ∈ S who is willing to work under bS when the other agents in

S shirk. Moreover, by supermodularity of the signal structure, this agent is thus

willing to work no matter what the other agents in S do. Proceeding by induction

delivers the result in Lemma 1.

We next use this result to derive a characterization of optimal incentives for

any given monitoring team S. An optimal incentive scheme for S specifies some

permutation (iS1, . . . , iS|S|) of the agents in S and a bonus biSj for each agent iSj ∈
S satisfying the criterion in Lemma 1. Let us first fix a permutation (iS1, . . . , iS|S|)

and solve for optimal bonuses given this permutation. By the lemma, agent iSj

must be willing to work if agents (iS1, . . . , iSj−1) work, no matter the rest. By

supermodularity, this is true if and only if agent iSj is willing to work when

agents (iS1, . . . , iSj−1) work and agents (iSj+1, . . . , iS|S|) shirk. Hence, for each

j ∈ {1, . . . , |S|}, the bonus biSj must satisfy

pj1p
|S|−j
0 biSj − ciSj ≥ pj−1

1 p
|S|−j+1
0 biSj .
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The principal’s optimal bonus offers make these incentive constraints hold with

equality. Rearranging terms, we thus obtain

b∗iSj =
p1

p1 − p0

ciSj
f(S)

(
p1

p0

)|S|−j
.

It will be useful to define the compensation factor

rSj :=

(
p1

p0

)|S|−j
, (3)

which allows us to rewrite the optimal bonus for each j ∈ {1, . . . , |S|} as

b∗iSj =
p1

p1 − p0

ciSj
f(S)

rSj.

Finally, having characterized the optimal bonus schedule for any given permu-

tation (iS1, . . . , iS|S|) of the agents in S, we now solve for an optimal permutation

(i∗S1, . . . , i
∗
S|S|). Observe that b∗iSj is supermodular in ciSj and rSj, and the com-

pensation factor rSj is decreasing in j, i.e., it is lower for agents who are placed

later in the permutation. Since the principal wishes to minimize the sum of bonus

payments, it follows that an optimal permutation of the agents in S orders the

agents by increasing cost of effort: ci∗Sj ≤ ci∗Sj+1
for each j ∈ {1, . . . , |S| − 1}.

Proposition 2 summarizes our findings.

Proposition 2. Fix a monitoring structure π ∈ Π(n) and suppose {b∗S}S∈π is

optimal given π. Then for each S ∈ π, there exists a permutation (i∗S1, . . . , i
∗
S|S|)

of the agents in S such that ci∗S1 ≤ . . . ≤ ci∗
S|S|

and, for each j ∈ {1, . . . , |S|},

b∗i∗Sj =
p1

p1 − p0

ci∗Sj
f(S)

rSj. (4)

It is instructive to compare the optimal bonuses derived in equation (4) under

unique implementation with the bonuses derived in equation (1) under partial

implementation. We find that for any given monitoring team S, the principal must

offer the agents in S higher bonuses than in the partial implementation benchmark

in order to guarantee their efforts. This is reflected in the compensation factors

rSj ≥ 1 which appear in the bonuses b∗i∗Sj above but not in equation (1). To
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induce work as a unique outcome, the principal must compensate the agents for

the strategic risk that they face about the effort choices of other agents in S. This

risk arises because the principal only observes a signal for the joint performance

of all agents in a monitoring team. The possibility that other agents in S may

shirk implies a lower marginal effect of each agent’s effort on joint performance,

and therefore a higher performance bonus required by each agent in S to work.

Proposition 2 shows that the compensations that agents i ∈ S receive vary

according to the permutation of these agents that is specified by the principal’s

incentive scheme. An agent i ∈ S faces higher strategic risk and thus demands

a higher compensation the earlier he is placed in the permutation. This in turn

explains why, for any given monitoring team S, an optimal permutation orders

the agents in S by increasing cost of effort. Intuitively, since facing strategic

uncertainty about other agents’ efforts is more costly to higher-cost agents, the

principal benefits from providing higher-cost agents with assurance that lower-

cost agents will work. Hence, in any given monitoring team, lower-cost agents are

placed earlier in the permutation and receive a higher compensation factor than

higher-cost agents. This means that lower-cost agents are offered higher markups

than higher-cost agents, both relative to their effort costs, b∗i∗Sj/ci
∗
Sj

, as well as

relative to the partial-implementation bonuses, b∗i∗Sj/b
NE
i∗Sj

.

4.2 Monitoring structure

We now proceed to study the principal’s optimal monitoring structure. Using the

characterization of optimal incentives in Proposition 2, we can rewrite the princi-

pal’s incentive cost and thus simplify the principal’s problem in (P). Substituting

with the bonuses in (4), the principal’s problem reduces to choosing a monitoring

structure π ∈ Π(n) in order to minimize∑
S∈π,j∈{1,...,|S|}

p1

p1 − p0

ci∗Sj rSj, (5)

where, for each S ∈ π and each j ∈ {1, . . . , |S|}, i∗Sj ∈ S and ci∗S1 ≤ . . . ≤ ci∗
S|S|

.

The principal’s incentive cost depends on the monitoring partition π = {S1, . . . , Sn}
via the compensation factors rSj which multiply each term in the sum in (5).14

14In fact, if these factors were equal to 1 for all S ∈ π and j ∈ {1, . . . , |S|}, then the principal’s
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Recall from the definition in (3) that rSj ≥ 1 for all S ∈ π and j ∈ {1, . . . , |S|},
strictly increasing in |S| − j. This implies that the principal’s incentive cost is

strictly increasing in the size of the monitoring teams, yielding the following result:

Proposition 3. If π∗ = {S∗1 , . . . , S∗n∗} is an optimal monitoring structure, then

n∗ = n and the principal’s cost of incentives is strictly decreasing in the monitoring

capacity.

This result contrasts with that in Proposition 1. Unlike under partial imple-

mentation, we find that the principal’s cost of uniquely implementing work does

depend on her monitoring capacity. As discussed in the Introduction, this result

therefore supports Alchian and Demsetz’s (1972) view on the value of monitoring,

as well as Mookherjee and Reichelstein’s (1992, p.391) suggestion that this value

may arise from the need to exclude bad equilibrium outcomes.

The intuition for Proposition 3 is related to our discussion in Section 4.1.

To ensure an agent’s effort, the principal must compensate the agent for the

strategic risk that he faces about the effort choices of other agents in his monitoring

team. The principal can reduce the agent’s strategic risk (and thus his required

compensation) by reducing the size of his monitoring team, as that makes the

agent’s pay dependent on a fewer number of other agents. Naturally, if n = n,

then reducing the size of a monitoring team would imply increasing the size of

another monitoring team. But so long as n < n, the principal can strictly lower

her cost of incentives by splitting a monitoring team into two. Therefore, any

optimal monitoring structure must exhaust the principal’s monitoring capacity by

setting n = n.

The next two results describe how the principal optimally partitions the set

of agents into n monitoring teams. We first show that the principal benefits from

specifying monitoring teams of equal size (subject to integer constraints). The

reason is that the compensation factor rSj that multiplies each term in (5) is

convex in |S| − j, which means that the principal’s cost of uniquely implementing

work in a monitoring team S is convex in its size.

Proposition 4. If π∗ is an optimal monitoring structure, then |S| − |S ′| ≤ 1 for

every S, S ′ ∈ π∗.

cost would coincide with her cost under partial implementation given by (2), and would thus be
independent of the monitoring structure.
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To see the logic, suppose by contradiction that a monitoring structure π is

optimal with S, S ′ ∈ π and |S| − |S ′| > 1. Let i be a lowest-effort-cost agent in

monitoring team S. We show that the principal’s incentive cost can be strictly

reduced by moving agent i from S to S ′. Observe that by Proposition 2, an

optimal incentive scheme for S makes it dominant for agent i to work (i.e., it

places i first in the corresponding permutation for S). It thus suffices to show

that the principal’s incentive cost strictly declines when we move i to S ′ and

continue to make it dominant for i to work in S ′. In fact, in this case, moving

agent i from S to S ′ does not affect the strategic risk faced by any other agent, so

the move benefits the principal provided that it strictly reduces the strategic risk

faced by agent i. The latter is true under |S| − |S ′| > 1.

Proposition 4 gives a full characterization of the principal’s optimal monitoring

structure if all agents are symmetric, i.e., if ci = c for all i ∈ M . In this case,

the result that all monitoring teams are equally-sized implies that they are all

identical (again, subject to integer constraints).

Suppose instead that agents differ in their costs of effort. The following defi-

nition will be useful to describe the principal’s solution.

Definition 1. Let Φ be the set of permutations φ = (i1, . . . , im) of M with ci1 ≤
. . . ≤ cim. Given φ ∈ Φ, say the first n agents in φ are rank 1, the next n agents

are rank 2, and so on. A monitoring structure π ∈ Π(n) is anti-assortative if

there is φ ∈ Φ such that no monitoring team in π contains two agents of the same

rank.

We can construct an anti-assortative monitoring structure using the following

simple procedure. We first define ranks as described in Definition 1: we take a

permutation (i1, . . . , im) that orders the agents by increasing cost of effort, and we

assign rank 1 to the n lowest-cost agents in the permutation, rank 2 to the next

n lowest-cost agents, and so on.15 Next, we assign each of the rank-1 agents to a

different monitoring team; for example, agent i1 to monitoring team S1, agent i2

to monitoring team S2, and so on until agent in. We then assign each of the rank-2

agents to a different monitoring team; for example, agent in+1 to monitoring team

S1, agent in+2 to monitoring team S2, and so on until agent i2n. Repeating this

15Let z be the lowest integer such that z ≥ m/n. Then there are z ranks, each of the first
z − 1 containing n agents and rank z containing m− (z − 1)n agents.
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with each subsequent rank until all agents have been assigned to a monitoring

team yields an anti-assortative monitoring structure π = {S1, . . . , Sn}.
We obtain:

Proposition 5. There exists an optimal monitoring structure that is anti-assortative.

An optimal monitoring structure π∗ specifies monitoring teams that are homo-

geneous between them: every S ∈ π∗ has one agent from each of the effort-cost

ranks defined above (up to integer constraints). The intuition is that this partition

permits an optimal provision of assurance. Because facing strategic uncertainty

about other agents’ effort choices is more costly to agents with higher effort costs,

the principal benefits from providing higher-cost agents with greater assurance

relative to lower-cost agents. The characterization of optimal incentives in Propo-

sition 2 applies this logic within each monitoring team, and the characterization

of optimal monitoring in Proposition 5 extends this logic across monitoring teams.

Indeed, given optimal incentives, the key feature of an anti-assortative structure

is that no agent faces higher strategic risk than another agent whose effort cost is

comparatively lower, no matter to which monitoring teams the agents belong.

The proof of Proposition 5 is constructive. Suppose that π is an optimal mon-

itoring structure. If it is not anti-assortative, there must be monitoring teams

S, S ′ ∈ π and agents i ∈ S and i′ ∈ S ′ such that agent i has a higher cost of effort

than agent i′ yet he faces higher strategic risk in S than i′ does in S ′.16 We show

that the principal’s incentive cost can then be weakly reduced by swapping agents

i and i′, and performing this perturbation on every other such two agents delivers a

monitoring structure that is anti-assortative. Moreover, we also show that absent

integer constraints (i.e., if m/n is an integer), the perturbation reduces the prin-

cipal’s incentive cost strictly, implying that every optimal monitoring structure

must be anti-assortative in this case.

There are two noteworthy implications that follow from the result in Propo-

sition 5. The first implication concerns the structure of monitoring itself. We

find that by specifying monitoring teams that are homogeneous with respect to

each other, the principal’s solution specifies monitoring teams that are heteroge-

neous within. Intuitively, the principal divides the organization into equally-sized

16That is, agent i is optimally placed earlier in the permutation for S compared to agent i′ in
the permutation for S′.
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sections whose performance is evaluated separately, with each section containing

agents from every rank and thus being diverse within but similar to other sections.

Our anti-assortativeness prediction is in line with recent empirical work by

Adhvaryu et al. (2020), who document negatively assortative matched teams in a

large readymade garment manufacturer in India. Their teams consist of a manager

and a set of workers, all incentivized with bonuses for high team performance.

The authors find that revenue considerations would call for positive assortative

matching of managers to workers. Instead, according to a survey of managers,

negative assortative matching is used to best ensure a minimum performance

standard in all teams.

The second implication of our results concerns agents’ pay. We find that under

the principal’s optimal monitoring structure, agents’ compensation factors are

determined by their ranks, with rank-1 agents receiving the highest factor, rank-2

agents the second-highest factor, and so on. Consequently, lower-cost agents are

offered higher markups than higher-cost agents, not only within each monitoring

team but across all agents i ∈M .

Example. We close this section with a simple example that illustrates our re-

sults. Take a set M = {1, 2, 3, 4} and a monitoring capacity of n = 2. Assume

c1 = c2 = cL and c3 = c4 = cH for cL < cH . By Proposition 2, this implies

that optimal incentives for any given monitoring team can be specified under the

identity permutation of its agents.

An anti-assortative monitoring structure in this example is π∗ = {{1, 3}, {2, 4}},
as we illustrate in Figure 1. Using (5), the principal’s incentive cost under this

monitoring structure is equal to

p1

p1 − p0

2

(
cL
p1

p0

+ cH

)
.

To illustrate our result in Proposition 3, we can compare this incentive cost

under π∗ with the one that would result if the principal only monitors the joint

performance of the whole set M of agents. The latter is equal to

p1

p1 − p0

[
cL

(
p1

p0

)3

+ cL

(
p1

p0

)2

+ cH

(
p1

p0

+ 1

)]
,
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Figure 1: Optimal monitoring structure and compensation factors for M = {1, 2, 3, 4}
and n = 2 with c1 = c2 = cL < cH = c3 = c4.

and is thus strictly higher than that under π∗.

To illustrate our result in Proposition 4, it suffices to compare the incen-

tive cost under π∗ with the one that would result from the monitoring structure

{{1, 2, 3}, {4}}. The latter is equal to

p1

p1 − p0

[
cL

(
p1

p0

)2

+ cL
p1

p0

+ 2cH

]
, (6)

and is thus also strictly higher than the incentive cost under π∗.

Finally, to illustrate our result in Proposition 5, it suffices to compare the in-

centive cost under π∗ with the one that would result from the monitoring structure

{{1, 2}, {3, 4}}. The latter is equal to

p1

p1 − p0

(cL + cH)

(
p1

p0

+ 1

)
, (7)

and is thus also strictly higher than the incentive cost under π∗.

4.3 Monitoring constraints

We have so far assumed that the principal’s choice of a monitoring partition is

only constrained by her monitoring capacity. As illustrated by the hiring example

in the Introduction, in reality there may be additional constraints arising from

the production technology and other organizational arrangements. These features
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determine the nature of agents’ tasks and how they are combined to produce

output. Thus, while the principal may be able to isolate the performance of

certain subsets of tasks, including possibly each individual task, she may not be

able to group tasks in an arbitrary manner to monitor their performance jointly. In

this section, we introduce these constraints on the principal’s monitoring problem.

To represent the monitoring constraints, consider the following simple for-

mulation. We take the agents’ tasks to be exogenously ordered along the line

(1, . . . ,m), and we restrict attention to monitoring structures that divide this line

into consecutive segments. Formally, let ΠC(n) be the set of all partitions π of

M = {1, . . . ,m} such that (i) the number of parts is n ≤ n, and (ii) for each

S ∈ π and i < j < k, if i, k ∈ S, then j ∈ S. Note that this set is smaller than the

set Π(n) considered in our baseline model; the latter ignores condition (ii) which

constrains how agents can be grouped into monitoring teams. Together with con-

dition (ii), the order of agents’ tasks (1, . . . ,m) represents the fixed production and

organizational arrangements that the principal’s monitoring allocation must re-

spect. Our notation for a partition π = {S1, . . . , Sn} ∈ ΠC(n) will index the parts

according to this order; that is, for each k ∈ {1, . . . , n − 1}, we take monitoring

team Sk to contain lower-indexed agents than monitoring team Sk+1.

The principal’s constrained problem coincides with her unconstrained problem

in (P) except for the fact that she can only choose monitoring structures π ∈
ΠC(n):

min
π∈ΠC(n),(bS)S∈π

∑
S∈π,i∈S

f(S)bi (P-constrained)

subject to (bS)S∈π UIW.

To solve this program, we can proceed in an analogous manner as we did

to solve the unconstrained problem. Recall that our characterization of optimal

incentives in Proposition 2 applies to any given monitoring structure. We can

thus use that characterization to substitute for the bonuses in (P-constrained) and

simplify the program. The principal’s constrained problem reduces to choosing a

monitoring structure π ∈ ΠC(n) in order to minimize her cost of incentives given

by expression (5).

Observe that Proposition 3 continues to hold in this setting. Plainly, the prin-
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cipal can always split a monitoring team into two and reduce the strategic risk

agents face, so any optimal monitoring structure π∗ = {S∗1 , . . . , S∗n∗} must exhaust

the principal’s monitoring capacity by setting n∗ = n.17 Moreover, note that if

ci = c for all i ∈ M , then there is an optimal monitoring structure in the uncon-

strained problem which is feasible in the constrained problem, implying that such

a monitoring structure is also optimal in the constrained problem. Hence, the prin-

cipal’s solution is essentially unchanged by the additional monitoring constraints

when all agents are symmetric.

Proposition 6. Suppose π∗ = {S∗1 , . . . , S∗n∗} is an optimal monitoring structure

in the constrained problem. Then n∗ = n. Moreover, if ci = c for all i ∈M , then

|S| − |S ′| ≤ 1 for every S, S ′ ∈ π∗.

Things however can be different when agents are asymmetric in their costs of

effort. In fact, the restriction in (P-constrained) is that the assignment of agents to

monitoring teams is now constrained by the agents’ location on the line (1, . . . ,m).

Put differently, the principal cannot choose the allocation of effort costs along

(1, . . . ,m), and therefore an optimal monitoring structure will depend on how

such costs vary along this order. Proposition 7 considers two configurations, one

in which effort costs can only be either low or high, and one in which effort costs

are monotonically ordered along (1, . . . ,m). The latter may arise in applications

if the principal’s ability to monitor two agents jointly is greater when these agents

bear similar effort costs, for example because they work on similar tasks.

Proposition 7. Suppose π∗ = {S∗1 , . . . , S∗n} is an optimal monitoring structure in

the constrained problem.

1. If ci ∈ {cL, cH} for all i ∈M , then |{i ∈ S : ci = cH}| ≤ |{i ∈ S ′ : ci = cH}|
for every adjacent S, S ′ ∈ π∗ with |S| − |S ′| > 1.

2. If ci < ci+1 for each i ∈M , then |S∗k | ≥ |S∗k+1| for each 1 ≤ k < n.

Proposition 7 shows that the principal tends to place agents with higher effort

costs in smaller monitoring teams compared to agents with lower effort costs.

This result contrasts with Proposition 4 in the unconstrained setting, where all

17The proof of Proposition 3 in Appendix A applies to the constrained problem by letting
ι ∈ Sk be such that ι+ 1 /∈ Sk.
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agents are assigned to monitoring teams of equal size. Therefore, we find that the

main consequence of the additional monitoring constraints is a differential use of

monitoring across agents: the principal now optimally tailors monitoring toward

higher-cost agents.

The intuition for this result is familiar by now. Since compensating high-cost

agents for strategic risk is more expensive than compensating low-cost agents,

the principal benefits from providing high-cost agents with greater assurance.

In the unconstrained problem, the principal achieves this by specifying an anti-

assortative monitoring structure, matching high-cost agents with low-cost ones

whose effort can be more cheaply pinned down, and thus delivering monitoring

teams that are homogeneous between them. In the constrained problem, the prin-

cipal also seeks to form monitoring teams whose composition of effort costs is

similar to each other. However, since the composition of the monitoring teams is

now constrained, the principal needs to adjust their size. When unable to match

agents flexibly, the principal addresses the strategic risk of high-cost agents by

making their monitoring teams relatively smaller.

The implications for agents’ pay are immediate. Note that the principal’s mon-

itoring structure determines the extent to which each agent’s effort is incentivized

with monitoring versus markup. The results above suggest that high-cost agents

in an organization will tend to be incentivized with close monitoring and low rents,

whereas low-cost agents will then enjoy little monitoring and high rents.

Example. We return to the example described in Section 4.2 withM = {1, 2, 3, 4},
n = 2, c1 = c2 = cL, and c3 = c4 = cH for cL < cH . Recall that in the uncon-

strained problem, an optimal monitoring structure is given by {{1, 3}, {2, 4}}, as

illustrated in Figure 1. This monitoring structure is not feasible in the constrained

problem.

There are two relevant monitoring structures to consider in the constrained

setting, {{1, 2}, {3, 4}} and {{1, 2, 3}, {4}}. Figure 2 depicts these monitoring

structures and the resulting compensation factors for each of the agents. Observe

that compared to {{1, 2}, {3, 4}}, {{1, 2, 3}, {4}} requires the principal to pay

higher compensation factors to the low-cost agents 1 and 2, while allowing her to

pay lower compensation factors to the high-cost agents 3 and 4.

The principal’s incentive cost under {{1, 2}, {3, 4}} is given by (7), and her
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Figure 2: Monitoring structure and compensation factors for M = {1, 2, 3, 4} and
n = 2. Taking c1 = c2 = cL < cH = c3 = c4, the left panel depicts the principal’s

constrained solution under
(
p1
p0

+ 1
)
cL > cH , the right panel under

(
p1
p0

+ 1
)
cL < cH .

incentive cost under {{1, 2, 3}, {4}} is given by (6). As shown in Section 4.2, both

of these monitoring structures perform strictly worse than the principal’s uncon-

strained solution {{1, 3}, {2, 4}}. But which one is optimal in the constrained

setting? Comparing expressions (6) and (7) yields that {{1, 2, 3}, {4}} is optimal

if cH is sufficiently higher than cL, namely(
p1

p0

+ 1

)
cL < cH , (8)

whereas {{1, 2}, {3, 4}} is optimal when the opposite is true. As depicted in the

right panel of Figure 2, when (8) holds, the principal incentivizes the high-cost

agents with closer monitoring (on average) and lower markups compared to the

low-cost agents.

5 Discussion

In this section, we discuss several possible extensions of the problem that we have

studied.
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5.1 Task completion

We have studied agents who may differ only in their cost of effort. Suppose

now that agents may differ in the probability with which they complete their

tasks conditional on effort. For each i ∈M , let pi be the probability that agent i

completes his task if he works; if the agent shirks, his probability of task completion

is p0, with 0 < p0 < pi ≤ 1 for all i ∈ M . For simplicity, assume that agents are

symmetric in their effort costs, i.e., ci = c for all i ∈M .

The principal’s problem is given by (P) once we redefine f(S) :=
∏

i∈S pi.

To solve this problem, we can first fix a monitoring structure π and solve for

optimal incentives for any given monitoring team S ∈ π as we did in Section 4.1.

Proceeding as in that section yields the analog of Proposition 2: if b∗S is an optimal

scheme for monitoring team S, then there is a permutation (i∗S1, . . . , i
∗
S|S|) of the

agents in S such that pi∗S1 ≥ . . . ≥ pi∗
S|S|

and, for each j ∈ {1, . . . , |S|},

b∗i∗Sj =
pi∗Sj

pi∗Sj − p0

c

f(S)

∏
j<j′≤|S|

pi∗
Sj′

p0

.

Hence, an optimal bonus continues to take the form of the partial-impementation

bonus times a compensation for strategic risk, with the compensation factor for

agent iSj ∈ S now given by
∏

j<j′≤|S|

pi∗
Sj′

p0
. Moreover, as in the case of agents who

differ in their effort costs, an optimal permutation for monitoring team S places

higher-skilled agents (i.e., agents with a higher probability of task completion

under effort) earlier than lower-skilled agents, in order to provide assurance to the

latter.18

Using the bonuses above to substitute in the principal’s incentive cost, the

principal’s problem then reduces to choosing π ∈ Π(n) to minimize

∑
S∈π,j∈{1,...,|S|}

pi∗Sj
pi∗Sj − p0

c
∏

j<j′≤|S|

pi∗
Sj′

p0

,

where, for each S ∈ π and each j ∈ {1, . . . , |S|}, i∗Sj ∈ S and pi∗S1 ≥ . . . ≥ pi∗
S|S|

.

18This follows because given a permutation (iS1, . . . , iS|S|), the bonus b∗iSj
is submodular in

piSj
and the compensation factor, the compensation factor is decreasing in j, and, for any

j ∈ {1, . . . , |S|−1}, the compensation factor for agent iSj is lower the lower are the probabilities
piSj′ for j′ > j.
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It is immediate that Proposition 3 continues to hold: every optimal monitor-

ing structure π∗ = {S∗1 , . . . , S∗n∗} exhausts the principal’s monitoring capacity by

setting n∗ = n. However, without making further assumptions, it is not possi-

ble to derive a general characterization of the optimal partition of agents into n

monitoring teams. The reason is that the compensation for strategic risk that an

agent demands now depends not only on the size of his monitoring team and his

location in the monitoring team’s permutation, but also on the exact probabilities

of task completion of other agents in the monitoring team. As such, the principal’s

optimal monitoring structure will also depend on the exact values of the agents’

task completion probabilities.

Nevertheless, we can show that our results extend if we put more structure on

the problem. For example, suppose that pi ∈ {pL, pH} for all i ∈ M and some

p0 < pL < pH ≤ 1. Then we obtain that every optimal monitoring structure is

anti-assortative if pL is sufficiently close to p0. In this case, the number of agents

of each type is the same across monitoring teams (up to integer constraints).

Thus, as in our baseline model, the principal specifies monitoring teams that are

heterogeneous within but homogeneous between them.

5.2 Beyond partitions

We have modeled a monitoring structure as a partition of the set of agents into

monitoring teams. How would the principal’s problem change if monitoring is not

required to take the form of a partition? While a full analysis of this question is

beyond the scope of our paper, we offer here some insights.

Consider first the class of deterministic monitoring structures. A non-partition

structure would allow for overlapping monitoring teams, meaning that an agent

could be assigned to multiple monitoring teams simultaneously. The applicability

of such overlaps may vary depending on the context; for example, they would be

infeasible if different monitoring teams must reside in different physical locations.

Even when feasible, overlapping monitoring teams may not be beneficial to

the principal. Take the setting of Section 4.3 and suppose the principal assesses

agents’ performance by verifying the successful completion of tasks up to different

points along the vector (1, . . . ,m). For instance, in our hiring example in the In-

troduction, to specify a monitoring partition {{1, 2}, {3, 4}}, the principal verifies
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the joint performance of tasks 1 and 2 (quality of interviewees) and the joint per-

formance of all tasks (quality of hires) relative to those of 1 and 2. What would

it mean to specify overlapping monitoring teams, such as {{1, 2, 3}, {3, 4}}? The

principal would need to verify the joint performance of tasks 1, 2, and 3 (quality of

offers) and the joint performance of all tasks relative to those of 1 and 2. However,

in this case, the principal would also be able to specify the monitoring partition

{{1, 2}, {3}, {4}}, and such a partition always improves upon {{1, 2, 3}, {3, 4}}.
Once we move beyond partitions, in principle there is no reason to require

that an agent’s inclusion in a monitoring team be a binary decision. The principal

might be able to specify fractional assignments of agents to monitoring teams,

similar to those studied in Meyer (1994) and Chade and Eeckhout (2018) in the

context of productive teams. Whether a fractional assignment is beneficial to the

principal may depend on the assumptions that we make on the signal structure.

In particular, a relevant modeling question is how the signal produced by a mon-

itoring team would then be affected by the performance of agents who belong to

the monitoring team only fractionally.

Finally, consider random monitoring structures. Absent constraints, if the

principal can commit to any randomization over monitoring partitions, then agents’

strategic risk can be eliminated at no cost. For example, for πi := {{i},M \ {i}},
suppose the principal randomizes over {πi}i∈M and specifies a bonus for each

agent i ∈ M that is conditional on πi being drawn and the agent delivering a

good performance signal. Plainly, by effectively evaluating each agent’s perfor-

mance individually, such a mechanism would uniquely implement work at the

partial-implementation cost.

There are a number of issues, however, with this approach. There is the usual

concern that committing to a randomization may be difficult. More importantly,

there is the problem that the random mechanism above respects the principal’s

capacity constraint ex post, namely after a partition is drawn, but not ex ante. For

the randomization to be effective, we must thus assume either that the principal

can set up the monitoring partition after agents have chosen effort, or that she

can make the monitoring partition unobservable to the agents. Both of these are

arguably strong assumptions. In reality, creating performance measures requires

the principal to incur ex-ante costs. If agents can observe what performance

signals are available to the principal, the capacity constraint applies ex ante, and
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as a result randomizations cannot improve upon deterministic mechanisms.

5.3 Performance signals

Our model assumes that for each monitoring team that the principal specifies, she

can only verify whether or not all agents in the monitoring team have successfully

completed their tasks. That is, the principal can tell if something did not go well,

but she cannot discern more than that. This signal structure corresponds to the

“O-ring” production function in Kremer (1993) and in the benchmark setting of

Winter (2004). Its main feature is that it is binary and supermodular.

While we have taken the signal structure as given, one could consider an aug-

mented design problem in which the principal is able to choose the signal that she

observes for each monitoring team, in addition to the monitoring partition and the

bonus schemes. A detailed analysis of this augmented problem requires modeling

the costs of different performance signals, which is beyond our scope. However,

it is worth noting that the signal that we have assumed is in fact optimal in the

augmented problem under simple conditions.

For instance, suppose that the principal is restricted to signals of joint perfor-

mance that are binary and deterministic. That is, for each monitoring team, the

principal can only choose what profiles of agents’ task completion outcomes map

to a good signal, with the remaining profiles mapping to a bad signal. Our model

assumes that only one outcome profile maps to a good signal, namely that in

which all agents in the monitoring team have completed their tasks. We can show

that, within the proposed class, this signal is optimal if the individual probability

of task completion under effort, p1, is sufficiently close to 1.

To illustrate the idea, take a monitoring team and suppose that, unlike in

our model, the principal observes a good signal whenever the number of agents

who complete their tasks exceeds a strictly interior threshold. Then an agent has

little incentive to work if he conjectures that sufficiently many other agents are

working, as the marginal contribution of his effort to producing a good signal is

then small. In fact, this marginal contribution is negligible if p1 is high enough.

As a consequence, in this case, the principal’s cost of inducing all agents to work

becomes arbitrarily high, regardless of whether she wishes to do so as some equi-

librium outcome or as the unique one. Since the principal’s incentive cost under
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our signal structure remains bounded as p1 increases, it follows that our signal

structure is preferred for p1 high enough.
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Sákovics, József and Jakub Steiner, “Who Matters in Coordination Prob-

lems?,” American Economic Review, 2012, 102 (7), 3439–3461.

Segal, Ilya R., “Contracting with Externalities,” Quarterly Journal of Eco-

nomics, 1999, 114, 337–388.

, “Coordination and Discrimination in Contracting with Externalities: Divide

and Conquer?,” Journal of Economic Theory, 2003, 113, 147–81.

Strausz, Roland, “Efficiency in Sequential Partnerships,” Journal of Economic

Theory, 1999, 85 (1), 140–156.

Winter, Eyal, “Incentives and Discrimination,” American Economic Review,

2004, 94, 764–773.

, “Transparency among Peers and Incentives,” RAND Journal of Economics,

2010, 41 (3), 504–523.

A Appendix: Proofs

This Appendix provides formal proofs for our results. We obviate the proofs for

Proposition 1 and Proposition 6 since they follow immediately from the arguments

in the text.
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A.1 Proof of Lemma 1

Fix a monitoring structure π ∈ Π(n) and suppose bS uniquely implements work

in S ∈ π. Note first that there must be an agent iS1 ∈ S who is willing to work

under bS when no other agent in S does. If this was not true, there would be

an ε > 0 and a Nash equilibrium of the game induced by bS + ε in S in which

no agent works. By supermodularity of the signal structure, it follows that iS1 is

willing to work no matter what the other agents in S do.

We proceed by induction: take j′ ∈ {2, . . . , |S|−1} and suppose that for every

j ∈ {2, . . . , j′}, there is an agent iSj who is willing to work if agents (iS1, . . . , iSj−1)

work, no matter what the other agents in S do. Then we claim there must be

an agent iSj′+1 who is willing to work if agents (iS1, . . . , iSj′) work and the other

agents in S do not. Otherwise, there would be an ε > 0 and a Nash equilibrium

of the game induced by bS + ε in which agents (iS1, . . . , iSj′) work and the rest of

the agents in S shirk. By supermodularity, it follows that iSj′+1 is willing to work

if agents (iS1, . . . , iSj′) work, no matter what the other agents in S do.

A.2 Proof of Proposition 2

Fix a monitoring structure π ∈ Π(n) and, without loss, a monitoring team S ∈ π.

We proceed in two steps.

Step 1. Suppose that an incentive scheme bS is optimal in monitoring team

S. We show that there must be a permutation (iS1, . . . , iS|S|) of the agents in S

such that, for each j ∈ {1, . . . , |S|}, agent iSj is indifferent between working and

shirking when agents (iS1, . . . , iSj−1) work and agents (iSj+1, . . . , iS|S|) shirk.

By Lemma 1, there must be a permutation (iS1, . . . , iS|S|) of the agents in

S such that, for each j ∈ {1, . . . , |S|}, agent iSj is willing to work if at least

agents (iS1, . . . , iSj−1) work. By supermodularity, this holds if and only if, for

each j ∈ {1, . . . , |S|}, agent iSj is willing to work when agents (iS1, . . . , iSj−1)

work and agents (iSj+1, . . . , iS|S|) shirk:

pj1p
|S|−j
0 biSj − ciSj ≥ pj−1

1 p
|S|−j+1
0 biSj . (9)

We claim that optimality of the incentive scheme requires that, for some permu-
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tation (iS1, . . . , iS|S|), (9) hold with equality for each j ∈ {1, . . . , |S|}. Suppose

by contradiction that this is not the case; that is, suppose that there is an op-

timal incentive scheme with associated permutation (iS1, . . . , iS|S|) and a bonus

schedule such that (9) is (a weak inequality for all j ∈ {1, . . . , |S|} and) a strict

inequality for some j′ ∈ {1, . . . , |S|}. Consider a perturbation in which we reduce

biSj′ by δ > 0 arbitrarily small while keeping all other bonuses unchanged. Since

(9) was a strict inequality for j′, this condition continues to be satisfied for all

j ∈ {1, . . . , |S|}. Moreover, the principal’s incentive cost in (P) strictly decreases

with the perturbation. It follows that the original scheme cannot be optimal.

Step 2. Suppose that an incentive scheme bS is optimal in monitoring team S.

We show that the implied permutation (iS1, . . . , iS|S|) of the agents in S described

in Step 1 must satisfy

ciS1 ≤ . . . ≤ ciS|S| . (10)

By Step 1, an optimal incentive scheme implies a permutation (iS1, . . . , iS|S|)

of the agents in S such that, for each j ∈ {1, . . . , |S|},

pj1p
|S|−j
0 biSj − ciSj = pj−1

1 p
|S|−j+1
0 biSj ,

or, equivalently,

biSj =
p1

p1 − p0

ciSj
f(S)

rSj,

where rSj is defined in equation (3). Hence, the principal’s incentive cost for

monitoring team S is given by∑
j∈{1,...,|S|}

p1

p1 − p0

ciSj rSj. (11)

Suppose by contradiction that the permutation (iS1, . . . , iS|S|) does not satisfy

(10). Then there exists j′ ∈ {1, . . . , |S| − 1} such that ciSj′ > ciSj′+1
. Consider a

perturbation that swaps agents iSj′ and iSj′+1 in the permutation. Note that this

swap only affects the terms j′ and j′ + 1 of the sum in (11). The change in the

principal’s incentive cost for monitoring team S is thus equal to

p1

p1 − p0

(rSj′+1 − rSj′)
(
ciSj′ − ciSj′+1

)
.
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Since rSj′+1 < rSj′ and ciSj′ > ciSj′+1
, this expression is strictly negative. It follows

that the original scheme cannot be optimal.

A.3 Proof of Proposition 3

As shown in the text, the principal’s incentive cost under a monitoring structure

π ∈ Π(n) is given by ∑
S∈π,j∈{1,...,|S|}

p1

p1 − p0

ci∗Sj rSj,

where, for each S ∈ π and each j ∈ {1, . . . , |S|}, i∗Sj ∈ S and ci∗S1 ≤ . . . ≤ ci∗
S|S|

.

To prove the first claim, suppose by contradiction that π = {S1, . . . , Sn} is

optimal with n < n. Since n ≤ m, there is Sk ∈ π with |Sk| > 1. Take ι ∈ Sk and

define j(ι) by i∗Skj(ι) = ι. (That is, j(ι) is the location of agent ι in an optimal

permutation for monitoring team Sk.) We construct a new monitoring structure,

π′ = {S ′1, . . . , S ′n′}, which differs from π only in that Sk is split into two monitoring

teams. Specifically, let n′ = n+1; S ′` = S` for each ` ∈ {1, . . . , k−1}; S ′k = Sk\{ι};
S ′k+1 = {ι}; and S ′` = S`−1 for each ` ∈ {k + 2, . . . , n + 1}. The change in the

principal’s incentive cost from using π′ instead of π, divided by the constant p1
p1−p0 ,

is equal to ∑
j∈{1,...,j(ι)−1}

ci∗Skj
(rS′kj − rSkj) + cι

(
1− rSkj(ι)

)
.

Observe that rSkj(ι) ≥ 1, strictly if j(ι) < |Sk|, and rSkj > rS′kj for each j ∈
{1, . . . , j(ι)− 1}. Hence, the monitoring structure π′ yields a strictly lower incen-

tive cost than π, implying that π cannot be optimal.

To prove the second claim, take a monitoring capacity n and an optimal moni-

toring structure π = {S1, . . . , Sn} ∈ Π(n). By our first claim, n = n. Now consider

a monitoring capacity n′ > n. We can perform a perturbation to π analogous to

that described above to construct a new monitoring structure π′ = {S1, . . . , Sn′}
with n′ = n + 1. By analogous reasoning as above, the principal’s incentive cost

under π′ is strictly lower than that under π. Since π′ ∈ Π(n′), the claim follows.
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A.4 Proof of Proposition 4

Suppose by contradiction that π = {S1, . . . , Sn} is optimal and |Sk| − |S`| > 1

for some Sk, S` ∈ π. Let ι := i∗Sk1. We perform a perturbation in which we move

agent ι from Sk to S`. Specifically, we construct π′ = {S ′1, . . . , S ′n} with S ′t = St

for all t 6= k, `; S ′k = Sk \ {ι}; and S ′` = S` ∪ {ι}. We show that the perturbation

strictly lowers the principal’s incentive cost when placing ι first in the permutation

for monitoring team S ′` (which implies that it also strictly lowers the principal’s

incentive cost when taking an optimal permutation for S ′`). The change in such

cost, divided by the constant p1
p1−p0 , is equal to

cι
(
rS′`1 − rSk1

)
,

or, equivalently,

cι

[(
p1

p0

)|S′`|−1

−
(
p1

p0

)|Sk|−1
]
.

Since |S ′`| = |S`|+1 and we have assumed |S`|+1 < |Sk|, this expression is strictly

negative.

A.5 Proof of Proposition 5

Suppose that π = {S1, . . . , Sn} is optimal. If it is anti-assortative, we are done.

Suppose instead that this is not true. By definition, for every φ ∈ Φ, there is

some S ∈ π containing two agents of the same rank. By Proposition 4 and our

characterization of optimal incentives, it follows that there must be Sk, S` ∈ π,

i∗Skj ∈ Sk, and i∗S`j′ ∈ S` such that j < j′ and ci∗Skj
> ci∗

S`j
′ . Take Sk and S` with

the highest indices j and j′ for which this is true, and let ιk := i∗Skj and ι` := i∗S`j′ .

We perform a perturbation in which we assign ιk to S` and ι` to Sk. Specifically,

we construct π′ = {S ′1, . . . , S ′n} with S ′t = St for all t 6= k, `; S ′k = Sk ∪ {ι`} \ {ιk};
and S ′` = S` ∪ {ιk} \ {ι`}. We show that the perturbation weakly lowers the

principal’s incentive cost when placing ιk in position j′ in the permutation for S ′`
and ι` in position j in the permutation for S ′k (which implies that it also lowers

the principal’s incentive cost when taking optimal permutations for S ′` and S ′k).
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The change in such cost, divided by the constant p1
p1−p0 , is equal to

cιk
(
rS′`j′ − rSkj

)
+ cι`

(
rS′kj − rS`j′

)
.

Since |S ′k| = |Sk| and |S ′`| = |S`|, this expression simplifies to

(cιk − cι`)

[(
p1

p0

)|S`|−j′
−
(
p1

p0

)|Sk|−j]
.

By Proposition 4 and j < j′, we have |Sk|− j ≥ |S`|− j′. Since cιk > cι` , it follows

that this expression is weakly negative.

Observe that if the perturbed monitoring structure is not anti-assortative,

then we can perform the same perturbation again for the next highest indices

j < j′ for which there are Sk, S` ∈ π, i∗Skj ∈ Sk, and i∗S`j′ ∈ S` with j < j′ and

ci∗Skj
> ci∗

S`j
′ . This procedure yields a new monitoring structure π′ = {S ′k, . . . , S ′n}

that is anti-assortative. Since the original monitoring structure was optimal and

each perturbation weakly increases the principal’s objective, it follows that this

new monitoring structure is also optimal.

Remark 1. If m/n is an integer, then it follows from this proof that every optimal

monitoring structure must be anti-assortative. Specifically, in this case, the claim

in Proposition 4 yields that every optimal monitoring structure must have all mon-

itoring teams of equal size, and therefore the perturbations considered above yield

a strict (rather than weak) decline in the principal’s incentive cost.

A.6 Proof of Proposition 7

Consider the constrained problem. As claimed in the text, the results in Lemma 1,

Proposition 2, and Proposition 3 continue to apply. We prove each part of Propo-

sition 7 in order.

Part 1: Let ci ∈ {cL, cH} for all i ∈ M . Suppose by contradiction that

π = {S1, . . . , Sn} is optimal with |Sk| − |S`| > 1 and |{i ∈ Sk : ci = cH}| >
|{i ∈ S` : ci = cH}| for some k, ` ∈ {1, . . . , n} such that either ` = k + 1 or

` = k − 1. Without loss, assume ` = k + 1. Take ι ∈ Sk such that ι + 1 ∈ Sk+1.

We show that moving agent ι from the larger monitoring team Sk to the smaller

34



monitoring team Sk+1 strictly lowers the principal’s incentive cost. Construct a

new monitoring structure, π′ = {S ′1, . . . , S ′n}, which differs from π only in that ι

is assigned to Sk+1. Specifically, let S ′t = St for all t 6= k, k + 1; S ′k = Sk \ {ι};
and S ′k+1 = Sk+1 ∪ {ι}. Define j(ι) by i∗Skj(ι) = ι and j′(ι) by i∗S′k+1j

′(ι) = ι. (That

is, j(ι) is the location of agent ι in an optimal permutation for monitoring team

Sk, and j′(ι) is his location in an optimal permutation for monitoring team S ′k+1.)

There are two cases to consider:

Case 1: cι = cL. In this case, we can without loss take j(ι) = j′(ι) = 1. The

change in the principal’s incentive cost from using π′ instead of π, divided by the

constant p1
p1−p0 , is thus equal to

cL

(
rS′k+11 − rSk1

)
,

or, equivalently,

cL

[(
p1

p0

)|S′k+1|−1

−
(
p1

p0

)|Sk|−1
]
.

Since |S ′k+1| = |Sk+1| + 1 and we have assumed |Sk+1| + 1 < |Sk|, this expression

is strictly negative. Hence, the monitoring structure π′ yields a strictly lower in-

centive cost than π, implying that π cannot be optimal.

Case 2: cι = cH . In this case, we can without loss take j(ι) = |Sk| and j′(ι) =

|S ′k+1|. Let mLk := |{i ∈ Sk : ci = cL}| and mLk+1 := |{i ∈ Sk+1 : ci = cL}|. The

change in the principal’s incentive cost from using π′ instead of π, divided by the

constant p1
p1−p0 , is thus equal to

∑
j∈{1,...,mLk}

cL(rS′kj − rSkj) +
∑

j∈{mLk+1,...,|Sk|−1}

cH(rS′kj − rSkj)

+
∑

j∈{1,...,mLk+1}

cL(rS′k+1j
− rSk+1j) +

∑
j∈{mLk+1+1,...,|Sk+1|}

cH(rS′k+1j
− rSk+1j).
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Since |S ′k| = |Sk| − 1 and |S ′k+1| = |Sk+1|+ 1, this expression simplifies to

(
1− p1

p0

)
∑

j∈{1,...,mLk}
cL

(
p1
p0

)|Sk|−1−j
+

∑
j∈{mLk+1,...,|Sk|−1}

cH

(
p1
p0

)|Sk|−1−j

−
∑

j∈{1,...,mLk+1}
cL

(
p1
p0

)|Sk+1|−j
−

∑
j∈{mLk+1+1,...,|Sk+1|}

cH

(
p1
p0

)|Sk+1|−j

 .

Since the contradiction assumptions imply |Sk| − 1 > |Sk+1| and |Sk| − 1−mLk ≥
|Sk+1| −mLk+1, the expression above is strictly negative. Hence, the monitoring

structure π′ yields a strictly lower incentive cost than π, implying that π cannot

be optimal.

Part 2: Let ci < ci+1 for each i ∈ M . Suppose by contradiction that π =

{S1, . . . , Sn} is optimal with |Sk| < |Sk+1| for some k ∈ {1, . . . , n − 1}. Take

ι ∈ Sk+1 such that ι− 1 ∈ Sk. We perform a perturbation in which we assign ι to

Sk. Specifically, we construct π′ = {S ′k, . . . , S ′n} with S ′t = St for all t 6= k, k + 1;

S ′k = Sk ∪ {ι}; and S ′k+1 = Sk+1 \ {ι}. Note that since ci < ci+1 for each i ∈M , ι

must be placed first in any optimal permutation for Sk+1 and last in any optimal

permutation for S ′k. To show that the perturbation strictly reduces the principal’s

incentive cost, it is thus sufficient to show that it weakly reduces the principal’s

incentive cost when ι is placed first in the permutations for both Sk+1 and Sk′ .

The change in such cost, divided by the constant p1
p1−p0 , is equal to

cι
(
rS′k1 − rSk+11

)
,

or, equivalently,

cι

[(
p1

p0

)|S′k|−1

−
(
p1

p0

)|Sk+1|−1
]
.

Since |S ′k| = |Sk|+ 1 and we have assumed |Sk| < |Sk+1|, this expression is weakly

negative.
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