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Abstract

We provide an axiomatic foundation for a class of neural-network models applied

to decision-making under risk, called neural-network expected utility (NEU) models.

Motivated by classic experimental findings, we weaken the independence axiom in a

novel way. We show how to use simple neurons, referred to as behavioral neurons, in

NEU models to capture behavioral effects, such as the certainty effect and reference

dependence. Empirically, we show that some simple NEU model with natural inter-

pretation predicts better than existing theories, such as expected utility theory and

cumulative prospect theory out of sample, and that behavioral neurons help improve

NEU models’ performance.
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1 Introduction

Over the last decade, machine-learning models have demonstrated strong predictive power

in many decision problems. For example, when we shop at Amazon, Amazon recommends

products to us with the help of machine learning. For a machine-learning model to per-

form well in this regard, the model must make good predictions about the likelihood that a

consumer will buy a product after it is recommended. Machine learning can make good pre-

dictions even when the decision problem is complex. In 2015, a machine-learning computer

program, AlphaGo, became the first computer program to defeat a human professional Go

player, and two years later it defeated the number one ranked player in the world.

The fact that a machine-learning model predicts well in some decision problems, however,

does not necessarily make it a good model of how people make decisions. For example,

suppose there is a true model that describes how a decision maker behaves. From the formula

of the true model, one may gain insights about the decision process and choice behavior. A

machine-learning model may approximate the true model in some decision problems well—

and therefore predict well in those problems—but those insights from the true model may

be lost in the approximation.

Nonetheless, is it possible that of the numerous machine-learning models with the po-

tential to predict well, some are indeed good models of how people make decisions? First,

if we can find such a machine-learning model, economists may understand the model better

and feel more comfortable applying it in economics, such as in the demand component of an

industrial-organization structural model.

Second, given the recent success of machine learning when large datasets are available,

it is quite likely that as we accumulate more economic data about people’s behavior, such

a machine-learning model (together with well-developed methods to train it) may signifi-

cantly outperform traditional economic models in prediction and help us identify behavioral

phenomena that would be difficult to identify using traditional methods.1

1For instance, traditionally, economists often come up with a conjecture about a behavioral pattern, then
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To search for such a machine-learning model, we first need to decide what we mean by

a good model of how people make decisions. Let us take the expected utility model as an

example. Economists think of it as a good model of how people make decisions for at least

two reasons: (i) it is characterized by simple and reasonable axioms imposed on people’s

choice behavior and (ii) the model provides plausible interpretation of how people make

choices.

Therefore, in this paper, we provide a simple axiomatic characterization of a neural-

network model—one of the most popular machine-learning models—applied to decision-

making under risk. We call this the neural-network expected utility (NEU; pronounced

“new”) model. The axioms are motivated by empirical evidence against expected utility

theory, and the NEU model provides plausible interpretation of people’s choice behavior.

Empirically, we show that some simple NEU models that are easy to interpret perform bet-

ter than expected utility theory and cumulative prospect theory out of sample. Moreover,

we find that what economists have learned about decision-making helps improve the NEU

model’s performance significantly, at least when the dataset is not large enough.

Consider a classic environment with uncertainty. A decision maker has a preference

over risky prospects, which will be called lotteries henceforth. A NEU representation of

the decision maker’s preference takes a lottery p, which is a vector of probabilities, as the

input and outputs the utility of p through a feedforward neural network. Figure 1 offers

an example. This NEU function has two hidden layers. Each hidden layer has two neurons

(indicated by boxes). The j-th neuron in the i-th layer does two things. First, it aggregates

the values of its child neurons (or the input) using some affine function τ
(j)
i . Second, it

compares the aggregated value with a threshold and delivers the maximum of the two to

the next layer. It is without loss of generality to use 0 as the uniform threshold, since we

conduct experiments to examine it. This approach is important and useful, but its effectiveness hinges on
researchers’ (prior) domain knowledge about the underlying data-generating process. By contrast, when large
datasets are available, machine-learning models such as the neural-network model are good at discovering
crucial features or patterns of data effectively without too many inputs from experts’ domain knowledge
about the data-generating process. Thus, it may be useful in helping us identify behavioral patterns that
we have little prior knowledge about.
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p1

p2

p3

max{τ (1)1 (·), 0}

max{τ (2)1 (·), 0}
U(p)

max{τ (1)2 (·), 0}

max{τ (2)2 (·), 0}

First Hidden Layer Second Hidden Layer

Figure 1: In this example, there are three prizes. For any lottery p, p1, p2, and p3 indicate the
probabilities of the three prizes. This NEU function has two hidden layers, and each layer has two

neurons. Each affine τ
(j)
1 is from the set of lotteries (a subset of R3) to R, and each affine τ

(j)
2 is

from R2 to R. Neurons in the first layer are called child neurons of neurons in the second layer.
Neurons in the second layer are called parent neurons of neurons in the first layer.

can always add an arbitrary constant to τ
(j)
i . The maximum function here captures the

activation of a neuron: A neuron is activated if the aggregated value of its child neurons’

values is sufficiently high. Finally, the utility of p is an affine aggregation of the values of

neurons in the last layer.

In general, we allow for any finite number of neurons and hidden layers. Moreover,

because a function defined on the set of lotteries is affine if and only if it is an expected

utility function, the NEU function reduces to an expected utility function when the number

of hidden layers is zero.

The NEU function has a simple interpretation. In expected utility theory, the decision

maker has a unique risk attitude captured by the expected utility function. A decision

maker whose preference can be represented by a NEU function may consider multiple risk

attitudes plausible, captured by the expected utility functions of first-hidden-layer neurons.

For instance, she may have one neuron that activates when the expected value of prizes is

high, and may have another neuron that activates whenever the downside risk is high. She

also may not be decisive about how to aggregate those risk attitudes; that is, she may have

multiple ways in mind to aggregate the risk attitudes (captured by the affine functions of

second-hidden-layer neurons). Then, she continues to be indecisive about how to aggregate

the aggregations from the previous step until she finally applies the last affine aggregation

to obtain the evaluation of the lottery.

We show how to construct simple neural-network structures in a NEU function to capture
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well-known behavioral phenomena such as the certainty effect, reference dependence, etc. We

call these structures behavioral neurons. They will be useful in our empirical analysis.

1.1 Behavioral Foundation

Of expected utility theory’s axioms, a normatively appealing and yet descriptively contro-

versial one is Independence. Our axiomatic characterization of the NEU function naturally

stems from an observation common in several well-known empirical findings against Inde-

pendence. Take the Allais paradox as an example. The key component of this paradox is

a pair of lotteries that consists of a risk-free one and a risky one. Decision makers are so

inclined to choose the risk-free lottery that Independence is violated.

Our observation from the Allais paradox has not been studied much: The lotteries in

the Allais paradox must be sufficiently far apart. To see this, if the risky lottery is almost

risk-free, the fact that the other lottery is risk-free will no longer be that attractive; that is,

the certainty effect will be cancelled out. Similar observations also apply to other evidence

against Independence (see Section 2.2).

Therefore, for behavioral effects to influence the decision maker’s evaluation of lotteries

so that Independence is violated, lotteries in the decision problems often need to be far apart.

A natural way to relax Independence is then to allow it to fail when lotteries are distant, but

require that it hold locally. However, if Independence holds locally everywhere, it will hold

globally. Thus, we can only hope that some weaker version of Independence holds locally.

We introduce a novel and simple way to weaken Independence. Essentially, we require

that for any lotteries p and q, the independence property holds only with respect to p and q

locally (see Section 2.2 for details). In our representation theorem, by replacing Independence

with Weak Local Bi-Independence, together with Weak Order and Continuity, we show that

the decision maker’s preference has a NEU representation.
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1.2 Empirical Analysis

We are interested in understanding how the NEU function performs empirically and how

complex the neural network must be to explain and predict people’s choice behavior well.

Arguably, if a rather complex neural network is required, the interpretation that the NEU

function offers might be too complex to be interesting or insightful.

We analyze the NEU model using the training and testing datasets provided by the

Choice Prediction Competition 2018 (see Plonsky, Apel, Ert, Tennenholtz, Bourgin, Peter-

son, Reichman, Griffiths, Russell, Carter, Cavanagh, and Erev (2019)). After aggregating

the individual choice data, each data point consists of a description of two lotteries and the

fractions of experiment participants who choose the first lottery and the second. We use the

training dataset to estimate a model, and then compute its mean square error in the testing

dataset (testing error), which measures the model’s performance.

We begin by taking expected utility theory and cumulative prospect theory (see Tversky

and Kahneman (1992)) as the benchmark. Our first observation is that we must parametrize

these models to avoid overfitting, because the dataset is not sufficiently large. If we use a

(general) expected utility function to fit the training dataset, it will overfit and have a large

testing error. By contrast, if we use the constant-absolute-risk-aversion (CARA) expected

utility function, this problem can be largely avoided. To our surprise, we also observe

that the CARA expected utility model demonstrates high predictive power: It outperforms

cumulative prospect theory under standard parametrization.

We also need to parametrize the NEU function to prevent overfitting. Since the affine

functions of the first hidden layer of a NEU function are (general) expected utility functions,

a natural idea is to require that those functions be CARA expected utility functions. This

parametrization turns out to remove too much flexibility from the NEU function, as its

performance is essentially identical to the CARA expected utility benchmark.

Recall that we use behavioral neurons to capture well-documented behavioral effects.

These behavioral neurons may provide useful flexibility for the NEU function, but are ruled
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out under the CARA parametrization. Therefore, we require that the first hidden layer of the

NEU function consist of the following three types of neurons: (i) neurons that evaluate CARA

expected utility, (ii) neurons that capture the certainty effect, and (iii) neurons that capture

reference dependence. The second and third types are the behavioral neurons introduced in

our theoretical analysis. Then, additional standard hidden layers may be concatenated with

this first hidden layer.

Next, we consider different configurations of the network structure and find that the

two-hidden-layer NEU function with all three types of neurons used in the first layer has the

lowest testing error, which is 12% lower than that of the CARA expected utility benchmark.

Hence, a reasonably complex NEU function that has natural interpretation seems to have

better predictive power than NEU functions that are too simple (with only one hidden layer)

or too complex. This shows that economists’ domain knowledge in decision-making is useful

for making predictions, especially when the datasets are not sufficiently large.2

1.3 Related Literature

The class of NEU functions is identical to the class of continuous piecewise-linear functions.

The latter has played an important role in decision theory. Ellis and Masatlioglu (2020)

propose a regional preference model as the micro-foundation for salient thinking à la Bordalo,

Gennaioli, and Shleifer (2012). Fixing any reference point, they assume that bi-independence

is preserved for any two cells of an exogenously given partition of the choice domain, and

allow the preference to be discontinuous across cells. We focus on continuous preferences

and identify endogenously a finite number of cells/regions that preserve bi-independence

pairwisely from the preference with the help of Weak Local Bi-Independence.

In the Anscombe–Aumann choice domain, Siniscalchi (2006) characterizes continuous

2This approach is similar to feature engineering in machine learning, except that we require that the
engineered features still be consistent with our axioms. The idea of constructing variables/features based
on behavioral effects as the input of machine-learning models has appeared in Erev, Ert, Plonsky, Cohen,
and Cohen (2017) and Plonsky, Erev, Hazan, and Tennenholtz (2017). Our behavioral neurons are different
from their features, since many of their features are incompatible with our axioms.
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piecewise-linear functions that satisfy Certainty-Independence from Gilboa and Schmeidler

(1989) to identify the set of plausible priors. Chandrasekher, Frick, Iijima, and Le Yaouanq

(2020) characterize the dual-self expected utility representation by dropping Uncertainty

Aversion from Gilboa and Schmeidler. Their representation, which is equivalent to two other

representations in Ghirardato, Maccheroni, and Marinacci (2004) and Amarante (2009), is a

continuous piecewise-linear function that satisfies Certainty-Independence from Gilboa and

Schmeidler if the number of priors is finite. This also means that its special case, such

as Gilboa and Schmeidler, is also continuous piecewise-linear when the number of priors

is finite. Assuming that the number of priors is finite, these characterizations of (special

cases of) continuous piecewise-linear functions differ from ours. First, roughly speaking, our

representation is a dual counterpart of theirs. Second, some form of Certainty-Independence

is often required in their proofs. Our characterization relies on different techniques and does

not require a dual version of Certainty-Independence.

Our paper belongs to the literature on non-expected utility. There are three popular di-

rections to relax Independence (and hence, the linearity of the expected utility representation

in probabilities). Maccheroni (2002); Cerreia-Vioglio (2009); Dillenberger (2010); Chatterjee

and Krishna (2011); and Cerreia-Vioglio, Dillenberger, and Ortoleva (2015) consider convex

preferences such that any convex combination of two lotteries is weakly preferred to the worse

of the two. In the probability simplex, these preferences exhibit convex indifference curves.

Dekel (1986); Chew (1983); and Gul (1991) consider preferences that satisfy betweenness;

that is, any convex combination of two lotteries is ranked between them. Thus, the indiffer-

ence curves for these preferences are linear. Quiggin (1982); Yaari (1987); and Tversky and

Kahneman (1992) consider rank-dependent preferences such that probabilities of prizes are

distorted depending on the ranks of prizes. In our theory, by contrast, preferences exhibit

piecewise-linear indifference curves and no probability distortion is introduced.

In spirit, the notion of local independence is first introduced by Machina (1982), who as-

sumes that the preference relation has a smooth representation that can be approximated by
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linear functions locally everywhere. Under the NEU representation, however, the threshold

function max{·, 0} (in Figure 1) creates kinks in the representation, and hence the smoothness

assumption imposed by Machina is violated. Moreover, our weakened form of Independence

holds in sufficiently small neighborhoods in the choice domain, while in Machina, Indepen-

dence only holds approximately in a neighborhood, no matter how small the neighborhood

is. In that sense, our notion of locality is different from Machina’s.

Many papers have examined non-expected utility theory empirically, including Hong and

Waller (1986); Battalio, Kagel, and Jiranyakul (1990); Harless and Camerer (1994); Starmer

(2000); Wu, Zhang, and Abdellaoui (2005); Choi, Fisman, Gale, and Kariv (2007); and

Bernheim and Sprenger (2020). Among them, Harless and Camerer (1994) propose a new

measure of a utility model’s empirical performance that takes the model’s complexity into

account. Similar to us, they find that in some cases, expected utility theory has the best

performance. Different from our analysis, they do not examine models’ predictive power

using a testing dataset that is unused when estimating models. Similar to Bernheim and

Sprenger (2020), when we estimate the probability weighting function of cumulative prospect

theory, we find little distortion of probabilities.

A growing literature combines economic theory with computer science algorithms. Fu-

denberg and Liang (2019) use the decision tree algorithm to study the initial play of games.

By studying games that the algorithm predicts well, but existing economic models do not,

they identify a new parameter that, if introduced to the best existing economic model, im-

proves the model’s performance. Similar to their finding that hybrid models may achieve

higher predictive power, we find that incorporating multiple types of behavioral neurons into

the NEU model is useful. Plonsky, Apel, Erev, Ert, and Tennenholtz (2017) and Erev et al.

(2017) are the first to show that introducing features constructed based on findings from

behavioral economics and psychology to machine-learning models may significantly improve

their performance. Unlike in our paper, they do not provide axiomatic foundations for the

models they use. In addition, many of their features are incompatible with our axioms.
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Therefore, our behavioral neurons are rather different from their features.

Last, our paper is also related to research that focuses on interpretable machine learning.

See Murdoch, Singh, Kumbier, Abbasi-Asl, and Yu (2019) for a recent survey.

The rest of the paper is organized as follows. Section 2 presents the axiomatic charac-

terization of the NEU representation and introduces behavioral neurons. Section 3 analyzes

the NEU model in data, and Section 4 concludes.

2 Behavioral Foundation of the NEU Model

Consider a classic choice domain with (objective) uncertainty. Let Z = {z1, . . . , zn} be a

nonempty finite set of prizes. The set of choice alternatives is

L =

{
p ∈ Rn

+ :
n∑
i=1

pi = 1

}
,

whose elements are lotteries (probability measures) on Z.3 For any lottery p, pi indicates the

probability of prize zi. Generic elements of Z are denoted by x, y, z, and generic elements

of L are denoted by p, q, r, s, t. We use δx ∈ L to denote the degenerate lottery that yields

prize x with probability 1. For any λ ∈ [0, 1], λp + (1 − λ)q, denoted by λpq, is a lottery

such that (λpq)i = λpi + (1−λ)qi, i ∈ {1, . . . , n}. For any finite set of lotteries {p1, . . . , pm},

let p1 . . . pm := co({p1, . . . , pm}) be the convex hull of {p1, . . . , pm}. The decision maker

has a preference % on L. Its asymmetric and symmetric parts are denoted by � and ∼,

respectively.

2.1 The NEU Representation

Before introducing the NEU representation of % that our axioms on % will characterize, we

define two types of functions. First, for two arbitrary natural numbers w and w̃, a function

3When Z is a metric space, L is endowed with the topology of weak convergence. Otherwise, the metric
of L is the Euclidean metric.
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τ : A ⊆ Rw → Rw̃ is affine if there exist a w̃-by-w matrix β and a vector γ ∈ Rw̃ such

that τ(a) = βa+ γ for any a ∈ A. As usual, the vector-valued function τ can be written as

(τ (1), . . . , τ (w̃)), in which τ (j) is the jth component of τ . Each τ (j) is affine if and only if τ is

affine. Second, a function U : L → R is an expected utility function if there exists a function

u : Z → R such that for any lottery p,

U(p) =
n∑
i=1

piu(zi).

The function u is called a Bernoulli index.

A useful observation is that every real-valued affine function on L is an expected utility

function with a Bernoulli index u(zi) = τ(δzi). The converse also holds: Every expected

utility function is affine. The NEU representation of % is defined as follows.

Definition 1 A function U : L → R is a NEU function if there exist

(i) h,w0, . . . , wh+1 ∈ N with w0 = n and wh+1 = 1,

(ii) functions θi : Rwi → Rwi, i = 1, . . . , h, such that for any b ∈ Rwi, θi(b) =

(max{b1, 0}, . . . ,max{bwi
, 0}), and

(iii) affine functions τi : Rwi−1 → Rwi, i = 1, . . . , h+ 1, such that for any p ∈ L,

U(p) = τh+1 ◦ θh ◦ τh ◦ · · · ◦ θ2 ◦ τ2 ◦ θ1 ◦ τ1(p). (1)

We say that % has a NEU representation if there exists a NEU function U : L → R such

that p % q ⇐⇒ U(p) > U(q).

Each function θi ◦ τi is called the i-th hidden layer whose width is wi, and (θi ◦ τi)(j) =

max{τ (j)
i (·), 0} is called a neuron. Thus, the i-th hidden layer has wi neurons, and equation

(1) characterizes a network of neurons with h hidden layers. Figure 1 provides an example

of a NEU function.

Mathematically, to evaluate a lottery p, each neuron in the NEU function first aggregates
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its child neurons’ values (see Figure 1) in an affine fashion. Next, if the outcome of aggrega-

tion is above the normalized threshold, zero, this neuron is activated and its value becomes

the outcome of aggregation. Otherwise, this neuron remains inactive and has a value zero.

Note that it is without loss of generality to normalize all thresholds to 0, since we can always

add an arbitrary constant to each affine function τ
(j)
i . The neurons in the first hidden layer

aggregate the input of the NEU function, pi’s, directly, and the values of neurons in the last

(h-th) hidden layer are aggregated into the utility of p.

To interpret the NEU function, recall that in expected utility theory the decision maker

has a unique risk attitude characterized by an expected utility function. By contrast, a

decision maker whose preference has a NEU representation may consider multiple risk atti-

tudes plausible, characterized by affine functions—which are expected utility functions—of

first-hidden-layer neurons. For instance, she may have one neuron that activates when the

expected value of prizes is high, and another that activates whenever the downside risk is

high. Next, she may not be sure about how to aggregate those risk attitudes. She may

consider multiple ways to aggregate the risk attitudes (captured by the affine functions of

second-hidden-layer neurons) plausible. The risk attitudes that enter into the aggregations

are those significant enough to trigger activation. This process continues until she aggregates

the values of last-hidden-layer neurons to obtain the evaluation of the lottery.

Before introducing the axioms, let us point out that θi, called the activation function,

may take other functional forms in general. However, the form we focus on in Definition

1, also known as the rectified linear unit, is considered to be the most popular activation

function and to have strong biological motivations.4 Thus, our representation theorem in

Section 2.3 will reinforce the support for rectified linear units from a new perspective: NEU

functions with rectified linear units have a simple and reasonable behavioral foundation.

4See Hahnloser, Sarpeshkar, Mahowald, Douglas, and Seung (2000); Hahnloser, Seung, and Slotine
(2003); and LeCun, Bengio, and Hinton (2015), among others.
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2.2 Axioms and the Representation Theorem

Expected utility theory shows that % on L satisfies the following axioms if and only if it has

an expected utility representation—that is, there exists an expected utility function such

that p % q ⇐⇒ U(p) > U(q).

Axiom 1 (Weak Order) The preference % is complete and transitive.

Axiom 2 (Continuity) For any p ∈ L, {q ∈ L : q % p} and {q ∈ L : p % q} are closed in L.

Axiom 3 (Independence) For any p, q, r ∈ L and λ ∈ (0, 1), p % q ⇒ λpr % λqr and

p � q ⇒ λpr � λqr.

The main idea of Independence is simple—if p is better than q, mixing p and r with any

probability should also be better than mixing q with r with the same probability. This idea

can be expressed in an equivalent way that will be useful in our paper.

Axiom 4 (Bi-Independence) For any p, q, r, s ∈ L and λ ∈ (0, 1), if p % q, then r % s ⇒

λpr % λqs and r � s⇒ λpr � λqs.

If we require r = s, Bi-Independence implies Independence. Conversely, by applying

Independence twice, we can obtain Bi-Independence.

Of these axioms, (Bi-)Independence is the most controversial. A well-known violation

comes from the Allais paradox. Confronting the following two pairs of lotteries, most decision

makers choose the left-hand lottery from the first pair and the right-hand lottery from the

second:

First pair Second pair

100%: $1M

87%: $1M
87%: $0

13%: $1M

90%: $0

10%: $1.5M
3%: $0

10%: $1.5M

However, let p = δ1M, q = 3
13
δ0 + 10

13
δ1.5M, r = δ1M, and s = δ0. The first pair of lotteries be-
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comes 0.13pr and 0.13qr, and the second pair becomes 0.13ps and 0.13qs. (Bi-)Independence

requires that 0.13pr % 0.13qr if and only if 0.13ps % 0.13qs. Therefore, the Allais paradox

violates (Bi-)Independence.

It is well known from the Allais paradox that people are biased toward certainty (δ1M in

the first pair). We want to point out a new observation that is crucial to our theory: The

lotteries in the Allais paradox must look sufficiently different. For example, if the right-hand

lottery 0.13qr in the first pair becomes almost degenerate, decision makers will not be much

biased toward δ1M, and hence the certainty effect will likely be cancelled out in the first

pair.5 To see this, now suppose we have 0.013pr and 0.013q′r in the first pair and 0.013ps′

and 0.013q′s′ in the second, in which q′ = 3
13
δ0.5M + 10

13
δ1.5M and s′ = δ0.5M:

First pair Second pair

100%: $1M

98.7%: $1M
98.7%: $0.5M

1.3%: $1M

99%: $0.5M

1%: $1.5M
0.3%: $0.5M

1%: $1.5M

We make the distributions of each pair of lotteries closer to each other by switching q to q′

and adopting a much smaller weight, 0.013. Now it seems much less likely that the degenerate

lottery can cause significant violations of (Bi-)Independence.

Similar observations can be found in other well-known violations of (Bi-)Independence,

such as the common ration effect (see Machina (1987) for a summary). Confronting the

following lotteries, most decision makers choose the left-hand lottery from the first pair but

5This idea is different from that of Harless (1992), who turns the risk-free lottery in the Allais paradox
into a slightly risky one. The four lotteries in Harless’s experiment are still far apart.
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the right-hand lottery from the second:

First pair Second pair

60%: $2,000

40%: $0

45%: $2,500

55%: $0

12%: $2,000

88%: $0

9%: $2,500

91%: $0

Intuitively, in the first pair, the difference between 60% and 45% is more salient, but in the

second, the difference between $2,000 and $2,500 is more salient. Because the lotteries in

the second pair are generated by mixing the first pair with δ0 using the same probability 1
5
,

this example violates (Bi-)Independence.6

In this example, first, the lotteries in the first pair must be sufficiently far apart, and

second, the two lotteries in the first pair must be sufficiently distant from the two lotteries

in the second pair. Suppose now that the two lotteries in the first pair are instead mixed

with δ0 with probability 29
30

to generate the second pair. The mixed lotteries will become

58%× δ2000 + 42%× δ0 and 43.5%× δ2500 + 56.5%× δ0, which is much less likely to generate

the significant choice reversal observed in the original example.

Therefore, it seems that to trigger psychological effects in an asymmetric way, as above,

to violate (Bi-)Independence, at least some lotteries in the decision problems must be far

apart. To put this differently, if we hope to stick to (Bi-)Independence as much as we can

due to its normative appeal, the above observation suggests that although (Bi-)Independence

may fail when lotteries are distant, perhaps we can assume that it still holds locally.

An immediate difficulty arises. If we assume that (Bi-)Independence always holds locally,

(Bi-)Independence will hold globally. Therefore, we can only hope that some weaker version

of (Bi-)Independence holds locally everywhere. Below, we introduce a novel way to weaken

(Bi-)Independence.

6Although the degenerate lottery δ0 is used in this example, it is important. We may mix the first pair
of lotteries with a non-degenerate lottery and create a similar violation of (Bi-)Independence.
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Definition 2 A subset L of L preserves independence with respect to p ∈ L, denoted by

L ⊥ p, if for any q, r ∈ L and λ ∈ (0, 1), q % r ⇒ λpq % λpr and q � r ⇒ λpq � λpr.

This definition allows L ⊆ L to preserve independence with respect to some p 6∈ L, and L

need not be convex. A subset of L is said to be a neighborhood of a lottery p if it is an open

convex set that contains p. The axiom below is not our main axiom, but will be implied by

and useful in understanding our main axiom.

Axiom 5 (Weak Local Independence) Every p ∈ L has a neighborhood Lp such that Lp ⊥ p.

Weak Local Independence does not imply that Independence holds on Lp. We say that

a subset L of L preserves independence if for any p, q, r ∈ L and λ ∈ (0, 1) such that

λpr, λqr ∈ L, q % r ⇒ λpq % λpr and q � r ⇒ λpq � λpr.7 Clearly, when L is convex, L

preserves independence if and only if L ⊥ p for any p ∈ L.

Consider a simple example with Z = {x, y}, in which case every lottery p can be identified

with a number in [0, 1] indicating the probability of x. Suppose % can be represented by

U(p) =

 −p+ 0.01, if p < 0.01,

p− 0.01, if p > 0.01.

This decision maker’s utility is increasing in the probability of x in most parts of the domain,

but is biased toward certainty: The utility of δy is higher than the lottery p = 0.01. It

can be verified that no neighborhood of p = 0.01 preserves independence, but Weak Local

Independence holds.

Weak Local Independence only informs us of the decision maker’s local choice behavior.

It does not impose any structure on the decision maker’s preference when lotteries are far

apart. A local and weakened version of Bi-Independence, by contrast, can avoid this issue.

7The idea of the axiom L-Independence in Dillenberger, Krishna, and Sadowski (2018) is related to our
definition, whereby L preserves independence.
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Axiom 6 (Weak Local Bi-Independence) For any p, q ∈ L, if p % q, then p and q have

neighborhoods Lp and Lq, respectively, such that for any r ∈ Lp and s ∈ Lq, r % s⇒ λpr %

λqs and r � s⇒ λpr � λqs.

By letting p = q in Weak Local Bi-Independence, we obtain Weak Local Independence.

Note that we do not require that Lp and Lq preserve bi-independence. We say that two

subsets L1, L2 of L preserve bi-independence if for any i ∈ {1, 2}, p, r ∈ Li, q, s ∈ L3−i, and

λ ∈ (0, 1) such that λpr ∈ Li and λqs ∈ L3−i, if p % q, then r % s ⇒ λpr % λqs and

r � s⇒ λpr � λqs.

Clearly, if Lp and Lq preserve bi-independence for any p, q ∈ L, (Bi -)Independence holds

globally. Hence, Weak Local Bi-Independence weakens Bi-Independence in a similar fashion

to how Weak Local Independence weakens Independence. We fix some arbitrary p and q, and

then require that Bi-Independence hold with respect to p and q, respectively.

Weak Local Bi-Independence rules out many kinds of choice behavior. We will illustrate

this in Section 2.4 via an example that is not allowed by Weak Local Bi-Independence but

is consistent with Weak Local Independence. Below is the representation theorem.

Theorem 1 The preference % has a NEU representation if and only if % satisfies Weak

Order, Continuity, and Weak Local Bi-Independence.

The axioms in expected utility theory characterize linear functions on L. Our axioms

characterize piecewise-linear functions on L, as will be explained in Section 2.4. Piecewise-

linear functions have been important in decision theory (see Section 1.3) and their behavioral

characterization is often more challenging than it might appear (see Siniscalchi (2006)).

In addition to helping us understand behavioral implications of the NEU representation,

our axiomatic characterization helps us select a particular class of models from a myriad

of machine-learning models: We know that many machine-learning models are useful, but

which might be a good economic model of how people make decisions (under risk)? Our

axioms suggest the neural-network models.
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Moreover, how we apply the neural-network model to decision-making under risk is novel

due to the axioms: If we ask a statistician or computer scientist to apply the neural-network

model to decision-making under risk, they are likely to do this differently. Our NEU model

takes a lottery as the input and gives the unobservable utility of the lottery as the output.

Then, facing multiple lotteries, the NEU model assigns utility to each of them and predicts

that the lottery with the highest utility will be chosen. By contrast, given the binary-choice

preference data, a statistician or computer scientist will likely take two lotteries as the input

and apply a neural network to them jointly, rather than applying the same neural network

to each lottery separately. In the end, some output layer will predict the chance that each

of the two lotteries is chosen. This kind of neural-network model is different from the NEU

model and may violate our axioms, including, at least, transitivity in Weak Order.

2.3 Behavioral Neurons

We introduce a few examples to show how a NEU representation captures the main idea of

well-known empirical findings. These examples will be useful in our empirical analysis.

2.3.1 Behavioral Neurons of Certainty Effects

Suppose Z = {z1, z2, z3}. Recall that decision makers are often biased toward certainty.

Figure 2 presents a NEU function in which the first neuron captures standard expected

utility evaluation, while the other three neurons capture the bias toward certainty for z1, z2,

and z3, respectively.8 We call the neurons that capture the bias toward certainty certainty-

effect neurons.

The first neuron in Figure 2, max{V (p),−∞}, does not compare the outcome of aggre-

gation to zero, as required for a NEU function. This is for simplicity and without loss of

generality, because max{V (p),−∞} = V (p) = max{V (p), 0} −max{−V (p), 0}.9

8This function appears in Chapter 2.4.4.2 of Schmidt (1998), although its connection to neural-network
models is not explored. We thank David Dillenberger for pointing this out.

9Alternatively, let V = minp∈L V (p). If V > 0, max{V (p),−∞} = max{V (p), 0}. Otherwise, we replace
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max{V (p),−∞}

max{p1 − 0.99, 0}
U(p)

max{p2 − 0.99, 0}

max{p3 − 0.99, 0}

Figure 3: In the first neuron, V is an expected utility function, which is affine. If pi > 0.99
for some i ∈ {1, 2, 3}, a neuron that captures the bias toward certainty will be activated.
Finally, U(p) is equal to some weighted sum of all neurons’ values.

Theorem 1 The preference % has a NEU representation if and only if % satisfies

Weak Order, Continuity, and Weak Local Bi-Independence.

Interpretation of the NEU representation can be found in Section 3.2.4. Below, we

first introduce a few examples to show how a NEU representation of % captures the

key idea of some well-known empirical findings. These examples will be useful later in

our empirical analysis.

3.2.1 Behavioral Neurons of Certainty Effects

Suppose Z = {z1, z2, z3}. First, recall that in the Allais paradox, the decision maker’s

preference is biased toward risk-free lotteries. Figure 3 presents a NEU function in

which the first neuron captures the standard expected utility evaluation, while the

other three neurons capture the bias toward certainty for z1, z2, and z3, respectively.12

Note that the first neuron in Figure 3, max{V (p),−∞}, does not compare the

12This function appears in Chapter 2.4.4.2 of Schmidt (1998), although its connection to neural-
network models is not explored. We thank David Dillenberger for pointing this out.
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Figure 2: In the first neuron, V is an expected utility function, which is affine. If pi > 0.99 for
some i ∈ {1, 2, 3}, a neuron that captures the bias toward certainty will be activated. Finally, U(p)
is equal to some weighted sum of all neurons’ values.

2.3.2 Behavioral Neurons of Reference Dependence

The second example is related to reference dependence. Suppose Z is some finite set of num-

bers (monetary prizes). As pointed out by Kahneman and Tversky (1979) and many other

papers, prizes are often evaluated relative to a reference point, and people treat gains and

losses (i.e., prizes better than and worse than the reference point, respectively) differently.

In addition, it is also documented that the difference disappears when prizes do not deviate

much from the reference point (see, for example, Ert and Erev (2013)).

A NEU function with one hidden layer can capture these ideas. Let there be two neu-

rons in the first hidden layer. Suppose v is a Bernoulli index. The first neuron, V (p) =

max {∑i piv(zi),−∞}, again computes the expected utility of p. The second neuron cap-

tures loss aversion relative to prize x with a threshold ε:

Vl(p) = max

{
n∑
i=1

pi max{x− zi, 0} − ε, 0
}
.

We call such neurons reference-dependence neurons. Note that
∑

i pi max{x − zi, 0} − ε is

an affine function of p, and the loss of prize zi is given by max{x − zi, 0}. If the expected

loss is larger than ε, the neuron Vl is activated. Finally, U(p) = V (p)− λVl(p), with λ being

the loss-aversion coefficient. Clearly, in this NEU function, loss aversion only occurs when

prizes deviate from the reference point significantly.

the first neuron with max{V (p) − V , 0} = V (p) − V . Then, at its parent neurons, we add V back into the
affine aggregation.
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2.4 Sketch of the Proof

Tarela and Mart́ınez (1999) show that a continuous piecewise-linear function has a lattice

representation; that is, there exists affine functions U1, . . . , Um and s1, . . . , sk ⊆ {1, . . . ,m}

such that the continuous piecewise-linear function can be represented as max16j6k mini∈sj Ui.

Wang and Sun (2005) and Arora, Basu, Mianjy, and Mukherjee (2018) prove that a lattice

representation can in turn be converted into a neural-network model with rectified linear

units, which becomes a NEU function when the domain is L. Therefore, to establish the

sufficiency of the axioms, we only need to show that % can be represented by a continuous

piecewise-linear function, defined as follows.

Definition 3 A function U : L → R is continuous piecewise-linear if U is continuous and

there exist finitely many closed sets in L whose union is L such that U is affine on each of

those closed sets.

Our proof contains three main parts. First, we identify the interior of all regions over

which the preference will be represented by an affine function. By Weak Local Independence

(implied by Weak Local Bi-Independence), every lottery p has a neighborhood Lp that pre-

serves independence with respect to p. Pick q ∈ Lp, we can find Lq ⊆ Lp that preserves

independence with respect to q. Inductively, we can find n−1 lotteries inside Lp such that the

polytope formed by these n− 1 lotteries and p preserves independence. Figure 3 illustrates

the construction when n = 3.

Hence, we can find a polytope containing p that preserves independence for every lottery

p. It may seem that this is almost sufficient for us to construct a piecewise-linear represen-

tation, but if this is true, we only need Weak Local Independence rather than Weak Local

Bi-Independence. Figure 4 illustrates why Weak Local Bi-Independence is crucial with a

pathological example that only satisfies Weak Local Independence.

This suggests that when constructing polytopes, we need more than Weak Local Inde-

pendence. Exploiting Weak Local Bi-independence, we show that if the neighborhood in
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p
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rq′

p′

Lp

Lq

Lr

Figure 3: Let n = 3. Without loss of generality, assume that Lr ⊆ Lq ⊆ Lp. It is clear that the
polytope p′q′r preserves independence with respect to p, q, r. We then show that p′q′r preserves
independence with respect to p′, q′, r, which implies that p′q′r also preserves independence. The last
step is to show that pqr preserves independence based on the fact that p′q′r preserves independence
with respect to p, q.

each step of the construction is sufficiently small, each edge of the polytope will preserve bi-

independence with any open convex subset that preserves independence. This ensures that

every pair of polytopes constructed in this way preserves bi-independence. Now, intuitively,

each of these polytopes must be part of one (linear) region. We take the interior of the union

of these polytopes and denote it by Lo.

Next, we identify each region via Zorn’s lemma. First, we consider the set of all functions

that map Lo into subsets of L that preserve independence individually and bi-independence

pairwisely. By Zorn’s lemma, we are able to find a maximal element among these functions

that assigns p ∈ Lo a maximal region that satisfies the required properties. The image of

this maximal function identifies all of the regions. Moreover, we show that for Weak Local

Independence to hold everywhere, the number of regions must be finite.

The third and last part is to construct a continuous piecewise-linear representation of

the preference. First, by Weak Order and Continuity, we obtain a continuous utility rep-

resentation of the preference. Second, we show that if a collection of subsets of L preserve

independence individually and bi-independence pairwisely, one can construct a piecewise-

linear representation on the union of these subsets. The proof of this step is closely related

to Chapter 2.4 of Schmidt (1998) and Ellis and Masatlioglu (2020) (see their Appendix B).
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Figure 4: Let n = 2. Then each lottery is identified with a number in [0, 1]. The decision maker’s
utility function U is shown in the figure, in which the horizonal axis is the set of all lotteries. In this
example, every lottery p ∈ [0, 1] has a neighborhood that preserves independence with respect to p.
In particular, Lr preserves independence with respect to r since U is monotone within Lr. However,
p and r do not satisfy the requirement in Weak Local Bi-independence, since any neighborhood of
r includes a nonlinear segment. In fact, none of the lotteries in (r, 1] is contained in a polytope (in
this case a line segment) that satisfies the bi-independence requirement.

Moreover, Continuity ensures that the piecewise-linear representation must also be continu-

ous. Finally, we perform monotone transformations on the continuous utility representation

to construct the continuous piecewise-linear representation on L. In particular, for each

batch of regions that overlap in utility values, we transform the continuous representation

into a continuous piecewise-linear representation while keeping the utility values unchanged

elsewhere. Since the piecewise-linear representation is unique only up to a positive affine

transformation, we can exploit the two degrees of freedom to ensure that no discontinuity is

introduced to the utility function by the transformation. Thus, the resulting utility function

will be continuous and affine within each region we identified above.

3 Empirical Analysis

Although the NEU representation offers an interpretation of how the decision maker evaluates

lotteries, if the neural network is too complex, the interpretation may not be intuitive or

insightful. To see how well the NEU function performs empirically and how complex the

neural network must be to explain and predict people’s choice behavior well, we analyze the
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NEU representation empirically.

3.1 Data Description and Training (Stochastic) Utility Models

We use the training and testing datasets provided by the aggregate-behavior track of the

Choice Prediction Competition 201810 (see Plonsky et al. (2019)). The datasets come from

several experiments conducted at the Hebrew University of Jerusalem and Technion–Israel

Institute of Technology. Each participant in the experiments faces 750 binary choice problems

over lotteries, in which a lottery is instantiated by the description of a probability vector

defined over its support, a nonempty finite set of monetary prizes.11 In each binary choice

problem, a participant must choose one lottery of the two.

The 750 binary choice problems each participant faces consist of 30 different problems

presented in a random order, and each of the 30 different problems is repeated 25 times

consecutively. Different participants may face different binary choice problems.

In total, there are 270 different binary choice problems. Of these, 30 are designed to

replicate 14 well-known behavioral phenomena, including the certainty effect, the reflection

effect, overweighting of small probabilities, etc.12 The other binary choice problems are

generated randomly according to some rules.

Henceforth, when we say a binary choice problem, we mean one of the 270 different ones.

Of these, 210 are in the training dataset and 60 in the testing dataset. The 30 replication

binary choice problems are in the training dataset.

We aggregate individual choice data for each of the 270 binary choice problems; that

is, for each binary choice problem, we calculate the fraction of participants choosing each

lottery. We call these fractions choice probabilities. A data point contains information about

the two lotteries (as the covariate) and the choice probabilities (as the response).

10The datasets are publicly available at https://cpc-18.com.
11Since the total number of prizes is finite, we continue using our notations from Section 2 for lotteries

and prizes.
12The behavioral biases are successfully replicated, but the magnitude is smaller than in the original

studies that document the biases. See Erev et al. (2017) for more details.
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Some data from the experiments are not suitable for our analysis. First, our theory has

nothing to say about binary choice problems that involve ambiguity (lotteries’ probabilities

are not specified) and little to say about binary choice problems in which realizations of

lotteries are correlated. We exclude those binary choice problems from our analysis. Second,

recall that each binary choice problem is repeated 25 times for each participant. After

the first 5 repetitions, a participant observes feedback—that is, realizations of the lotteries

from previous repetitions. Our theory has little to offer about how choice behavior will be

affected by feedback. Therefore, we ignore the information about whether choices are made

with feedback provided or not. Eventually, the training dataset contains 169 data points

and the testing dataset contains 45 data points.

We estimate/train a model using the training dataset, and then evaluate its performance

on the testing dataset. To estimate a model, we take a standard approach to combine it

with the logit model (see Train (2003)). For example, suppose we want to analyze the

expected utility model. Take any expected utility function U : L → R. Given any data

point with lotteries p and q, we use the probability that U(p) + εp > U(q) + εq to predict

the choice probability of p over q, in which εp and εq are independently and identically

distributed random variables following the Gumbel distribution.13 Following Plonsky et al.

(2019), we use the mean squared error (MSE) of predicted choice probabilities (compared to

actual choice probabilities) as the metric to evaluate the performance of U . Then, we find

the expected utility function that minimizes the MSE using the training dataset, called the

training MSE. Last, we take the estimated expected utility function to compute the MSE

using the testing dataset, called the testing MSE, to measure the expected utility model’s

performance.14 Obviously, the procedure above applies to other models, such as the NEU

model. We replace the expected utility function U with a NEU function.

Note that by doing so, we turn a deterministic choice model described by maximizing

13The literature using this approach to estimate expected and non-expected utility models is immense.
See Harrison, List, and Towe (2007) and Noussair, Trautmann, and van de Kuilen (2014) among others.

14More details about how we train the NEU model will be provided later.
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some utility function into a stochastic one that maximizes some utility function under random

noises. Our axiomatic characterization is for the deterministic choice model rather than the

stochastic one. However, extending our characterization to the stochastic choice model is

straightforward and well understood in the literature. We take a stochastic choice function

as the primitive, and derive a stochastic preference from it. Then, for example, we impose

the axioms in Section 2.2 to the stochastic preference. The resulting model will essentially

be the logit version of the NEU model. We only need to add axioms that give us the logit

model. See Ke (2018) for a related exercise.

3.2 The Benchmark and Necessity of Parametrization

Two classic theories will be used as our benchmark, expected utilty theory and cumula-

tive prospect theory (CPT). Our first observation is that under the current data, we must

parametrize the model, including the expected utility model, to avoid overfitting.

Let us illustrate this using the expected utility model. The expected utility model is

U(p) =
∑n

i=1 piu(zi) for each lottery p, in which u is the Bernoulli index. Also consider the

CARA expected utility model:15 For each lottery p,

UCARA(p) =
n∑
i=1

piu(zi) with u(zi) =
β

α
(eαzi − 1). (2)

As usual, −α measures the decision maker’s risk aversion. As α approaches 0, u(zi) converges

to βzi, which is a risk-neutral Bernoulli index. The parameter β ∈ R+ is a normalization

parameter that is necessary in discrete choice estimation.

Combining these with the logit model, as explained in the previous subsection, we can

find the best expected utility function and the best CARA expected utility function. The

training and testing MSE×100 for the CARA expected utility model are 2.28 and 1.98,

respectively, with essentially zero standard deviations. Compared with the CARA expected

15We do not consider the alternative and equally popular expected utility model, the constant-relative-
risk-aversion (CRRA) expected utility model, mainly because some prizes are negative and hence are not
well defined for the CRRA Bernoulli index.
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utility model, the expected utilty model’s training MSE is certainly lower, since the expected

utility model is more general, but its testing MSE turns out to be about 10 times higher.16

This is due to overfitting. A more general model can explain more phenomena (have a

lower training MSE), but that does not imply that it will predict well. The classic example

is to use a polynomial to fit a dataset generated by a linear function plus noises. Therefore,

we will need some parametrization for the CPT model and the NEU model as well.

Next, we examine the CPT benchmark, which is arguably the most popular non-expected

utility model. Our parametrization is standard. The probability weighting function is

π(a) =
δaγ

δaγ + (1− a)γ

for any probability a ∈ [0, 1]. The value function takes the CARA form in both the gain

and loss regions, with a loss-aversion coefficient weakly larger than 1. We allow the reference

point to be endogenously estimated. Note that due to the convexity of the value function in

the loss region, even when probabilities are not distorted the CARA expected utility model

is not a special case of the CPT model. These two models only intersect at the risk-neutral

case (without probability distortion).

We find that CPT’s training MSE×100 is 2.255, and testing MSE×100 is 1.996 (standard

deviations are 0.022 and 0.099, respectively). Hence, under the current dataset, CPT does

not seem to outperform the (CARA) expected utility model in terms of predictive power,

although its performance is significantly better than the risk-neutral expected utility model.17

One potential reason is that the current dataset does not focus on the kind of lotteries

involved in the fourfold pattern of risk attitudes. In any case, our estimation suggests little

16If we have a large amount of data, the expected utility model should outperform the CARA expected
utility model, but given the current dataset, the expected utility model’s training MSE×100 is 1.07 and
its testing MSE×100 is 19.47. Note that there are prizes that appear in the testing dataset but not in
the training dataset. For those prizes, their Bernoulli indices cannot be estimated. However, even if we
exclude the binary choice problems that contain prizes that only appear in the testing dataset, the testing
MSE×100 of the expected utility model only reduces to 17.82, which is still much higher than that of the
CARA expected utility model.

17The testing error is 2.025 if the value function is parametrized via the CRRA form. We also check the
testing error of the estimated CPT model from Tversky and Kahneman (1992), which is significantly higher.
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probability distortion, which is consistent with recent findings by Bernheim and Sprenger

(2020). Therefore, for the rest of the paper, we use the CARA expected utility model as the

benchmark, whose testing MSE×100 is 1.98.

3.3 The NEU Model and Behavioral Neurons

The dataset is also too small for the general NEU model. We need to find parametrization

that helps overcome overfitting and, at the same time, keeps its flexibility in the right

direction. The first idea comes from the observation that the affine functions in the first

hidden layer are expected utility functions. Therefore, it is possible that replacing first-

hidden-layer neurons with CARA expected utility functions could help. The resulting model

is still a NEU model, even though we do not use the activation function in the first hidden

layer (see Section 2.3.1).

It turns out that this restriction destroys too much flexibility of the NEU model. We

allow the first hidden layer’s width to be 15, 20, or 25; the number of hidden layers above

the first to be 0, 1, or 2; and the width of the hidden layers above the first to be 15, 20,

or 25. The best testing MSE×100 we obtain out of these NEU functions is 1.97, which is

barely better than the CARA benchmark.

To see what kind of useful flexibility has been removed, consider the certainty-effect

neurons and reference-dependence neurons from Sections 2.3.1 and 2.3.2. These are neurons

in the first hidden layer and help us capture well-documented behavioral effects, but are

assumed away if we focus on CARA expected utility functions for the first hidden layer.

Presumably, there may be other useful behavioral neurons and we may use statistical

methods to endogenously select which behavioral neurons are best to use. This is an inter-

esting and more general approach, but is beyond the scope of this paper. Below, we will show

that by requiring that the first hidden layer consist of a CARA expected utility function,

certainty-effect neurons, and reference-dependence neurons, we overcome overfitting of the

NEU model without destroying its useful flexibility. This allows us to improve the NEU
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model’s performance significantly, compared with the case with only CARA expected utility

functions in the first hidden layer and the original NEU model.18

To explain how this is done, we need to describe how we estimate the NEU model based

on the training dataset using cross-validation. Each NEU model has some hyperparameters,

such as the number of hidden layers and the width of each hidden layer. Obviously, if we select

hyperparameters by minimizing the training MSE, we will want bigger networks and overfit.

Therefore, for each set of hyperparameters, we use the training dataset to estimate the NEU

model and compute the leave-one-out cross-validation (LOOCV) MSE (see Chapters 5 and

7 of Hastie, Tibshirani, and Friedman (2009)). We find the hyperparameters that yield the

lowest LOOCV MSE. Then, we train the NEU model under the selected hyperparameters

using the training dataset and compute its training MSE. Finally, we take the trained NEU

model to compute the testing MSE using the testing dataset.

We consider the NEU model in which the first hidden layer consists of three types of

neurons to be described below. We call this first hidden layer a behavioral-neuron layer. The

behavioral-neuron layer is subsequently concatenated with additional standard hidden layers

(defined in Section 2.1), except that we will apply one restriction to the second-hidden-layer

neurons due to the use of certainty-effect neurons, which we will explain shortly.

Every lottery p is mapped to its utility U(p) via such a NEU model. However, we cannot

directly train the NEU model using state-of-the-art machine-learning methods, because the

output of the NEU model is utility, which is not observable in the data. To see how we train

the NEU model, recall that each data point has two lotteries p and q. Hence, the exact

neural-network model to be trained is as follows. First, it takes both p and q as the input.

Next, it derives U(p) and U(q) through two separate and identical NEU models. Last, it uses

the probability that U(p) + εp > U(q) + εq as the output to predict the choice probability of

18This approach is similar to using domain knowledge to engineer features in statistics and computer
science, except that we will only consider features that are consistent with our axioms. It is well known that
domain knowledge may help improve the performance of machine-learning models via feature engineering.
See, among others, convolutional neural-network models (Chapter 9 in Goodfellow, Bengio, and Courville
(2016)) in image recognition.
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p for this data point, in which εp and εq are again independent and identically distributed

random variables following the Gumbel distribution. We call such a neural-network model

the logit symmetric behavioral NEU model, which may be trained using state-of-the-art

machine-learning methods. Note that this model is a function defined on L×L, so it is not

a special case of the NEU model. It is constructed based on the NEU model for estimation.

Now, we describe the behavioral-neuron layer. It consists of three types of neurons:

1. The CARA neuron: A CARA neuron is the function UCARA : L → R defined in (2).

When estimating its parameters α and β, α is initialized uniformly at random in [−1, 1]

and β is initialized uniformly at random in [0, 1].

2. The certainty-effect (CE) neuron: For any lottery p, a CE neuron with respect to prize

zi is a function from L to R that takes the following form:

U j
CEi

(p) = max{pi − ηj, 0},

j = 1, 2 (see Section 2.3.1); that is, we allow the decision maker to have two types of

CE neurons, each with a possibly different ηj (the threshold parameter).

Fixing j, we require that ηj be identical across different prizes. Otherwise, if some

prize never shows up in the training dataset, we will not be able to estimate those two

parameters for that prize. For the same reason, fixing j, we require that every second-

hidden-layer neuron attach the same weight to the CE neurons U j
CEi

, i = 1, . . . , n, in

the affine aggregation. This is the restriction on the second hidden layer we mention

above. The threshold parameter ηj is initialized uniformly at random in [0.9, 0.99].

3. The reference-dependence (RD) neuron: For any lottery p, an RD neuron is a function

from L to R that takes the following form:

U j
RD(p) = max

{
n∑
i=1

pi max{λjzi − γj, 0}, κj
}
,
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j ∈ {1, . . . , nRD}; that is, we allow the decision maker to have nRD types of RD neurons,

each of which is characterized by three parameters: the loss-aversion coefficient −λj,

the reference point
γj
λj

, and the threshold parameter κj. All three parameters are

initialized at random according to the standard Gaussian distribution, and nRD is left

as a hyperparameter.

To summarize, in the behavioral-neuron layer, we have one CARA neuron, two types of

CE neurons, and nRD RD neurons. We do not turn the number of types of CE neurons into

a hyperparameter only to shorten computation time. The CE neurons only affect a small

area of L, and we believe that allowing for two types of CE neurons will be adequate. We

only use one CARA neuron because we have seen that having multiple CARA neurons does

not seem to help. Then, additional hidden layers will be concatenated with the behavioral-

neuron layer, whose number of layers and width are hyperparameters. The affine-aggregation

parameters of these layers are initialized by the standard Gaussian distribution.

3.3.1 Training, Regularization, and Hyperparameter Selection

We train the NEU model using adaptive moment estimation (also known as Adam; see

Kingma and Ba (2017)) with minibatches of size 10, which are randomly selected at each

epoch. The learning rate is 0.0002 for parameters of the additional hidden layers and the

output layer, and is 0.00002 for the parameters of the behavioral-neuron layer. To regularize

the training of the logit symmetric behavioral NEU model, we use `2-norm regularization with

coefficient 0.0002 (see Chapter 7 of Goodfellow, Bengio, and Courville (2016)). Meanwhile,

we stop the training early, after 3, 000 epochs, in which each epoch goes through the 17

minibatches in a random order. Again, we use the MSE of the model as the metric to

evaluate the performance of a logit symmetric behavioral NEU model.

We divide the logit symmetric behavioral NEU models into three groups. In the first

group, the NEU model has one hidden layer; that is, it only has the behavioral-neuron layer.

In the second, the NEU model has two hidden layers, and in the third, the NEU model has
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strictly more than two hidden layers. We divide them in this way because NEU models with

one hidden layer and NEU models with two layers have rather different interpretations, and

both are much easier to interpret than NEU models with more layers.

Within each group, to select the most desirable model (i.e., the most desirable set of

hyperparameters) from candidate models on the training dataset of size 169, we use LOOCV.

The width of the additional hidden layers (if any) concatenated with the behavioral-neuron

layer may be 15, 20, or 25. The number of RD neurons may be 15, 20, or 25. In the third

group, the number of the additional hidden layers concatenated with the behavioral-neuron

layer may be 2 or 3.

LOOCV trains each candidate model on only 168 data points and then makes a prediction

on the left-out data point. Each of the 169 data points will be left out once. Then, LOOCV

selects the candidate model with the least average LOOCV MSE over the 169 choices of

left-out data points.

Given the selected model (set of hyperparameters), we train the logit symmetric behav-

ioral NEU model on the training dataset of size 169, and then the trained model is taken to

the testing dataset of size 45 to compute the testing MSE.

3.3.2 Results

We report the testing MSE×100 in the following table for the three groups of NEU models

along with their standard deviations after 50 repetitions of experiments:

CARA+RD CARA+CE CARA+RD+CE

1 Hidden Layer 1.971 (0.113) 2.009 (0.006) 1.966 (0.133)

2 Hidden Layers 1.850 (0.176) 2.030 (0.022) 1.748 (0.221)

> 2 Hidden Layers 2.217 (0.339) 2.130 (0.038) 1.879 (0.315)

In the “CARA+RD” column, we require that the number of CE neurons be zero in the

behavioral-neuron layer. In the “CARA+CE” column, we require that the number of RD
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neurons instead be zero. In the “CARA+RD+CE” column, the setup of the behavioral-

neuron layer is the same as described earlier.

The above table shows that introducing the CARA, CE, and RD neurons significantly

improves the performance of the NEU model. Measured by the testing MSE, the two-hidden-

layer NEU model (with the first hidden layer being the behavioral-neuron layer) has the best

performance, and its testing error is 12% lower than the CARA benchmark. Note that NEU

models’ training MSEs will always be lower (19% in this case) than the CARA benchmark.

Moreover, it can be seen that introducing only one type of behavioral neuron together

with the CARA neuron is not sufficiently helpful. It is when both CE and RD neurons are

included in the behavioral-neuron layer that the NEU model significantly outperforms the

CARA benchmark.

These results suggest that our domain knowledge from decision theory and behavioral

economics can be useful in predictions (see Footnote 18), and that reasonably complex NEU

functions with intuitive interpretation have the best performance.

4 Concluding Remarks

Observing that previous studies on violations of expected utility theory suggest that the

key axiom, (Bi-)Independence, does not hold globally but may hold locally, we introduce

a novel way to weaken (Bi-)Independence and require that it hold locally. The resulting

representation of the decision maker’s preference, the NEU representation, is a novel way to

apply the neural-network model to decision-making under risk.

Our axiomatic characterization shows that among numerous machine-learning models,

the neural-network model applied to our choice domain with uncertainty in the form of a

NEU model has a simple and reasonable behavioral foundation. Thus, the NEU model may

be particularly suitable to be applied to economic models in future research compared with

other machine-learning models.
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Empirically, we find that relatively simple NEU models that are easy to interpret have

strong predictive power. Moreover, when the training dataset is not sufficiently large, we

show that neurons constructed from our domain knowledge about decision making can be

useful in improving the NEU model’s performance.

We expect that the NEU model and its potential future generalizations will become more

and more useful in economics, as we accumulate more economic data about people’s choice

behavior.
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Appendix

Proof of Theorem 1: The sufficiency of the axioms follows from Tarela and Mart́ınez

(1999); Wang and Sun (2005); and Arora et al. (2018), if we can prove that % can be

represented by a continuous piecewise-linear function on L. We prove this via a sequence of

lemmas, and without mentioning this explicitly, we assume for each of them that the axioms

hold. For any L ⊆ L, let int(L), cl(L), ∂L and aff(L) denote the interior, closure, boundary,

and affine hull of L, respectively, under the subspace topology induced from the standard

topology of Rn. For p ∈ L and ε > 0, let Bε(p) denote the open ball centered at p with

radius ε.

Since % satisfies Weak Order and Continuity and L is separable and connected, by

Debreu (1954) it has a continuous utility representation V : L → R.

Lemma 1 Suppose L ⊆ L and int(L) 6= Ø. The following statements are equivalent:

(i) L preserves independence;

(ii) if p, q, r, s ∈ L and p− q = λ(r − s) for some λ > 0, p % q ⇐⇒ r % s.

Proof. (ii)⇒(i) is immediate. We prove that (i)⇒(ii). Suppose L preserves independence

and p, q, r, s ∈ L satisfy p − q = λ(r − s) for some λ > 0. Clearly, q + λr = p + λs. Pick

any t ∈ int(L) and let p′ = αpt, q′ = αqt, r′ = αrt, s′ = αst such that p′q′r′s′ ⊆ L. Let

t1 = 1
λ+1

q′r′ and t2 = 1
λ+1

p′r′. Note that by construction, t1 = 1
λ+1

p′s′. Since L preserves

independence, p % q ⇐⇒ p′ % q′ ⇐⇒ t2 % t1 ⇐⇒ r′ % s′ ⇐⇒ r % s.

Lemma 2 Suppose L ⊆ L preserves independence and int(L) 6= Ø. Then, there exists some

affine function U : cl(L)→ R that represents % on cl(L).

Proof. Pick any r ∈ int(L). By definition, there exists some Bε(r) ⊆ L. Since L is bounded,

there exists some α ∈ (0, 1) such that p ∈ L⇒ αpr ∈ Bε(r). Since L preserves independence,

Bε(r) must also preserve independence. Therefore, % restricted on Bε(r) satisfies Weak

Order, Continuity, and Independence. Because Bε(r) together with the mixture operation
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forms a mixture space, the mixture space theorem implies that there exists an affine function

Ũ : Bε(r)→ R of % on Bε(r). Without loss of generality, let Ũ(r) = 0. Next, for each p ∈ L,

define U(p) = Ũ(αpr)/α. This function U must represent % on L, because for any p, q ∈ L,

p % q ⇐⇒ αpr % αqr ⇐⇒ Ũ(αpr) > Ũ(αqr) ⇐⇒ U(p) > U(q). Note that U is affine:

For any p, q, λpq ∈ L,

U(λpq) =
1

α
Ũ(α(λpq)r) =

1

α
Ũ(λ(αpr)(αqr)) = λU(p) + (1− λ)U(q).

Therefore, U is an affine function on a bounded subset of Rn, which must be uniformly

continuous. Then, there exists a unique extension of U from L to cl(L): For any p ∈ cl(L),

take an arbitrary sequence {pk}∞k=1 in L that converges to p, U(p) = limk→∞ U(pk). Clearly

U : cl(L)→ R is still affine.

By Continuity, U must represent % on cl(L); that is, for any p, q ∈ cl(L), p � q ⇐⇒

U(p) > U(q). We only prove that p � q ⇒ U(p) > U(q). The other direction is similar.

Recall that the continuous function V : L → R represents %. Since p � q, V (p) > V (q).

Without loss of generality, let V (p) = 1 and V (q) = 0. According to the intermediate value

theorem, we can find some p′, q′ ∈ pq such that V (p′) = 2/3 and V (q′) = 1/2.

Next, by Continuity, we can find a sequence {pk} in L that converges to p and a sequence

{qk} in L that converges to q such that pk � p′ � q′ � qk for each k ∈ N. We already know

that U represents % on L. Since V restricted to L also represents % on L, U = f(V ) for

some strictly increasing function f . Thus, we have U(pk) = f(V (pk)) > f(2/3) > f(1/3) >

f(V (qk)) = U(qk) for each k ∈ N, which means that U(p) > f(2/3) > f(1/3) > U(q).

The following corollary follows from Lemma 2 immediately.

Corollary 1 Suppose L ⊆ L preserves independence and int(L) 6= Ø. Then, cl(L) preserves

independence.

Lemma 3 Suppose L is a nonempty convex subset of L and p ∈ L. Then, L ⊥ p and L ⊥ q

implies L ⊥ αpq for any α ∈ (0, 1).
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Proof. Take any r, s ∈ L. We want to show that r % s if and only if βr(αpq) % βs(αpq)

for any α, β ∈ (0, 1). Since βr(αpq) = (α + β − αβ)
(

β
α+β−αβ rp

)
q and βs(αpq) = (α + β −

αβ)
(

β
α+β−αβsp

)
q, it suffices to show that for any α, β ∈ (0, 1), r % s if and only if

(α + β − αβ)

(
β

α + β − αβ rp
)
q % (α + β − αβ)

(
β

α + β − αβsp
)
q. (3)

Since L ⊥ p, r % s ⇐⇒ β
α+β−αβ rp %

β
α+β−αβsp. Note that β

α+β−αβ rp,
β

α+β−αβsp ∈ L since L

is convex and p ∈ L. Then, (3) follows from the fact that L ⊥ q.

Lemma 4 Suppose L is a convex subset of L such that int(L) 6= Ø and L preserves inde-

pendence. Then, L ⊥ p implies that co(L ∪ {p}) preserves independence.

Proof. Take any q ∈ co(int(L) ∪ {p})\{p}. There exists q′ ∈ int(L) and α ∈ (0, 1] such

that q = αq′p. Since q′ ∈ int(L), there exists some ε > 0 such that Bε(q
′) ⊆ int(S). For any

r, s ∈ Bαε(q), let r′ = r−q
α

+ q′, s′ = s−q
α

+ q′. Since ||r− q||, ||s− q|| < αε, r′, s′ ∈ Bε(q
′) and

α(r′ − s′) = r − s. Moreover,

αr′p = r − q + αq′ + (1− α)p = r − αq′ − (1− α)p+ αq′ + (1− α)p = r.

Similarly, αs′p = s. Because L ⊥ p, r % s ⇐⇒ r′ % s′.

We first prove that co(int(L) ∪ {p})\{p} preserves independence. By Lemma 1, we only

need to show that for any distinct r, s, r∗, s∗ ∈ co(int(L)∪{p})\{p} such that r−s = λ(r∗−s∗)

for some λ > 0, r % s if and only if r∗ % s∗.

First, focus on r and s. Clearly, rs ⊆ co(int(L) ∪ {p})\{p}. For any t ∈ rs, according

to the arguments above, there exists εt > 0 such that for any r̃t, s̃t ∈ Bεt(t), we can find

r̃′t, s̃
′
t ∈ int(L) that satisfy r̃t − s̃t = α(r̃′t − s̃′t) for some α > 0 and r̃ % s̃ ⇐⇒ r̃′ % s̃′.

Note that {Bεt(t) : t ∈ rs} forms an open cover of rs. Since rs is compact, let the
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Lebesgue number of the open cover be ρ > 0 and define

tk := r +
min{kρ, ||s− r||}

||s− r|| (s− r)

for k = 0, 1, . . . ,min{j ∈ N : ρj > ||s − r||}. Let m := min{j ∈ N : ρj > ||s − r||} − 1.

By definition, t0 = r, tm = s, and ||tk − tk+1|| < ρ for any k ∈ {0, . . . ,m}. Since ρ is

the Lebesgue number of the open cover, for any k ∈ {0, . . . ,m}, there exists t ∈ rs such

that tk, tk+1 ∈ Bεt(t). Therefore, for any k ∈ {0, . . . ,m}, tk − tk+1 = λk(r − s) for some

λk > 0, and there exist t′k, t
′
k+1 ∈ int(L) such that tk − tk+1 = βk(t

′
k − t′k+1) for some βk > 0

and tk % tk+1 ⇐⇒ t′k % t′k+1. These observations imply that for any k ∈ {0, . . . ,m},

t′k − t′k+1 = λk(t
′
0 − t′1) for some λk > 0.

Since L preserves independence, by Lemma 1, for any k ∈ {0, . . . ,m}, t′k % t′k+1 ⇐⇒

t′0 % t′1. Since L ⊥ p, t′k % t′k+1 ⇐⇒ tk % tk+1. Then, it follows from transitivity that

r % s ⇐⇒ t′0 % t′1. Note that r − s = β0
λ0

(t′0 − t′1).

The same arguments apply to r∗ and s∗: There exist some t∗0, t
∗
1 ∈ int(L) such that

r∗ % s∗ ⇐⇒ t∗0 % t∗1 and r∗ − s∗ = λ∗(t∗0 − t∗1) for some λ∗ > 0. Since r − s = λ(r∗ − s∗),

we know that t′0 − t′1 = α∗(t∗0 − t∗1) for some α∗ > 0. By Lemma 1, t′0 % t′1 ⇐⇒ t∗0 % t∗1.

Thus, r % s ⇐⇒ r∗ % s∗. This completes the proof that co(int(L) ∪ {p})\{p} preserves

independence.

It is straightforward to verify that

cl(co(int(L) ∪ {p})\{p}) = cl(co(int(L) ∪ {p})).

Hence, by Corollary 1, cl(co(int(L) ∪ {p})) preserves independence.

To complete the proof of this lemma, we only need to show that co(L∪{p}) ⊆ cl(co(int(L)∪

{p})). Since L is convex and has nonempty interior, cl(int(L)) = cl(L). To see this, take any

q ∈ cl(L) and let {qk}∞k=1 be some sequence in L that converges to q. Take any r ∈ int(L).

Since L is convex, the sequence {(1− 1
k
)qkr}∞k=1 is a sequence in int(L) that converges to q
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as well. Therefore, q ∈ cl(int(L)). Because cl(int(L)) = cl(L), for any q ∈ L, let {qk}∞k=1 be

some sequence in int(L) that converges to q. Then, for any α ∈ [0, 1], αqkp converges to αqp,

which implies that αqp ∈ cl(co(int(L)∪ {p})). Thus, co(L∪ {p}) ⊆ cl(co(int(L)∪ {p})).

Now we introduce some lemmas regarding the (bi-)independence of line segments.

Lemma 5 If pr ⊥ p, then pr preserves independence.

Proof. Suppose r � p. Since pr ⊥ p, it is clear that αrp � p for any α > 0. To show that

pr preserves independence, it suffices to show that αrp � βrp whenever 1 > α > β > 0.

By way of contradiction, assume that there exists 1 > α > β > 0 such that βrp % αrp.

Since pr ⊥ p, we have β
α

(βrp)p % β
α

(αrp)p, which implies β2

α
rp % βrp. Inductively, we have

βn+1

αn rp % βn

αn−1 rp for any n. Then by Continuity and Weak Order, we have p % αrp, a

contradiction.

The case in which r ∼ p follows from the observation that, due to pr ⊥ p, αrp ∼ p for

any α ∈ [0, 1]. The case in which p � r is symmetric to the first case.

Lemma 6 Let pr and qs each preserve independence. If pr and qs do not preserve bi-

independence, then there exists p′, r′ ∈ pr, q′, s′ ∈ qs and λ ∈ (0, 1) such that p′ ∼ q′, r′ ∼ s′,

and λp′r′ 6∼ λq′s′.

Proof. Suppose pr and qs do not preserve bi-independence. Without loss of generality,

assume that p % q, and there exists λ ∈ (0, 1) such that either (a) r ∼ s but λqs � λpr, or

(b) r � s but λqs % λpr. In either (a) or (b), λqs % λpr.

Case 1: p % r and q % s. Since pr and qs each preserve independence, we have q % λqs %

λpr % r. Suppose q ∼ r. Then λqs ∼ λpr is forced. Thus, for pr and qs to not preserve

bi-independence, we need r � s and thus q � s. Then we must have λpr % r ∼ q � λqs,

which is a contradiction. Hence, q � r. By p % q � r % s and Continuity, there exist p′ ∈ pr

and s′ ∈ qs such that p′ ∼ q and r ∼ s′. Then, since pr and qs each preserve independence,

we have λqs′ % λqs % λpr % λp′r. Suppose we are in case (a), so that r ∼ s and λqs � λpr.
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Then it follows that λqs′ � λp′r and we are done. Suppose we are in case (b), so that r � s

and λqs % λpr. Then we have λqs′ � λqs % λp′r, because s′ ∼ r � s, and we are done.

Case 2: r % p and s % q. Similarly to case 1, we have s % λqs % λpr % p. Suppose s ∼ p.

Then we have λqs ∼ λpr. Thus, for pr and qs to not preserve bi-independence, we need r � s

and thus r � p. Then it follows that λpr � p ∼ s % λqs, which is a contradiction. Hence,

s � p. By r % s � p % q and Continuity, there exist r′ ∈ pr and q′ ∈ qs such that r′ ∼ s and

p ∼ q′. Then, since pr and qs each preserve independence, we have λq′s % λqs % λpr % λpr′.

Suppose we are in case (a), so that r ∼ s and λqs � λpr. Then it follows that λq′s � λpr′

and we are done. Suppose we are in case (b), so that r � s and λqs % λpr. Then we have

λq′s % λpr � λpr′, since r � s ∼ r′.

Case 3: p % r and s � q. This case is impossible, since λpr % r % s � λqs.

Case 4: r � p and q % s. This case is impossible, since λpr � p % q % λqs.

Let d(·, ·) denote the metric function of L.

Lemma 7 Let pr and qs each preserve independence. If pr and qs do not preserve bi-

independence, then for any ε > 0 there exist q′, s′ ∈ qs with d(q′, s′) < ε such that pr and

q′s′ do not preserve bi-independence.

Proof. By the previous lemma, without loss of generality, assume that p ∼ q � r ∼ s.

Let q0 = q, s0 = s, and t1 = 1
2
qs. Suppose that pr and qt1, pr and t1s both preserve bi-

independence. Since pr preserves independence, there exists a monotone transformation f

such that U(λpr) = f ◦ V (λpr) = λ for any λ ∈ [0, 1]. Let α ∈ (0, 1) be such that αpr ∼ t1.

Since p(αpr) and rt1 preserve bi-independence, we have

U(λp(αpr)) = U(λqt1)

for any λ ∈ [0, 1]. Thus

U(λqt1) = U((λ+ (1− λ)α)pr)) = λ+ (1− λ)α.

42



Similarly, since (αpr)r and t1s preserve bi-independence, we have

U(λt1s) = U(λ(αpr)r) = U((λα)pr) = αλ

for any λ ∈ [0, 1].

Note that U = f ◦ V represents %. Then U is a continuous function that is linear on

both qt1 and t1s. If U is linear on qs, then pr and qs must preserve bi-independence, a

contradiction. Hence, U restricting to qs cannot be differentiable at t1. It is then easy to

see that pr and qs ∩Bε(t
1) cannot preserve bi-independence for any ε > 0.

Hence, we can assume, without loss of generality, that at least one of the following

statements is true: pr and qt1 do not preserve bi-independence, or pr and t1s do not preserve

bi-independence. If the first statement is correct, let q1 = q and s1 = t1; otherwise let q1 = t1

and s1 = s. Then pr and q1s1 do not preserve bi-independence.

Inductively, let tn+1 = 1
2
qnsn. Without loss of generality, we can assume that at least one

of the following statements is true: pr and qntn+1 do not preserve bi-independence, or pr

and tn+1sn do not preserve bi-independence. If the first statement is correct, let qn+1 = qn

and sn+1 = tn+1; otherwise let qn+1 = tn+1 and sn+1 = sn. Then pr and qn+1sn+1 do not

preserve bi-independence.

By construction, for any n, pr and qnsn do not preserve bi-independence, and d(qn, sn) =

1
2n
d(q, s). The claim is established.

Lemma 8 Let L be an open convex set that preserves independence and let pr preserve inde-

pendence. If pr and L preserve bi-independence, then pr and cl(L) preserve bi-independence.

Proof. There is nothing to prove if L = Ø. Let L 6= Ø. First, note that by Lemma

2, cl(L) preserves independence and there exists a linear U that represents % over cl(L).

By way of contradiction suppose pr and cl(L) do not preserve bi-independence. Then, by

Lemma 6 there exists p′, r′ ∈ pr, q, s′ ∈ cl(L) and λ ∈ (0, 1) such that p′ ∼ q � r′ ∼ s and
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λp′r′ 6∼ λqs. Assume that λp′r′ � λqs, since the other case is symmetric. Note that p′r′

and qs each preserve independence. Thus, by standard continuity arguments, there exist

p̂, r̂ ∈ p′r′ and q′, s′ ∈ qs such that q � p̂ ∼ q′ � r̂ ∼ s′ � r and λp̂r̂ � λq′s′. It is clear that

U(q′), U(s′) ∈ U(L) by convexity of L. Thus, there exist q̂, ŝ ∈ L such that q̂ ∼ q′ ∼ p̂ and

ŝ ∼ s′ ∼ r̂. Since cl(L) preserves independence, we have λp̂r̂ � λq′s′ ∼ λq̂ŝ. Thus, pr and L

cannot preserve bi-independence, which is a contradiction.

Given p and q, we say that neighborhoods Lp and Lq preserve weak bi-independence, if

Lp and Lq satisfy the condition in Weak Local Bi-Independence.

Lemma 9 For any p, there exists ε > 0 such that for any r ∈ Bε(p) and any open convex

set L that preserves independence, pr and L preserve bi-independence.

Proof. By way of contradiction, suppose for any n there exist rn ∈ B 1
n
(p) and an open con-

vex set Ln that preserves independence such that prn and Ln do not preserve bi-independence.

By Weak Local Independence (implied by Weak Local Bi-Independence), for n large enough,

B 1
n
(p) ⊥ p, which implies that prn preserves independence by Lemma 5. Then by Lemmas

6 and 7, there exist p̂n, r̂n ∈ prn and q̂n, ŝn ∈ Ln such that p̂n ∼ q̂n � r̂n ∼ ŝn, d(q̂n, ŝn) < 1
n
,

and p̂nr̂n and q̂nŝn do not preserve bi-independence.

It is clear that p̂n, r̂n converges to p as n goes to infinity. Since L is compact, the sequence

{q̂n} has a subsequence that converges to q. We assume, without loss of generality, that the

subsequence is {q̂n} itself and that d(q̂n, q) is monotonically decreasing in n. In addition, by

Continuity, V (q̂n) = V (p̂n) for all n implies that V (q) = V (p).

Now we show that for any ε, δ > 0, Bε(p) andBδ(q) cannot preserve weak bi-independence.

Fix any ε, δ > 0. We can, without loss of generality, assume δ is small enough such that

Bδ(q) ⊥ q, because if Bε(p) and Bδ(q) cannot preserve weak bi-independence, Bε(p) and

Bδ′(q) cannot preserve weak bi-independence for any δ′ > δ.

There exists m such that d(q, q̂m) < δ− 1
m

. Then it follows that d(q, ŝm) < δ− 1
m

+ 1
m

= δ.

Hence q̂m, ŝm ∈ Bδ(q). There also exists k such that n > k implies p̂n, r̂n ∈ Bε(p). Let N =
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max{m, k}. Then p̂N , r̂N ∈ Bε(p), q̂
N , ŝN ∈ Bδ(q). Furthermore, LN ∩ Bδ(q) is nonempty

and open, and preserves independence. By Lemma 4, we have that co((LN ∩ Bδ(q)) ∪ {q})

preserves independence. Thus, q̂N ŝNq preserves independence.

By construction, since p̂N , r̂N ∈ prN , and prN preserves independence, we either have

p̂N � r̂N % p or p % p̂N � r̂N . The two cases are symmetric so we will only prove the first

case.

Let p̂N � r̂N % p. It follows that q̂N � ŝN % q. Then by Continuity there exists s ∈ q̂Nq

such that s ∼ ŝN . Since q̂N ŝNq preserves independence, it is easy to see that q̂Ns and

p̂N r̂N do not preserve bi-independence, which implies that q̂Nq and p̂Np do not preserve bi-

independence. If Bε(p) and Bδ(q) preserve weak bi-independence, since p ∼ q and p̂N ∼ q̂N ,

we have λp̂Np ∼ λq̂Nq for all λ ∈ [0, 1]. Let

U(λp̂Np) = U(λq̂Nq) = λ

for any λ ∈ [0, 1]. Since q̂Nq and p̂Np each preserves independence, and p̂N ∼ q̂N � p ∼ q,

U represents % on q̂Nq ∪ p̂Np. It follows that q̂Nq and p̂Np preserve bi-independence, which

is a contradiction.

Thus, for each p ∈ L, there exists εp > 0 such that Bεp(p) ⊥ p and that for any r ∈ Bεp(p)

and any open convex set L that preserves independence, pr and L preserve bi-independence.

In fact, by Lemma 5 and 8, pr and cl(L) preserve bi-independence. Hereafter, for any p,

identify Bεp(p) with Lp.

Lemma 10 For any p ∈ L, there exist p1, . . . , pn ∈ L such that p ∈ ∆ := p1 . . . pn, int(∆) 6=

Ø and ∆ preserves independence. Furthermore, for any open convex set L that preserves

independence, pipj and cl(L) preserve bi-independence for any i, j.

Proof. Let p1 := p ∈ L. Then, recursively for i = 1, . . . , n − 1, let pi+1 be an arbitrary

point in (
⋂
j≤iLpj)\aff({p1, . . . , pi}). Since each Lpi is open and aff({p1, . . . , pi})’s dimension
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is at most i− 1, such pi+1’s always exist. By construction, the dimension of ∆ := p1 . . . pn is

equal to dim(L), the dimension of L, and ∆ has nonempty interior.

Pick some α ∈ (0, 1) such that for any j = 1, . . . , n− 1, qi := αpnpi ∈ ⋂n
i=1Lpi . Clearly,

∆′ also has nonempty interior. By construction, ∆
′

= q1 . . . qn−1pn preserves independence

with respect to pi for i = 1, . . . , n because ∆′ ⊆ ⋂n
i=1Lpi . Since pn ∈ ∆′, it follows from

Lemma 3 that ∆′ ⊥ qi for i = 1, . . . , n. Applying Lemma 3 again, we know that ∆′

preserves independence with respect to every lottery in ∆′, which implies that ∆′ preserves

independence. Then, applying Lemma 4 iteratively, we know that co(∆′ ∪{pn−1}) preserves

independence, co(∆′ ∪ {pn−1, pn−2}) preserves independence, and so on. Since ∆ = co(∆′ ∪

{p1, . . . , pn−1}), ∆ preserves independence.

Furthermore, by construction we have pi ∈ Lpj for any i > j. Thus, for any open convex

set L that preserves independence, pipj and cl(L) preserve bi-independence.

Let D be the collection of all possible ∆’s constructed using the procedure in Lemma 10.

Let Lo :=
⋃

∆∈D int(∆). It is clear that

L =
⋃

∆∈D

∆ =
⋃

∆∈D

cl(int(∆)) ⊆ cl

(⋃
∆∈D

int(∆)

)
= cl(Lo) ⊆ L.

Thus, Lo is an open dense subset of L. For any p ∈ Lo, pick ∆p ∈ D such that p ∈ int(∆p).

Lemma 11 For any ∆,∆′ ∈ D, ∆ and ∆′ preserve bi-independence.

Proof. Since ∆ and ∆′ both preserve independence and have nonempty interior, Lemma

2 implies that there are affine functions U : ∆ → R and U ′ : ∆′ → R that represent % on

∆ and ∆′, respectively. To prove that ∆ and ∆′ preserve bi-independence, we only need to

prove that for any p, r ∈ ∆, q, s ∈ ∆′, and λ ∈ (0, 1) such that λpr ∈ ∆, λqs ∈ ∆′, and

p % q, we have r % s⇒ λpr % λqs and r � s⇒ λpr � λqs. The case with q % p is similar.

Since ∆ = p1 . . . pn and ∆′ := q1 . . . qn for some p1, . . . , pn ∈ L and q1, . . . , qn ∈ L,

without loss of generality, let U(p1) = mini U(pi), U(pn) = maxi U(pi), U ′(q1) = mini U
′(qi),
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and U ′(qn) = maxi U
′(qi). Clearly, U(λpr) ∈ [U(p1), U(pn)] and U ′(λqs) ∈ [U ′(q1), U ′(qn)].

The cases with p1 ∼ pn or q1 ∼ qn are straightforward. Therefore, assume that pn � p1

and qn � q1. Without loss of generality, let U(pn) = U ′(qn) = 1 and U(p1) = U ′(q1) =

0. Standard arguments imply that there exist unique α, α′, α′′, β, β′, β′′ ∈ [0, 1] such that

αp1pn ∼ p, α′p1pn ∼ r, α′′p1pn ∼ λpr, βq1qn ∼ q, β′q1qn ∼ s, and β′′q1qn ∼ λqs. Then,

U(λpr) = α′′ = λU(p) + (1− λ)U(r) = λα + (1− λ)α′.

Similarly,

U ′(λqs) = β′′ = λU ′(q) + (1− λ)Uq(s) = λβ + (1− λ)β′.

The procedure in Lemma 10 implies that either p1 ∈ Lpn or pn ∈ Lp1 , and either q1 ∈ Lqn
or qn ∈ Lq1 . Hence, p1pn and ∆′ preserve bi-independence, which implies that p1pn and q1qn

preserve bi-independence,

Therefore, since αp1pn % βq1qn, we have α′p1pn % β′q1qn ⇒ (λα + (1 − λ)α′)p1pn %

(λβ + (1 − λ)β′)q1qn and α′p1pn � β′q1qn ⇒ (λα + (1 − λ)α′)p1pn � (λβ + (1 − λ)β′)q1qn,

establishing the lemma.

Definition 4 For any two subsets L1, L2 of L, we write L1 � L2 if there exist ph, pl ∈ L1

and qh, ql ∈ L2 such that both ph and qh are strictly preferred to both pl and ql.

The proofs of Lemmas 12–15 are similar to the proofs of some lemmas in Appendix B of

Ellis and Masatlioglu (2020). Therefore, we provide the proofs in the Online Appendix.

Lemma 12 Suppose L1 and L2 are nonempty connected open subsets of L that preserve

independence. If L1 6� L2, there exist affine functions U1 : L1 → R and U2 : L2 → R

such that the function U : L1 ∪ L2 → R that satisfies p ∈ Li ⇒ U(p) = Ui(p), i = 1, 2,

represents % on L1 ∪ L2. Moreover, any positive affine transformation of U also represents

% on L1 ∪ L2.

Proof. See the Online Appendix.
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Lemma 13 Suppose L1 and L2 are nonempty connected open subsets of L that preserve

independence and bi-independence. If L1 � L2, there exist affine functions U1 : L1 → R and

U2 : L2 → R such that the function U : L1 ∪ L2 → R that satisfies p ∈ Li ⇒ U(p) = Ui(p),

i = 1, 2, represents % on L1 ∪ L2. Moreover, any positive affine transformation of U also

represents % on L1 ∪ L2.

Proof. See the Online Appendix.

Lemma 14 Suppose L1 and L2 are nonempty connected open subsets of L that preserve

independence and bi-independence, and L1 ∩ L2 6= Ø. The following statements are true:

(i) There exists u : Z → R such that U(p) =
∑n

i=1 piu(zi) for any p ∈ L1 ∪L2 represents

% on L1 ∪ L2.

(ii) For any affine functions U1 : L1 → R and U2 : L2 → R such that the function

U : L1 ∪ L2 → R that satisfies p ∈ Li ⇒ U(p) = Ui(p), i = 1, 2, represents % on L1 ∪ L2,

there exists some u : Z → R such that U(p) =
∑n

i=1 piu(zi) for any p ∈ L1 ∪ L2.

Proof. See the Online Appendix.

For a finite sequence of subsets L1, . . . , Lm of L, we write L1 � · · · � Lm if for any

i ∈ {1, . . . ,m − 1}, there exist ph, pl ∈ Li and qh, ql ∈ Li+1 such that both ph and qh are

strictly preferred to both pl and ql. We say that U :
⋃m
i=1 Li → R weakly represents % for

L1 � · · ·� Lm if U represents % on each Lj ∪ Lj+1, j = 1, . . . ,m− 1. Note that � is not

a transitive binary relation; that is, L1 � L2 � L3 does not imply L1 � L3.

Lemma 15 Suppose L1, . . . , Lm are nonempty connected open subsets of L such that Li and

Lj preserve bi-independence for any i, j ∈ {1, . . . ,m}. If L1 � · · · � Lm, there exist affine

functions Ui : Li → R, i = 1, . . . ,m, such that the function U :
⋃m
i=1 Li → R that satisfies

p ∈ Li ⇒ U(p) = Ui(p), i = 1, . . . ,m, represents % on
⋃m
i=1 Li.

Proof. See the Online Appendix.
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Let O := {L ⊆ L : L is nonempty, connected, and open}. Let P be the set of all

functions P : Lo → O such that for any p, q ∈ Lo, (i) int(∆p) ⊆ P (p), (ii) P (p) and int(∆)

preserve bi-independence for all ∆ ∈ D, and (iii) P (p) and P (q) preserve bi-independence.

Let P0 : Lo → O be a function such that P0(p) = int(∆p) for any p ∈ Lo. Lemma 11 implies

that P0 ∈ P ; that is, P is nonempty.

Define a binary relation b on P as follows: For any P,Q ∈ P , P b Q if for any p ∈ Lo,

P (p) ⊆ Q(p). It is straightforward to verify that b is a partial order on P . Take any totally

ordered subset of P , {Pi}i∈I , in which I is an index set. Let P ∗ : Lo → O be a function such

that for any p ∈ Lo, P ∗(p) :=
⋃
i∈I Pi(p). It must be true that P ∗ ∈ P . First of all, P ∗(p)

is open since every Pi(p) is open. Second, P ∗(p) is connected, since every Pi(p) is connected

and contains int(∆p), which is connected. Now we show that P ∗(p) and P ∗(q) preserve

bi-independence for all p, q ∈ Lo. To see this, for any λ ∈ (0, 1), if p′, r′, λp′r′ ∈ P ∗(p) and

q′, s′, λq′s′ ∈ P ∗(q), by {Pi}i∈I is totally ordered by b, there must exist some index j ∈ I

such that p′, r′, λp′r′ ∈ Pj(p) and q′, s′, λq′s′ ∈ Pj(q). Then, the property that we want

p′, r′, λp′r′, q′, s′, λq′s′ to satisfy to ensure that P ∗(p) and P ∗(q) preserve bi-independence

follows from the fact that Pj(p) and Pj(q) preserve bi-independence. Similarly, P ∗(p) and

int(∆) preserve bi-independence for any ∆ ∈ D. Hence, P ∗ is an upper bound of {Pi}i∈I in

terms of b.

Now, we can apply Zorn’s lemma and know that P contains some b-maximal element.

With a harmless abuse of notation, denote this b-maximal element by P ∗. Because Lo is an

open dense subset of L,
⋃
p∈Lo P

∗(p) is also an open dense subset of L. The next step is to

prove that P ∗ has some nice properties. We will need the following lemma.

Lemma 16 Let L1, L2, L3 be nonempty, connected, open subsets of L that preserve indepen-

dence. If Li and L3 preserve bi-independence for i = 1, 2 and L1∩L2 6= Ø, then L1∪L2 and

L3 preserve bi-independence.

Proof. First note that by Lemma 14, L1 ∪ L2 preserves independence. Now we show that

L1 ∪ L2 and L3 preserve bi-independence. Suppose L3 6� L1 ∪ L2. Then, Lemma 12 implies
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that L1 ∪ L2 and L3 preserve bi-independence.

Now suppose L3 � L1 ∪ L2. It follows that L1 � L3 or L2 � L3. Moreover, the fact

that L1∩L2 6= Ø implies L1 � L2. Hence, we can apply Lemma 15 and find affine functions

U1 : L1 → R, U2 : L2 → R, and U3 : L3 → R such that U : L1 ∪ L2 ∪ L3 → R that agrees

with Ui on Li, i = 1, 2, 3, represents % on L1 ∪ L2 ∪ L3. In particular, Lemma 14 implies

that Û : L1 ∪ L2 → R that agrees with U1 on L1 and with U2 on L2 must be affine. Thus,

U is affine on L1 ∪ L2 and L3, respectively. Then, we must have L1 ∪ L2 and L3 preserve

bi-independence.

Lemma 17 For any p, q ∈ Lo, if P ∗(p) ∩ P ∗(q) 6= Ø, then P ∗(p) = P ∗(q).

Proof. Suppose P ∗(p) ∩ P ∗(q) 6= Ø. First note that by Lemma 14, P ∗(p) ∪ P ∗(q) preserves

independence. By Lemma 16, P ∗(p) ∪ P ∗(q) and P ∗(r) preserve bi-independence for all

r ∈ Lo. Again by Lemma 16, P ∗(p) ∪ P ∗(q) and int(∆) preserve bi-independence for any

∆ ∈ D. Thus, if P ∗(p) ∩ P ∗(q) 6= Ø, then P ∗ is not b-maximal unless P ∗(p) = P ∗(q). To

see this, if P ∗(p) 6= P ∗(q), we can define a new function P̂ : Lo → O that agrees with P ∗

except at p and q. Let P̂ (p) = P̂ (q) = P ∗(p) ∪ P ∗(q). Then, we have P̂ 6= P ∗, P̂ ∈ P , and

P ∗ b P̂ .

Next, we show that {P ∗(p) : p ∈ Lo} is finite. For any p ∈ L and ε > 0, let Cε(p) :=

{q ∈ L : ||q− p||∞ < ε}; that is, Cε(p) is the open hypercube that is centered at p with edge

length 2ε.

Lemma 18 {P ∗(p) : p ∈ Lo} is finite.

Proof. Suppose {P ∗(p) : p ∈ Lo} is not finite. Let {Pi}i∈I := {P ∗(p) : p ∈ Lo} for some

index set I. Then by the compactness of L, there exists p ∈ L such that any neighborhood

of p intersects Pi for an infinite number of i’s in I. Fix some ε > 0 such that Cε(p) ⊆ Lp.

Let J ⊆ I be such that Cε(p) ∩ Pi 6= Ø if and only if i ∈ J .
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First, we show that for any ∆ ∈ D, there exists i ∈ I such that int(∆) ⊆ Pi. By the

denseness of Lo, there exists i ∈ I such that Pi ∩ int(∆) 6= Ø. Then by Lemma 16 and the

maximality of Pi, it must be the case that int(∆) ⊆ Pi.

For any q ∈ Cε(p), construct ∆ as in Lemma 10 such that pq ⊆ ∆ ∈ D. It follows that

int(∆) ⊆ Pi for some i ∈ I, and hence, pq ⊆ cl(Pi) for some i ∈ I. Moreover, if pq ∩ Pi 6= Ø

for some i ∈ I, then pq ⊆ cl(Pi) since Pi ∩ cl(Pj) = Ø for any i 6= j.

The next step is to show that Cε(p) ∩ cl(Pi) is the intersection of Cε(p) and a cone with

vertex p for all i ∈ J . For p̃ ∈ L, ε̃ > 0, and L ⊆ L such that Cε̃(p̃) ∩ L 6= Ø, let

coneε̃(p̃, L) := {q̃ ∈ Cε̃(p̃) : q̃ = p̃+ α(r̃ − p̃) for some α > 0 and r̃ ∈ Cε̃(p̃) ∩ L};

that is, coneε̃(p̃, L) is the intersection of Cε̃(p̃) and the smallest cone with vertex p̃ that

contains Cε̃(p̃)∩L. On one hand, we have coneε(p, Pi) ⊆ cl(Pi), since q ∈ Cε(p)∩Pi implies

pq ⊆ cl(Pi). Hence, coneε(p, cl(Pi)) ⊆ cl(coneε(p, Pi)) ⊆ cl(Pi). On the other hand, by

definition, Cε(p) ∩ cl(Pi) ⊆ coneε(p, cl(Pi)). Thus, Cε(p) ∩ cl(Pi) = coneε(p, cl(Pi)).

Now, let P o
i = int(cl(Pi)) for each i. It is clear that Pi ⊆ P o

i . Moreover, P o
i ∩ P o

j = Ø

for all i 6= j. Suppose not. Then there exist r ∈ L and δ > 0 such that Bδ(r) ∈ P o
i ∩ P o

j ⊆

cl(Pi) ∩ cl(Pj). Since Bδ(r) ⊆ cl(Pi) and Pi is open, we can find an open ball B ⊆ Bδ(r)

such that B ⊆ Pi. Again, since B ⊆ cl(Pj) and Pj is open, we can find an open ball B′ ⊆ B

such that B′ ⊆ Pj. This is a contradiction, since Pi ∩ Pj = Ø.

Let ε1 := ε
2

and C1 := ∂Cε1(p); that is, C1 is the surface of hypercube Cε1(p). Clearly,

C1 ⊆ Cε(p). Now we show that C1 ∩ P o
i 6= Ø for all i ∈ J . For any i ∈ J , there exists q ∈

Cε(p)∩Pi. Therefore, pq ⊆ Cε(p)∩ cl(Pi) = coneε(p, cl(Pi)). Moreover, since q ∈ Cε(p)∩P o
i ,

coneε(p, {q}) ∩ C1 ⊆ int(coneε(p, cl(Pi))) = int(Cε(p) ∩ cl(Pi)) = Cε(p) ∩ P o
i .

Hence, C1 ∩ P o
i 6= Ø for all i ∈ J .

Let A1 be a face of C1 that intersects P o
i for an infinite number of i’s in J . By the
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compactness of A1, there exists p1 ∈ A1 such that if L is a neighborhood of p1, then L ∩A1

intersects P o
i for an infinite number of i’s in J . Now pick ε′ < ε1 such that Cε′(p

1) ⊆ Lp1 .

Let J1 ⊆ J be such that (Cε′(p
1) ∩ A1) ∩ P o

i 6= Ø if and only if i ∈ J1. Let ε2 := ε′
2

and

C2 := ∂Cε2(p
1) ⊆ Cε′(p

1). Following the same logic as above, (C2 ∩ A1) ∩ P o
i 6= Ø for all

i ∈ J1. Now let A2 be a face of C2 such that A1 ∩ A2 intersects P o
i for an infinite number

of i’s in J1. By the compactness of A1 ∩ A2, there exists p2 ∈ A1 ∩ A2 such that if L is

a neighborhood of p2, then L ∩ A1 ∩ A2 intersects P o
i for an infinite number of i’s in J1.

Inductively, for any k, there exists pk ∈ A1 ∩ · · · ∩Ak such that if L is a neighborhood of pk,

then L∩A1∩· · ·∩Ak intersects P o
i for an infinite number of i’s in I. This is a contradiction,

since A1 ∩ · · · ∩ An−1 is a singleton and P o
i ∩ P o

j = Ø for all i 6= j.

For any p, q ∈ Lo, we write p! q if p ∈ P ∗(q) or there is a finite sequence of lotteries

r1, . . . , rm ∈ Lo such that p ∈ P ∗(r1), q ∈ P ∗(rm), and P ∗(r1) � · · · � P ∗(rm). By

definition,! is reflexive and transitive, and hence an equivalence relation. For any p ∈ Lo,

let Q(p) denote the equivalence class of p induced by !. Clearly P ∗(p) ⊆ Q(p) for any

p ∈ Lo.

Lemma 19 For any p ∈ Lo, Q(p) =
⋃m
i=1 P

∗(qi) for some m > 1 and q1, . . . , qm ∈ Lo.

Moreover, there exists i1, i2, . . . , ik such that P ∗(qi1)� · · ·� P ∗(qik) and for any 1 6 i 6 m,

ij = i for some 1 6 j 6 k.

Proof. Take an arbitrary p ∈ Lo. Define Q1(p) := {P ∗(p)}, and then recursively, Qi(p) :=

{P ∗(q) : q ∈ Lo and P ∗(q) � P for some P ∈ Qi−1(p)}. By construction, Qi(p) ⊆ Qi+1(p)

for all i. For each i, let Qi(p) :=
⋃
P∈Qi(p)

P . By Lemma 18, we know that
⋃∞
i=1Q

i(p) =⋃m
i=1 P

∗(qi) for some q1, . . . , qm ∈ Lo. By Lemma 17, since P ∗(p) ⊆ ⋃m
i=1 P

∗(qi), we can

without loss of generality assume that q1 = p. By construction, for any j ∈ {1, . . . ,m}, there

exists i1, i2, . . . , ikj ∈ {1, . . . ,m} such that P ∗(p) � P ∗(qi1) � · · · � P ∗(qikj ) � P ∗(qj).
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Hence, according to the definition of Q(p),

Q(p) ⊆
∞⋃
i=1

Qi(p) =
m⋃
i=1

P ∗(qi) ⊆ Q(p). (4)

Hence Q(p) =
⋃m
i=1 P

∗(qi) and the rest is straightforward.

It follows from the previous lemma that V (Q(p)) is a (possibly degenerate) interval for

any p ∈ Lo. Lemmas 18 and 19 immediately imply the following.

Corollary 2 {Q(p) : p ∈ Lo} is finite.

Lemma 20 For any p, q ∈ Lo such that p 6! q, V (Q(p)) ∩ V (Q(q)) has empty interior.

Proof. By Lemma 19, V (Q(p)) =
⋃m
i=1 V (P ∗(pi)) and V (Q(q)) =

⋃m′

j=1 V (P ∗(qj)), where

each pi and qj are in Lo. By way of contradiction, assume that V (Q(p)) ∩ V (Q(q)) has

nonempty interior. It follows that V (Q(p)) and V (Q(q)) cannot be degenerate. Then,

V (P ∗(pi)) and V (P ∗(qj)) must have nonempty interior for all i, j. Moreover, since m,m′ are

finite, there exist k ∈ {1, . . . ,m} and k′ ∈ {1, . . . ,m′} such that V (P ∗(pk))∩ V (P ∗(qk
′
)) has

nonempty interior. Hence, by definition, P ∗(pk)� P ∗(qk
′
). This, together with Lemma 19,

implies p! q, a contradiction.

Since L is compact and connected and V is continuous, we know that V (L) is a closed

and bounded interval. Because Lo is dense in L, for any p ∈ L there exists a sequence

{pk} ⊆ Lo that converges to p. Given that V is continuous, V (pk) also converges to V (p).

Hence, V (L) ⊆ cl(V (Lo)) ⊆ cl(V (L)) = V (L), which implies cl(V (Lo)) = V (L).

Due to Corollary 2 and Lemma 20, there exists m > 1 and p1, . . . , pm such that V (Lo) =⋃m
i=1 V (Q(pi)). Note that by Lemma 20, we can without loss of generality assume that

V (Q(pi)) ∩ V (Q(pj)) has empty interior whenever i 6= j. Since each V (Q(pi)) is connected,

it must be a (possibly degenerate) interval. For each i, let V h
i := supV (Q(pi)) and V l

i :=

inf V (Q(pi)). If V (Lo) is a singleton, then the theorem is trivially true. Without loss of
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generality, let V (Q(pi)) be nondegenerate if and only if i ∈ {1, . . . , k}, and assume V h
i 6 V l

i+1

for each i ∈ {1, . . . , k − 1}.

Consider V1 first. By Lemma 15 and Lemma 19, there exist a piecewise-affine function

U1 : Q(p1)→ R that represents % on Q(p1). We can perform positive affine transformations

to U1 such that inf U1 = V l
1 and supU1 = V h

1 . Since V also represents % on Q(p1), there

exists a strictly increasing function f1 : V (Q(p1)) → R such that f1(V (p)) = U1(p) for any

p ∈ Q(p1). Extend f1’s domain to V (L) by letting f1(v) = v for any v ∈ V (L)\V (Q(p1)).

Lemma 21 The function f1 is strictly increasing and continuous.

Proof. See the Online Appendix.

Thus, f1 ◦ V is continuous on L and piecewise-affine on Q(p1). Recursively, for each

2 6 i 6 k, repeat the exercise above to construct continuous and strictly increasing function

fi : V (L)→ R such that fi ◦ fi−1 ◦ · · · f1 ◦ V represents %, and is continuous and piecewise-

affine on Q(pi). In the end, we have U = fk ◦ · · · ◦ f1 ◦ V represents %, and is continuous

and piecewise-affine on each Q(pi) for i ∈ {1, 2, . . . , k}. Since each V (Q(pi)) is a constant for

i > k, U is piecewise-affine on Lo. By continuity, it is clear that U is affine on cl(P ∗(p)) for

any p ∈ Lo, and thus U is a continuous piecewise-linear representation of %, which concludes

the proof of the sufficiency of the axioms.

See the Online Appendix for the necessity of the axioms. �
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Online Appendix

Necessity of the Axioms in Theorem 1

Now we show that the axioms are necessary. We say that P ⊆ Rn is a (closed convex)

polytope if it is the bounded intersection of finitely many closed half-spaces in Rn. We say

that a finite collection of polytopes P1, . . . , Pk is a partition of L ⊆ Rn if
⋃k
i=1 Pi = L and

int(Pi ∩ Pj) = Ø for any i 6= j.

Suppose % has a NEU representation. The fact that Weak Order and Continuity hold

is clear. Now we show that % satisfies Weak Local Bi-Independence. Let the NEU represen-

tation be

U(p) = τh+1 ◦ θh ◦ τh ◦ · · · ◦ θ2 ◦ τ2 ◦ θ1 ◦ τ1(p)

as in Definition 1, in which θ
(j)
i = max{·, 0} is the j-th component of θi. By setting

τ
(j)
i ◦ θi−1 ◦ · · · ◦ τ1(p) = 0

for each i, j and taking the affine hull of each linear component of the solution, we obtain

a finite set of affine hyperplanes. We denote the collection of these affine hyperplanes as A.

Thus, A is an arrangement of hyperplanes in L. A region of A is a connected component of

L\(⋃H∈AH). Let R(A) be the collection of regions of A. For each L ∈ R(A), it is easy to

see that L is nonempty, open, and cl(L) is a polytope. Let P(A) := {cl(L) : L ∈ R(A)}.

Since A is finite, P(A) must be finite. Hence, P(A) is a partition of L. Moreover, within

each P ∈ P(A), the NEU representation U coincides with an affine function.

For any p ∈ L, let A(p) := {H ∈ A : p ∈ H} and consider A′ = A\A(p). Clearly, there

exists Lp ∈ R(A′) such that p ∈ Lp. It is clear that p ∈ ⋂{P ∈ P(A) : p ∈ P}.

Next, we show that

Lp = int
(⋃
{P ∈ P(A) : p ∈ P}

)
.
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First note that since Lp is convex and open, int(cl(Lp)) = Lp. The claim is trivially true if

A(p) = Ø. If A(p) 6= Ø, then by construction A(p) is an arrangement of hyperplanes on L.

Moreover, p ∈ ⋂H∈A(p) H. It follows that p is in any closed half-spaces given by A(p). Thus,

p ∈ P ′ for any P ′ ∈ P(A(p)). Since p ∈ Lp, we have that p ∈ P ′ ∩ Lp for any P ′ ∈ P(A(p)).

It is clear that

{L′ ∩ Lp : L′ ∈ R(A(p))} = {L ∈ R(A) : L ⊆ Lp}.

It follows that p ∈ P for any P ∈ P(A) such that P ⊆ cl(Lp). Since p ∈ Lp, we have p 6∈ P

if P 6⊆ cl(Lp). Hence,

cl(Lp) = cl
(⋃
{L′ ∩ Lp : L′ ∈ R(A(p))}

)
= cl

(⋃
{L ∈ R(A) : L ⊆ Lp}

)
=

⋃
{P ∈ P(A) : P ⊆ cl(Lp)}

=
⋃
{P ∈ P(A) : p ∈ P}

and we are done with this step.

The last step is to show that this Lp construction is exactly want we want for Weak Local

Bi-Independence. Given p, q ∈ L, by the convexity of each P ∈ P(A), it is clear that for any

r ∈ Lp and s ∈ Lq, pr ⊆ P and qs ⊆ P ′ for some P, P ′ ∈ P(A). Since U coincides with an

affine function within P and P ′, we conclude that pr and qs preserve bi-independence.

Omitted Proofs

Lemma 7 Suppose L1 and L2 are nonempty connected open subsets of L that preserve in-

dependence. If L1 6� L2, there exist affine functions U1 : L1 → R and U2 : L2 → R such that

the function U : L1 ∪L2 → R that satisfies p ∈ Li ⇒ U(p) = Ui(p), i = 1, 2, represents % on

L1 ∪ L2. Moreover, any positive affine transformation of U also represents % on L1 ∪ L2.

Proof. Since Li preserves independence, by Lemma 2, we can find some affine function
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Ui : Li → R that represents % on Li, i = 1, 2, respectively. If all lotteries in L1 are

indifferent, L1 6� L2. In this case, let U1 = 0. By transitivity of %, we can always apply

some positive affine transformation to normalize U2 such that U2(q) > 0 if and only if q % p

for any p ∈ L1 and q ∈ L2. The case in which all lotteries in L2 are indifferent is symmetric.

Next, suppose that not all lotteries in Li are indifferent for i = 1, 2. Since % has a

continuous representation, L1 and L2 are connected, and L1 6� L2, there are only two cases

left: the case in which any lottery in L1 is weakly preferred to any lottery in L2, and the

opposite case. Since these two cases are similar, here we only examine the first. Since L1

and L2 are open, it follows from L1 6� L2 that V (L1)∩V (L2) = Ø. Because U2 is unique up

to a positive affine transformation, we can fix U1 and without loss of generality assume that

U2 satisfies supq∈L2
U2(q) < infp∈L1 U1(p). Then, the function U : L1 ∪ L2 → R that satisfies

p ∈ Li ⇒ U(p) = Ui(p), i = 1, 2, must represent % on L1 ∪ L2. The last statement of the

lemma is immediate.

Lemma 8 Suppose L1 and L2 are nonempty connected open subsets of L that preserve in-

dependence and bi-independence. If L1 � L2, there exist affine functions U1 : L1 → R and

U2 : L2 → R such that the function U : L1 ∪ L2 → R that satisfies p ∈ Li ⇒ U(p) = Ui(p),

i = 1, 2, represents % on L1 ∪ L2. Moreover, any positive affine transformation of U also

represents % on L1 ∪ L2.

Proof. Since Li preserves independence, by Lemma 2, we can find some affine function

Ui : Li → R that represents % on Li, i = 1, 2, respectively. Suppose for some ph, pl ∈ L1

and qh, ql ∈ L2, both ph and qh are strictly preferred to both pl and ql. Since % on Li can be

represented by a continuous affine function and Li is connected, i = 1, 2, there must exist

p ∈ L1 and q ∈ L2 such that p ∼ q. Since L1 is open and there exists ph, pl ∈ L1 such

that ph � pl, one can always find p∗, p∗ in a small ε-ball centered at p such that p∗p∗ ⊆ L1

and p∗ � p ∼ q � p∗. Without loss of generality, let U1(p) = 0. Since L1 and L2 are

open, by Continuity, there exists some α ∈ (0, 1) such that r ∈ L1 implies αrp ∈ L1 and

p∗ � αrp � p∗, and s ∈ L2 implies αsq ∈ L2 and p∗ � αsq � p∗. Then, standard arguments
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imply that for each s ∈ L2, there exists a unique λs ∈ (0, 1) such that αsq ∼ λsp
∗p∗. Define

for each s ∈ L2

Û2(s) =
1

α
U1(λsp

∗p∗).

Take any s, s′ ∈ L2. Since L2 preserves independence, we have s % s′ ⇐⇒ αsq %

αs′q ⇐⇒ Û2(s) > Û2(s′). Hence, Û2 represents % on L2. For any λ ∈ (0, 1) such that

λss′ ∈ L2, since L1 and L2 preserve bi-independence,

α(λss′)q = λ(αsq)(αs′q) ∼ λ(λsp
∗p∗)(λs′p

∗p∗),

which implies that

Û2(λss′) =
1

α
U1((λλs + (1− λ)λs′)p

∗p∗)

=
1

α
U1(λ(λsp

∗p∗)(λs′p
∗p∗))

=
1

α
[λU1(λsp

∗p∗) + (1− λ)U1(λs′p
∗p∗)]

= λÛ2(s) + (1− λ)Û2(s′).

Thus, Û2 is affine and we can find some positive affine transformation to convert U2 into Û2.

Without loss of generality, let U2 = Û2. Note that since p ∼ q,

U2(q) =
1

α
U1(λqp

∗p∗) =
1

α
U1(p) = 0 = U1(p).

Take any p′ ∈ L1 and q′ ∈ L2. We want to verify that p′ % q′ ⇐⇒ U1(p′) > U2(q′).

Because L1 and L2 preserve bi-independence and p ∼ q, p′ % q′ ⇐⇒ αp′p % αq′q. According

to the definition of α, we can let γ ∈ (0, 1) be the unique number such that γp∗p∗ ∼ αp′p.

Since U1(p) = U2(q) = 0,

U1(p′) =
1

α
U1(αp′p) =

1

α
U1(γp∗p∗),
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and

U2(q′) =
1

α
U1(λq′p

∗p∗)

where λq‘p
∗p∗ ∼ αq′q. Then,

p′ % q′ ⇐⇒ αp′p % αq′q ⇐⇒ γ > λq′ ⇐⇒ U1(p′) > U2(q′).

These observations also imply that if p ∈ L1 ∩ L2, U1(p) = U2(p). Then, we can define a

function U : L1 ∪ L2 → R such that p ∈ Li ⇒ U(p) = Ui(p), i = 1, 2. The above arguments

show that U represents % on L1 ∪ L2. The last statement of the lemma is immediate.

Lemma 9 Suppose L1 and L2 are nonempty connected open subsets of L that preserve in-

dependence and bi-independence, and L1 ∩ L2 6= Ø. The following statements are true:

(i) There exists u : Z → R such that U(p) =
∑n

i=1 piu(zi) for any p ∈ L1 ∪L2 represents

% on L1 ∪ L2.

(ii) For any affine functions U1 : L1 → R and U2 : L2 → R such that the function

U : L1 ∪ L2 → R that satisfies p ∈ Li ⇒ U(p) = Ui(p), i = 1, 2, represents % on L1 ∪ L2,

there exists some u : Z → R such that U(p) =
∑n

i=1 piu(zi) for any p ∈ L1 ∪ L2.

Proof. Since L1 and L2 are nonempty, open, and connected, and preserve independence

and bi-independence, by Lemmas 7 and 8, there exist affine functions U1 : L1 → R and

U2 : L2 → R such that the function U : L1 ∪ L2 → R that satisfies p ∈ Li ⇒ U(p) = Ui(p),

i = 1, 2, represents % on L1 ∪ L2.

Take any affine U1 and U2 such that the function U : L1∪L2 → R that satisfies p ∈ Li ⇒

U(p) = Ui(p), i = 1, 2, represents % on L1 ∪ L2. Pick p ∈ L1 ∩ L2. We can find some ε > 0

and α ∈ (0, 1) such that for any q ∈ L, αqp ∈ Bε(p) ⊆ L1 ∩ L2. Without loss of generality,

let U(p) = U1(p) = U2(p) = 0. Define u(zj) = 1
α
U(αδzjp) for each j ∈ {1, . . . , n}. We now

verify that Ui(q) =
∑n

j=1 qju(zj) for any q ∈ Li, i = 1, 2. To see this, take any q ∈ Li. We

have αpq ∈ Bε(p) and αqp = q1(αδz1p) + q2(αδz2p) + · · ·+ qn(αδznp). Since U = U1 = U2 on
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L1 ∩ L2,

αUi(q) = Ui(αqp) =
n∑
j=1

qjUi(αδzjp) =
n∑
j=1

qjαu(zj).

Therefore, U(q) =
∑n

j=1 qju(zi) for any q ∈ L1 ∪ L2 represents % on L1 ∪ L2.

For a finite sequence of subsets L1, . . . , Lm of L, we write L1 � · · · � Lm if for any

i ∈ {1, . . . ,m − 1}, there exist ph, pl ∈ Li and qh, ql ∈ Li+1 such that both ph and qh are

strictly preferred to both pl and ql. We say that U :
⋃m
i=1 Li → R weakly represents % for

L1 � · · ·� Lm if U represents % on each Lj ∪ Lj+1, j = 1, . . . ,m− 1. Note that � is not

a transitive binary relation; that is, L1 � L2 � L3 does not imply L1 � L3.

Lemma 10 Suppose L1, . . . , Lm are nonempty connected open subsets of L such that Li and

Lj preserve bi-independence for any i, j ∈ {1, . . . ,m}. If L1 � · · · � Lm, there exist affine

functions Ui : Li → R, i = 1, . . . ,m, such that the function U :
⋃m
i=1 Li → R that satisfies

p ∈ Li ⇒ U(p) = Ui(p), i = 1, . . . ,m, represents % on
⋃m
i=1 Li.

Proof. By applying Lemma 8 and positive affine transformations iteratively, we can find

affine functions U1, . . . , Um such that U :
⋃m
i=1 Li → R weakly represents % for L1 � · · ·�

Lm. We want to prove that U represents % on
⋃m
i=1 Li. Recall that we have a continuous

function V : L → R represents %.

Step 1 : We prove that if for some i ∈ {2, . . . ,m − 1}, Li−1 � Li+1, U must weakly

represent % for L1 � L2 � · · · � Li−1 � Li+1 � Li+2 � · · · � Lm. To prove this, we

only need to verify that U represents % on Li−1 ∪ Li+1. Because Li−1, Li, and Li+1 are

connected, V (Li−1), V (Li) and V (Li+1) are all intervals. By Li−1 � Li � Li+1 � Li−1,

V (Li−1) ∩ V (Li) ∩ V (Li+1) contains some nonempty open interval of R. In other words,

we can find some p ∈ Li−1, q ∈ Li, r ∈ Li+1, α ∈ (0, 1), and Bε(q) ⊆ Li such that

V (p) = V (q) = V (r) and V (αp′p), V (αr′r) ∈ V (Bε(q)) for any p′ ∈ Li−1 and r′ ∈ Li+1.

Take any p′ ∈ Li−1 and r′ ∈ Li+1. Since Li−1 and Li+1 preserve bi-independence and

p ∼ r,

p′ % r′ ⇐⇒ αp′p % αr′r ⇐⇒ V (αp′p) > V (αr′r).
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Recall that V (αp′p), V (αr′r) ∈ V (Bε(q)), which means that we can find some qp, qr ∈ Bε(q)

such that qp ∼ αp′p and qr ∼ αr′r. Since U represents % on Li−1 ∪ Li and Li ∪ Li+1,

respectively, U(qp) = U(αp′p) and U(qr) = U(αr′r). Then,

αp′p % αr′r ⇐⇒ U(qp) > U(qr) ⇐⇒ U(αp′p) > U(αr′r) ⇐⇒ U(p′) > U(r′),

where the last equivalence follows from U(p) = U(q) and U(q) = U(r).

Step 2 : We prove that if L1 � Lm, there must exist some i ∈ {2, . . . ,m − 1} such that

Li−1 � Li+1. Let vhi := supp∈Li
V (p) and vli := infp∈Li

V (p) for any i ∈ {1, . . . ,m}. By

definition, vhi > vli for any i ∈ {1, . . . ,m}, and whenever Lj � Lk for some j, k ∈ {1, . . . ,m},

(vlj, v
h
j ) ∩ (vlk, v

h
k ) 6= Ø.

Suppose for any i ∈ {2, . . . ,m−1}, Li−1 6� Li+1; that is, either vhi−1 6 vli+1 or vhi+1 6 vli−1.

If vhi−1 6 vli+1 holds for every i ∈ {2, . . . ,m−1}, we must have L1 6� Lm. This is clear if m is

odd. Suppose m is even. Since L1 � L2 � L3, it must be the case that vh2 > vl3 > vh1 . Hence,

for any even m > 2, vlm > vh2 > vh1 , which implies that L1 6� Lm. Similarly, it cannot be the

case that vhi+1 6 vli−1 holds for every i ∈ {2, . . . ,m−1}. Then by Li−1 6� Li+1 for all i, there

must be some j ∈ {3, . . . ,m − 2} such that max{vhj+2, v
h
j−2} 6 vlj or vhj 6 min{vlj−2, v

l
j+2}.

We focus on the former case, since the latter is similar. Because Li−2 � · · · � Lj+2, it

must be the case that vlj−1 < vhj−2 6 vlj < vhj−1 and vlj+1 < vhj+2 6 vlj < vhj+1. Then,

(vlj−1, v
h
j−1) ∩ (vlj+1, v

h
j+1) 6= Ø, and it is straightforward to verify that Lj−1 � Lj+1.

Step 3 : We prove that if there exist affine functions Ui : Li → R, i = 1, . . . ,m, such

that the function U :
⋃m
i=1 Li → R that satisfies p ∈ Li ⇒ U(p) = Ui(p), i = 1, . . . ,m,

weakly represents % for L1 � · · · � Lm, then U represents % on
⋃m
i=1 Li. The claim is

trivial if m = 1, 2. Next, suppose for some m̄ > 2, the claim is true for any m 6 m̄. Assume

that now m = m̄ + 1. Take any p, q ∈ ⋃m
i=1 Li. If p, q ∈ Li for some i ∈ {1, . . . ,m},

p % q ⇐⇒ U(p) > U(q). Therefore, for the rest of the proof of this lemma, let p ∈ Li and

q ∈ Lj/Li for some distinct i, j ∈ {1, . . . ,m}.
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First, suppose {p, q} 6⊆ L1 ∪ Lm. Then, either {p, q} ⊆ ⋃m
i=2 Li or {p, q} ⊆ ⋃m−1

i=1 Li.

Since U weakly represents % for L1 � · · · � Lm, it also weakly represents % for L2 �

· · · � Lm and for L1 � · · · � Lm−1 respectively. By the induction hypothesis, we have

p % q ⇐⇒ U(p) > U(q).

Second, consider the case in which {p, q} ⊆ L1 ∪ Lm. Without loss of generality, let

p ∈ L1 and q ∈ Lm\L1. If L1 � Lm, from Steps 1 and 2, we know that there must exist

some i ∈ {2, . . . ,m − 1} such that Li−1 � Li+1, and hence U weakly represents % for

L1 � L2 � · · · � Li−1 � Li+1 � Li+2 � · · · � Lm. Then, we know that U represents %

on L1 ∪ L2 ∪ · · · ∪ Li−1 ∪ Li+1 ∪ Li+2 ∪ · · · ∪ Lm, and hence that p % q ⇐⇒ U(p) > U(q).

Hence, suppose L1 6� Lm. Without loss of generality, let vl1 > vhm. (If it is the other case,

we reverse the indices of L1, . . . , Lm.) It must be the case that p % q. Then, we only need

to prove that p ∼ q ⇒ U(p) = U(q) and p � q ⇒ U(p) > U(q). For any i ∈ {1, . . . ,m− 1},

since (vli, v
h
i ) ∩ (vli+1, v

h
i+1) is nonempty, (vli, v

h
i ) ∪ (vli+1, v

h
i+1) is an open interval. Therefore,⋃m−1

i=1 (vli, v
h
i ) is an open interval that contains

vl1+vh1
2

and
(⋃m−1

i=1 (vli, v
h
i )
)
∩ (vlm, v

h
m) 6= Ø.

Notice that since
vl1+vh1

2
> vl1 > vhm, we must have vhm ∈

⋃m−1
i=2 (vli, v

h
i ); that is, there exists

some r ∈ Li, i ∈ {2, . . . ,m−1} such that V (r) = vhm. Note that by the induction hypothesis

U represents % on
⋃m−1
i=1 Li and

⋃m
i=2 Li, respectively. Then, p ∼ q ⇒ V (p) = V (q) = vhm =

V (r) ⇒ U(p) = U(r) = U(q). If p � q, then V (p) > V (r) > V (q) and at least one of the

inqualities is strict. It follows that U(p) > U(r) > U(q) and at least one of the inqualities is

strict. Thus, p � q ⇒ U(p) > U(q).

Lemma 16 The function f1 is strictly increasing and continuous.

Proof. First, we show that f1 is strictly increasing. Take v ∈ V (Q(p1)) and u, u′ ∈

V (L)\V (Q(p1)) such that u > v > u′. Pick p ∈ Q(p1) and q, q′ ∈ L\Q(p1) such that V (p) =

v, V (q) = u and V (q′) = u′. By Lemma 14, Q(p1) =
⋃m′

i=1 P
∗(qi) for some q1 . . . , qm

′ ∈ Lo.

Moreover, for each i there exists j 6= i such that P ∗(qi) � P ∗(qj). Hence, each V (P ∗(qi))

cannot be degenerate. Since each P ∗(qi) is open, it follows that for any p ∈ Q(p1), there
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exist p′, p′′ ∈ Q(p1) such that p′ � p � p′′. Hence

u > v > u′ ⇒ V (q) > supU1 > U1(p) > inf U1 > V (q′),

which implies that f1(u) > f1(v) > f1(u′). Thus, f1 is strictly increasing on V (L) and thus,

f1(V ) represents % on L.

Second, we show that f1 is continuous. Let {vj} ⊆ (V l
1 , V

h
1 ) be a sequence that converges

to v. We want to show that f1(vj) converges to f1(v). For each j, pick qj ∈ Q(p1) such

that V (qj) = vj. If v ∈ (V l
1 , V

h
1 ), then pick q ∈ Q(p1) such that V (q) = v. It suffices

to show that U1(qj) converges to U1(q). This is clear, since there exists p ∈ Lo such that

q ∈ P ∗(p), an open set, and U1 is affine on P ∗(p). Now suppose v = V h
1 . Pick q ∈ L such

that V (q) = v. Without loss of generality, assume that {vj} is increasing. We want to show

that U1(qj) converges to v = V h
1 = supU1. Suppose not. Then, there exists r ∈ Q(p1) such

that r � qj for all j. Then Continuity implies that r % q and thus V (r) > V (q) = V h
1 ,

which is a contradiction of the fact that Q(p1) is the union of some open subsets, all of

which have nondegenerate image. Hence, limv↑V h
1
f1(v) = V h

1 . Similarly, if v = V l
1 , we have

limv↓V l
1
f1(v) = V l

1 . The rest is straightforward, since f1 is simply the identity mapping

outside (V l
1 , V

h
1 ).
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