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Abstract

What outcomes can be implemented by the choice of an information structure in binary-

action supermodular games? It is known that an outcome can be partially implemented

(induced by some equilibrium) if it satisfies obedience (Bergemann and Morris (2016)). We

characterize when an outcome can be smallest equilibrium implemented (induced by the

smallest equilibrium) and fully implemented (induced by all equilibria). Smallest equilib-

rium implementation requires a stronger sequential obedience condition: there is a stochastic

ordering of players under which players are prepared to switch to the high action even if

they think only those before them will switch. Full implementation requires sequential

obedience in both directions.

As one application of our result, we show that if the game has a convex potential and an

information designer wants players to choose the high action, it is optimal choose a perfect

coordination outcome, where either all players choose the high action or all player choose
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the low action. The optimal outcome has all playing the highest action on the largest event

where that action profile maximizes the ex ante potential.

1 Introduction

Consider an information designer who can choose the information structure for players in a game

but cannot control what actions the players choose. The designer is interested in the induced

joint distribution over actions and states, which we call an outcome. What outcomes can be

implemented by the designer?

A large literature in recent years has studied this problem under the classical partial imple-

mentation assumption that the designer can also pick the equilibrium played. It is without loss

of generality to restrict attention to direct mechanisms, where players are simply given an action

recommendation by the information designer. An outcome can be implemented if and only if it

satisfies an obedience constraint, i.e., the requirement that players have an incentive to follow

the designer’s recommendation. This is equivalent to saying that the outcome is an incomplete

information version of correlated equilibrium; Bergemann and Morris (2016) call the relevant

version a Bayes correlated equilibrium.1

We study how the answer to this question changes if we are interested in two more demanding

notions of implementation: “smallest equilibrium implementation” and “full implementation”.

We address these questions in the context of binary-action supermodular (BAS) games, where

a smallest equilibrium will always exist. Smallest equilibrium implementation requires that

the outcome is induced in the smallest equilibrium under the chosen information structure.

Full implementation requires that the outcome is induced in all equilibria under the chosen

information structure.

Our first main result is a characterization of smallest equilibrium implementability. The char-

1Bergemann and Morris (2019) provide an overview of a now large literature building on this observation. What

we are calling the information design problem is a many player generalization of the Bayesian persuasion problem

described by Kamenica and Gentzkow (2011); see Kamenica (2019) for a survey of this literature. Bergemann and

Morris (2013, 2016) characterized the implementable outcomes in the many player case and noted information

design applications. Taneva (2019) suggested the terminology “information design”. Information design is a

special class of mechanism design problems that Myerson (1991) labelled “communication in games”, with the

twist that the designer is able to deliver information to the players without having to elicit it.
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acterization is closely analogous to the obedience characterization of partial implementation. In

particular, it corresponds to a finite linear program. The more demanding criterion of smallest

equilibrium implementation gives rise to a more demanding sequential obedience constraint. Se-

quential obedience requires that it is possible for the information designer to choose (perhaps

randomly conditioning on the state) an ordering of players in which players are advised to play

the high action in such a way that they are strictly willing to follow the recommendation even if

they only expect players who received the recommendation before them to choose the high action.

To see why sequential obedience is necessary, suppose that an outcome is smallest equilibrium

implementable. Then there exists an information structure where this outcome is played in the

smallest equilibrium. Recall that it is a standard property of supermodular games that the

smallest equilibrium can be reached by a myopic best response sequence, where we start with

all types of all players choosing the low action and sequentially switch players’ types to the

high action when it is a strict best response to do so (where the order of switches does not

matter).2 The information structure and myopic best response sequence will induce a probability

distribution over states and sequences in which players switch. But now a player will have an

incentive to switch when he is told to switch even if he only expects those before him to have

switched and has no additional information: this is true because we are averaging across scenarios

where the player switches in the myopic best response process. But now we have constructed a

probability distribution over sequences of recommendations for which sequential obedience holds.

Direct information structures (where players are given action recommendations) will in gen-

eral not be sufficient to smallest equilibrium implement an outcome. Nonetheless, we show that if

an outcome satisfies sequential obedience, and a dominant state property, requiring that the high

action is a dominant action in some state, then we can construct a canonical information struc-

ture that implements the outcome in the smallest equilibrium. In this mechanism, a sequence

is drawn randomly in a way that supports the sequential obedience condition, and in addition

a non-negative integer is drawn randomly according to an almost flat exponential distribution.

Each player’s type is the sum of the integer and his rank in the sequence. Payoffs are re-arranged

to ensure that players with very low types have a dominant action to play the high action. One

can then argue by induction that if all types of all players up to k play the high action, type k+1

of any player has an incentive to choose the high action: by construction this type will be sure

2Milgrom and Roberts (1990).
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that players with lower ranks than him are playing the high action so this is true by sequential

obedience.

Our characterization of full implementation is an easy extension of our smallest equilibrium

implementation result, where a reverse sequential obedience condition is required in addition. We

focus on smallest equilibrium implementation because it is simpler to explain and most relevant

for applications.

We provide two applications of our main result. First, we consider the problem of a designer

who always prefers players to choose the high action but expects the worst (i.e., smallest) equi-

librium to be played, and has no instrument other than information design. We review below

a recent literature which has studied this question. We show that if the game has a convex

potential3 at each state and the designer’s objective satisfies a restricted convexity requirement,

then the optimal outcome is perfectly coordinated, where either all players choose the high action

or all players choose the low action. Convexity of the potential is equivalent to requiring that

payoffs in the game are not too asymmetric.

When these conditions are satisfied, the optimal outcome is easy to characterize. All players

choose the high action conditional on the highest probability event with the property that the

expected potential on that event from all playing the high action exceeds the expected potential

from all playing the low action. We show our result is tight, giving general conditions under

which the optimal outcome is no longer a coordinated outcome.

For our second application, we consider what happens if the designer can also offer bonuses to

players for choosing the high action, and characterize the optimal bonus and critical information

structure.

We focus on two applications to illustrate the usefulness of our sequential obedience character-

ization of smallest equilibrium implementability. However, in the course of these applications, we

develop a set of progressively simpler characterizations of sequential obedience (under additional

restrictions on the environment) that we believe should prove useful in many other applications.

1.1 Literature

Our work has its roots in a large literature on the role of higher-order beliefs in games. A

prominent and early insight in this literature is that a particular Nash equilibrium of a complete

3Monderer and Shapley (1996).

4



information game can be fully implemented via an “infection argument” (Rubinstein (1989) and

Carlsson and van Damme (1993)). In particular, consider a two player two action game of

complete information with two strict Nash equilibria. In a symmetric game, a Nash equilibrium

is said to be risk dominant if each player’s action is a best response to a 50/50 conjecture over the

actions of the other player. It is possible to construct an incomplete information game where with

probability close to 1, payoffs are given by the complete information game, but nonetheless the

unique equilibrium of the incomplete information game has the risk dominant action profile of the

complete information game played everywhere. Thus we can fully implement the risk dominant

outcome by information design, and a small perturbation to payoffs. The argument extends to

games with asymmetric payoffs for the appropriate definition of risk dominance. Generically, a

2× 2 game with two strict Nash equilibria has exactly one risk dominant equilibrium.

Kajii and Morris (1997) showed that this argument worked only for the risk dominant Nash

equilibrium. It is not possible to construct an infection argument for the risk dominated strict

Nash equilibrium. Thus the risk dominated equilibrium cannot be fully implemented. A recent

paper of Oyama and Takahashi (2020) characterizes when such an infection argument can be

constructed for generic BAS games.4 These papers addressed the ability to fully implement

a particular equilibrium of a complete information game by information design (and a small

perturbation to payoffs). Our main result characterizes when it is possible to construct an

infection argument that fully implements a general outcome in an incomplete information setting.

We do not have perturbed payoffs but rather maintain a dominant state property to initiate the

infection argument.5

4These papers, and a large related literature in between them, were phrased differently and did more. Kajii

and Morris (1997) said that a Nash equilibrium of a complete information was “robust to incomplete information”

if every incomplete information where payoffs are almost given by that complete information game has a Bayes

Nash equilibrium where that Nash equilibrium is almost always played. The infection argument then establishes

that the risk dominated equilibrium is not robust. Kajii and Morris (1997) described sufficient conditions for

robustness in many action many player games, generalizing risk dominance. Ui (2001) and Morris and Ui (2005)

generalized those sufficient conditions to arguments using potential and generalized potential functions. Oyama

and Takahashi (2020) showed that a sufficient condition identified by Morris and Ui (2005) (“monotone potential

maximizer”) was also necessary for robustness in generic BAS games. This paper builds on the necessity argument

of Oyama and Takahashi (2020).
5Morris and Ui (2019) considers a different incomplete information extension of the literature on ”robustness

of equilibria to incomplete information” described in the previous footnote. They ask: which equilibria of a fixed
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Our first application is to the pure information design problem where the information de-

signer can choose the information structure but anticipates that the worst equilibrium will be

played (“information design with adversarial equilibrium selection”).6 Inostroza and Pavan (2019)

showed that optimal solutions would satisfy the perfect coordination property (PCP) in a regime

change game (an example of a BAS game). Mathevet et al. (2020) solved a two player two action

example of the problem, showing that the solution also satisfied the PCP property. Contem-

poraneously with this paper, Li et al. (2019) solved the information design problem in regime

change games. Our results provide tight conditions under which PCP holds in general BAS

games and provides a general solution which is simple to calculate and interpret. In contrast to

these papers, we show that the PCP property continues to hold even when the games’ payoffs are

asymmetric across players. This contrasts with the partial implementation case where asymmet-

ric payoffs will lead to asymmetric optimal solutions, as emphasized by Arieli and Babichenko

(2019). Mathevet et al. (2020) and Li et al. (2019) report different and simpler information

structures that implement optimal outcomes tailored to the applications. We report a canonical

information structure that works for all BAS games.

Our second application relates to a literature on inducing effort in binary actions games: Segal

(1999), Winter (2004) and Halac et al. (2019). We show how to use our methods to generalize a

recent contribution of Moriya and Yamashita (2020).

We note that even though our “sequential obedience” is necessary and sufficient for smallest

equilibrium implementation, but there is not physical sequentiality in our problem. Physical

sequentiality is the focus of Doval and Ely (2019), who characterize when a designer can partially

implement an outcome when the actions and payoffs of the players are fixed but the designer

can design both the information structure and the extensive form. The version of obedience that

incomplete information game have the property that nearby outcomes arise in all nearby incomplete information

games? Morris and Ui (2019) propose a definition and sufficient conditions that generalize those in Morris and

Ui (2005) in general games, addressing subtle issues concerning the correct definition of robustness.
6Early references include Goldstein and Huang (2016), who restrict attention to public information, and

Carroll (2016), who considers a trading game that is not supermodular. Carroll (2016) asks what is the lowest

possible social welfare across all information structures in a bilateral trading problem when the best equilibrium

is played. This corresponds to the information design problem where the information designer wants to minimize

social welfare but anticipates that an adversarial equilibrium will be chosen. Bergemann and Morris (2019)

and Hoshino (2018) have earlier noted the tight connection between robustness to incomplete information and

information design. See also Sandmann (2020) and Ziegler (2020) for recent contributions in this area.
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arises in their problem is less demanding than standard static obedience whereas our sequential

obedience condition is stronger than the standard static obedience condition. The obedience

condition of Doval and Ely (2019) is weaker than ours both because players assume that later

players will follow their recommendations, and they assume that later players behavior will

respond to their deviations.

The properties of higher order beliefs under the common prior assumption matter to our

analysis. However, the implications of the common prior assumption for higher order beliefs is a

subtle topic: the best characterization we have of the common prior assumption as a restriction

on higher order beliefs is that it is equivalent to no trade (Morris (1994), Samet (1998) and

Feinberg (2000)), but this characterization is not very usable; the elegant recent paper of Arieli

et al. (2020) highlights how difficult it is to characterize common prior restrictions on higher-

order beliefs. While a number of recent papers have emphasized the use of the universal type

space in highlighting the role of higher-order beliefs (e.g., Mathevet et al. (2020) and Inostroza

and Pavan (2019)), the different tradition in the higher-order beliefs literature has been to use

belief operators (Monderer and Samet (1989)) on arbitrary common prior type spaces to track

higher-order beliefs. Morris and Shin (2007) and Morris et al. (2016) used generalized belief

operators introducing the importance of rank beliefs, i.e., what probability does a player assign

to having a higher expectation than other players. Kajii and Morris (1997) and Oyama and

Takahashi (2020) prove results by first establishing properties of higher order beliefs that hold on

all common prior type spaces (using belief operators and generalized belief operators respectively)

and then use those properties to establish their results. Rank beliefs play an important role in

sequential obedience. However, in this paper, we do not perform the intermediate step of stating

results about higher order beliefs on common prior type spaces. This is a pedagogical choice,

as we prefer to focus on the obedience interpretation of our necessary and sufficient conditions.

However, it is important to note that common prior properties higher-order beliefs are implicit

in our analysis, and could be made explicit with the language of generalized belief operators.

1.2 Setting

There are finitely many players, denoted by I = {1, . . . , |I|}. A state is drawn from a finite set

Θ according to the probability distribution µ ∈ ∆(Θ), where we assume that µ has full support:

µ(θ) > 0 for all θ ∈ Θ. Players make binary decisions, ai ∈ Ai = {0, 1}, simultaneously. We
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denote A =
∏

i∈I Ai and A−i =
∏

j ̸=i Aj. Given action profile a = (ai)i∈I ∈ A and state θ ∈ Θ,

player i ∈ I receives payoff ui(a, θ). Throughout this paper, we assume supermodular payoffs,

i.e., for each θ,

di(a−i, θ) ≡ ui((1, a−i), θ)− ui((0, a−i), θ)

is weakly increasing in a−i ∈ A−i. We denote 0 = (0, . . . , 0) and 1 = (1, . . . , 1), and write 0−i

and 1−i for the action profiles of player i’s opponents such that all players j ̸= i play 0 and 1,

respectively.

An information structure is given by a type space T = ((Ti)i∈I , π), in which each Ti is a

countable set of types for player i ∈ I, and π ∈ ∆(T ×Θ) is a common prior over T ×Θ, where

we write T =
∏

i Ti. A type space is consistent if
∑

t π(t, θ) = µ(θ) for each θ ∈ Θ. We maintain

a dominance state assumption that says that there exists a state where action 1 is a dominant

action for all agents: there exists θ ∈ Θ such that di(1−i, θ) > 0 for all i ∈ I.

Together with the payoff functions (ui)i∈I , a type space T defines an incomplete information

game, which we refer to simply as T . In the incomplete information game T , a strategy for player

i is a mapping σi : Ti → ∆({0, 1}). A strategy profile σ = (σi)i∈I is a (Bayes Nash) equilibrium

of the game T if ∑
a,t,θ

π(t, θ)

(∏
j

σj(tj)(aj)

)
ui(a, θ)

≥
∑
a,t,θ

π(t, θ)(σ′
i(ti)(ai))

(∏
j ̸=i

σj(tj)(aj)

)
ui(a, θ)

for all i and σ′
i. We are interested in induced outcomes, where an outcome is a distribution in

∆(A×Θ). A type space T and strategy profile σ induce outcome ν ∈ ∆(A×Θ):

ν(a, θ) =
∑
t

π(t, θ)
∏
i

σi(ti)(ai).

We write BNE (T ) for the set of Bayes Nash equilibria of the game T . Because the game is

supermodular, there will always exist a smallest equilibrium, which is in pure strategies (Milgrom

and Roberts (1990)). We write σ(T ) for that smallest pure strategy equilibrium.

1.3 Implementation

We will be interested in which outcomes can be implemented by a suitable choice of information

structure. The answer will depend on the equilibrium selection rule. We will focus on three
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different assumptions about equilibrium selection which will give rise to three different notions

of implementation.

Definition 1. Outcome ν is partially implementable if there exist an information structure T
and a Bayes Nash equilibrium σ of T such that (T , σ) induces ν.

We write BCE ⊂ ∆(A×Θ) for the set of partially implementable outcomes. This implemen-

tation problem is well understood. An outcome ν satisfies obedience if∑
a−i,θ

ν((ai, a−i), θ) (ui((ai, a−i), θ)− ui((a
′
i, a−i), θ)) ≥ 0

for all i ∈ I and ai, a
′
i ∈ Ai. Bergemann and Morris (2016) showed:

Proposition 1. An outcome is partially implementable if and only if it satisfies consistency and

obedience.

Bergemann and Morris (2016) called such outcomes Bayes correlated equilibria since they

correspond to one natural generalization of correlated equilibrium of Aumann (1974, 1987) to

incomplete information games. Note that BCE is characterized by a finite system of linear

inequalities and is thus a convex polytope.

Definition 2. Outcome ν is smallest equilibrium implementable if there exists an information

structure T such that (T , σ(T )) induces ν.

We write SI ⊂ ∆(A × Θ) for the set of smallest equilibrium implementable outcomes. We

characterize SI and its closure SI in Section 3 and apply characterizations in Section 4.

Definition 3. Outcome ν is fully implementable if there exists an information structure T such

that (T , σ) induces ν for all σ ∈ BNE (T ).

We write FI ⊂ ∆(A × Θ) for the set of fully implementable outcomes. We report a char-

acterization of FI in Section 5, which is an easy extension of our characterization of smallest

equilibrium implementation.

2 Two State Examples

We will illustrate our definitions and preview our results with a series of examples involving two

states. There are two equally likely states, good bad (b) and good (g). Action 0 is labelled “not

invest” and action 1 is labelled “invest”. We will normalize the payoff to not invest to 0.
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2.1 One Player

First suppose that there is a single player and that the payoff to investing is 2 and −4 in the

good and bad state respectively:

Example 1: payoffs

b

Invest −4

Not Invest 0

g

Invest 2

Not Invest 0

An example of a partially implementable outcome is given in the following table.

b

Invest 1
4

Not Invest 1
4

g

Invest 1
2

Not Invest 0

(1)

In the good state, which occurs with probability 1
2
, the player always invests. In the bad state,

the player invests with probability 1
2
. This outcome is obedient because when a player receives a

recommendation to invest, she assigns probability 2
3
to the state being good and is thus indifferent

between investing and not investing. So outcome (1)is the best outcome for a designer who wants

to maximize the probability of investment, and the example corresponds to the leading example

of Kamenica and Gentzkow (2011).

Because this outcome leaves the player indifferent between invest and not invest when told

to invest, so there are “multiple equilibria” of the one player game. But the following outcome

is fully implementable (and smallest equilibrium implementable) for any ε > 0.

b

Invest 1
4
− ε

Not Invest 1
4
+ ε

g

Invest 1
2

Not Invest 0

(2)

Thus although (1) is not fully implementable, it is in the closure of the set of fully implementable

outcomes.

2.2 Two Players with Symmetric Payoffs

Now let us consider the simplest extension of the one player example to two players. Let the

payoff to investing remain 2 and −4 in the good and bad state respectively, if the other player
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invests. But if the other player fails to invest, we subtract 1 from a player’s payoffs. Thus payoffs

in the game are

incomplete information game payoffs

b Invest Not

Invest −4,−4 −5, 0

Not Invest 0,−5 0, 0

g Invest Not

Invest 2, 2 1, 0

Not Invest 0, 1 0, 0

But essentially the same outcome as in the one player case will continue to be partially imple-

mentable:

b Invest Not

Invest 1
4

0

Not Invest 0 1
4

g Invest Not

Invest 1
2

0

Not Invest 0 0

If each player anticipates that the other player will invest when he would have invested in the

one player case, he will have an incentive to behave as before. This is in fact the best partially

implementable outcome for a designer who prefers investment.

However, if we make direct recommendations to the players under this outcome, there is a

strict equilibrium where both players never invest. By construction, players are indifferent about

investing when they thought the other player would do so, so they have a strict incentive to not

invest when they think the other player will not invest. Unlike in the single player case, no

outcome close to this outcome is fully implementable.

However, Mathevet et al. (2020) have shown that the following outcome is in the closure of

the fully implementable outcomes:

b Invest Not

Invest 1
6

0

Not 0 1
3

g Invest Not

Invest 1
2

0

Not 0 0

and it is not possible to fully implement any more investment by information design. This

example illustrates the perfect coordination property: it is optimal to have either both players

invest or both do not.

Our explanation of this result comes from thinking about the complete information game

conditional on both players being told to invest. The complete information game payoffs are

complete information payoffs
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Invest Not

Invest 1
2
, 1
2

−1
2
, 0

Not 0,−1
2

0, 0

This is a game where “Invest, Invest” is (just) risk dominant, so we can fully implement it

following the logic of Rubinstein (1989) and Carlsson and van Damme (1993). Kajii and Morris

(1997) showed that one cannot fully implement a higher probability of investment in this way.

2.3 Two Players with Asymmetric Payoffs

But the conclusion that the perfect coordination property holds is hardly surprising in a game

with symmetric payoffs: what force would lead players not to coordinate in that case? A more

interesting case is what happens with asymmetric payoffs. So suppose now that player 2 incurs

an extra cost 0 ≤ c ≤ 2 whenever he invests:

incomplete information game payoffs

b Invest Not

Invest −4,−4− c −5, 0

Not 0,−5− c 0, 0

g Invest Not

Invest 2, 2− c 1, 0

Not 0, 1− c 0, 0

Thus player 1 is more willing to invest than player 2. Thus it seems intuitive that an information

designer wanting to induce the most investment would have player 1 invest more likely than

player 2. This turns out to be true in the case of partial implementation. The following outcome

is partially implementable and maximizes the sum of the probability that player 1 invests and

the probability that player 2 invests, among all partially implementable outcomes:

b Invest Not

Invest 10−5c
10(4+c)

6c
10(4+c)

Not 0 10+4c
10(4+c)

g Invest Not

Invest 1
2

0

Not 0 0

To see why, observe that the probability that both players invest in the bad state is as high as

it can be consistent with the obedience constraint of player 2 being satisfied. But since player 1

is more willing to invest, he can be induced more, i.e., with positive probability when the state

is bad and player 2 is not investing.
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However, if c ≤ 1, it turns out that the fully implementable outcome with the most investment

is

b Invest Not

Invest 3−c
2(9+c)

0

Not 0 6+2c
2(9+c)

g Invest Not

Invest 1
2

0

Not 0 0

and this satisfies the perfect coordination property. Intuitively, because heterogeneity of payoffs

is not too large it remains optimal to induce players to invest together despite their asymmetries.

And why is this the best fully implementable outcome? Consider the complete information game

being player conditional on both being told to invest:

Invest Not

Invest 1
2
(1 + c), 1

2
(1− c) −1

2
(1− c), 0

Not 0,−1
2
(1 + c) 0, 0

Again, we see that “Invest, Invest” is (just) risk dominant in the ex ante game. Our convexity

condition reduces to c ≤ 1 and this optimal outcome illustrates our general characterization.

3 Smallest Equilibrium Implementation

We first report a strengthening of obedience—which we will call “sequential obedience”—that

will be necessary and essentially sufficient for smallest equilibrium implementation. Suppose

that players’ default action was to play 0 but the information designer recommended a subset

of agents to play 1. The designer gave those recommendations sequentially, according to some

commonly known distribution on states and sequences of recommendation. When players are

advised to play action 1, they will accept the recommendation only if it is a strict best response

if provided that only agents who received the recommendation earlier than them switch.

To describe this formally, let Γ be the set of all sequences of distinct players. For example, if

I = {1, 2, 3}, then

Γ = {∅, 1, 2, 3, 12, 13, 21, 23, 31, 32, 123, 132, 213, 231, 312, 321}.

For each γ ∈ Γ, we denote by ā(γ) ∈ A the action profile such that player i plays action 1 if and

only if i is listed in γ. We will call νΓ ∈ ∆(Γ × Θ) an ordered outcome with the interpretation

that νΓ(γ, θ) is the probability that the state is θ, players listed in γ choose action 1 in order
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γ, and players not listed in γ choose action 0. An ordered outcome νΓ ∈ ∆(Γ × Θ) induces an

outcome ν ∈ ∆(A×Θ) in the natural way:

ν(a, θ) =
∑

γ : ā(γ)=a

νΓ(γ, θ).

For each i ∈ I, let Γi be the set of all sequences in Γ where player i is listed. For each γ ∈ Γi,

we denote by a−i(γ) ∈ A−i the action profile of player i’s opponents such that player j ̸= i plays

action 1 if and only if j is listed in γ before i (therefore, player j plays action 0 if and only if

either j is not listed in γ or j is listed in γ after i).

Definition 4. An ordered outcome νΓ ∈ ∆(Γ×Θ) satisfies sequential obedience if∑
γ∈Γi,θ

νΓ(γ, θ)di(a−i(γ), θ) > 0 (3)

for all i ∈ I such that νΓ(Γi×Θ) > 0. It satisfies weak sequential obedience if the strict inequality

in (3) is replaced with a weak inequality.

This condition is a restriction on ordered outcomes. However, we want to characterize out-

comes (not ordered outcomes) that are implementable, so we also define sequential obedience as

a property of outcomes in the natural way:

Definition 5. An outcome ν ∈ ∆(A × Θ) satisfies sequential obedience (resp. weak sequential

obedience) if there exists an ordered outcome νΓ ∈ ∆(Γ × Θ) such that νΓ induces ν and νΓ

satisfies sequential obedience (resp. weak sequential obedience).

If action profile 0 is a Nash equilibrium at every state, then the smallest equilibrium will

have all players choosing action 0. Our sufficiency argument will work only for outcomes where

all players choose action 1 with positive probability at a dominant state.

Definition 6. An outcome ν ∈ ∆(A×Θ) satisfies dominance if ν(1, θ) > 0.

Theorem 1. 1. If an outcome is smallest equilibrium implementable, then it satisfies consis-

tency, obedience and sequential obedience.

2. If an outcome satisfies consistency, obedience, sequential obedience and dominance, then it

is smallest equilibrium implementable.
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The proof of Theorem 1 as well as those of the following corollaries are given in Appendix A.1.

Corollary 1. ν ∈ SI if and only if ν satisfies consistency, obedience, and weak sequential

obedience.

Corollary 2. If an outcome ν satisfies consistency and weak sequential obedience, then there is

an outcome ν ′ that first-order stochastically dominates ν and satisfies consistency, obedience and

weak sequential obedience.

In particular, SI is a convex polytope.

We conclude this section with a dual representation of the sequential obedience condition.

There are a number of independent reasons for reporting it. First, we will appeal to it in the

proof of Theorem 3 in Section 3. Second, it provides some alternative intuition for the sequential

obedience condition. Third, it may be important in future work. And finally, it highlights the

important connection with Oyama and Takahashi (2020). They showed that an equilibrium of a

BAS game was robust if and only if it was a monotone potential maximizer. The existence of a

monotone potential is the dual of the failure of a version of sequential obedience for the complete

information case.

For ν ∈ ∆(A × Θ), write S(ν) = {i ∈ I | ν((1, a−i), θ) > 0 for some a−i ∈ A−i and θ ∈ Θ}
and A(ν) = {a ∈ A | S(a) ⊂ S(ν)}, where ν(A(ν)×Θ) = 1.

Proposition 2. ν ∈ ∆(A×Θ) satisfies sequential obedience (resp. weak sequential obedience) if

and only if for any (λi)i∈S(ν) ≥ 0, (λi)i∈S(ν) ̸= 0,∑
a∈A(ν),θ∈Θ

ν(a, θ) max
γ∈Γ(a)

∑
i∈S(γ)

λidi(a−i(γ), θ) > (resp. ≥) 0. (4)

The proof is given in Appendix A.2.

Thus, sequential obedience requires that for any player weights, the expected weighted sum

of payoff changes along the best path be positive.

4 Applications

4.1 Potential Games

While our characterization of smallest equilibrium implementability applies to all BAS games,

many relevant applications work with potential games and we can give easier simpler character-
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izations of sequential obedience in this case.

Definition 7. The game is a potential game if there exists Φ : A × Θ → R such that for each

θ ∈ Θ,

di(a−i, θ) = Φ((1, a−i), θ)− Φ((0, a−i), θ)

for each i ∈ I and a−i ∈ A−i.

We will adopt the normalization that Φ(0, θ) = 0 for all θ. We restrict attention to potential

games for the remainder of this section.

We will use the following two examples of potential games to illustrate our results. We write

n(a) for the number of players choosing action 1 in action profile a and (abusing notation slightly)

n(a−i) for the number of players choosing action 1 in action profile a−i.

Example 1 (Investment Game). Let Θ = {1, . . . , |Θ|} and

di(a−i, θ) = R(θ) + hn(a−i)+1 − ci

where hk is increasing in k and R(θ) is strictly increasing in θ. Assume that R(|Θ|)+ h1 > ci for

all i ∈ I, so that the dominance state assumption holds with θ̄ = |Θ|. We interpret di(a−i, θ) to

be the return to investment (action 1), which is (i) increasing in the state; and (ii) increasing in

the proportion of others investing (making the game supermodular). But there are heterogeneous

costs of investment; without loss we assume that

c1 ≤ c2 ≤ · · · ≤ c|I|.

This game has a potential:

Φ(a, θ) = R(θ)n(a) +

n(a)∑
k=1

hk −
∑
i

aici.

Example 2 (Regime Change Game). Let Θ = {1, . . . , |Θ|}, and

di(a−i, θ) =

1− ci if n(a−i) + 1 > |I| − k(θ),

−ci if n(a−i) + 1 ≤ |I| − k(θ),

where k : Θ → N is strictly increasing. We assume that k(1) ≥ 1 and k(|Θ|) = |I|, so that

the dominance assumption holds with θ̄ = |Θ|. The interpretation is that action 0 is to attack
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the regime while action 1 is to abstain from attacking. The regime collapses if the number

of attackers (action 0 players) is greater than or equal to k(θ), or equivalently, the number of

non-attackers (action 1 players) is smaller than |I| − k(θ). This game has a potential:

Φ(a, θ) =

n(a)− (|I| − k(θ))−
∑

i∈I aici if n(a) > |I| − k(θ),

−
∑

i∈I aici if n(a) ≤ |I| − k(θ).

4.2 Simplifying Sequential Obedience

The purpose of this section is to provide simpler characterizations of sequential obedience. Sup-

pose that a subset of players were able to coordinate a deviation where they would always choose

action 0, even if action 1 was recommended. We say that an outcome is coalitionally obedient

if no subset of players would want to deviate in this way. We say that an outcome is grand

coalitionally obedient if the set of all players would not want to deviate in this way. It is intuitive

that such conditions might be relevant for full implementation, since we are trying to provent

the possibility of joint deviations to a bad equilibrium. These conditions are easier to check

than sequential obedience.

In this section, we will show that sequential obedience is equivalent to coalitional obedience

in potential games and equivalent to grand coalitional obedience under some extra restrictions.

We will use these results in our applications and we believe that they will be useful in many

other applications.

4.2.1 Coalitional Obedience

For any outcome ν ∈ ∆(A×Θ), define a new potential

Φν(a) =
∑
a′∈A

∑
θ∈Θ

ν(a′, θ)Φ(a ∧ a′, θ),

where b = a ∧ a′ denotes the action profile such that bi = 1 if and only if ai = a′i = 1. Imagine

that players are told to play action 0 or 1 according to ν. The function Φν can be interpreted as

a complete information game with a common payoff function Φν given as follows: Players choose

actions a, before they receive recommendations a′ according to ν. Players who choose action 1

(i.e., those for whom ai = 1) actually play 1 only when recommended so (i.e., a′i = 1), while

players who are recommended to play action 0 (i.e., those for whom a′i = 0) are forced to play
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0 as “passive players”. Thus, the resulting action profile is a ∧ a′, yielding a payoff Φ(a ∧ a′) to

every player. Taking the expectation with respect to ν leads to Φν(a).

For ν ∈ ∆(A × Θ), let S(ν) ⊂ I denote the set of players who are recommended to play

action 1 with positive probability:

S(ν) = {i ∈ I | ν((1, a−i), θ) > 0 for some a−i ∈ A−i and θ ∈ Θ}.

Thus, players in I \ S(ν) are treated as “passive players” with probability one in computing Φν .

Let A(ν) ⊂ A denote the set of action profiles in which these “passive players” play action 0:

A(ν) = {a ∈ A | S(a) ⊂ S(ν)},

where S(a) = {i ∈ I | ai = 1}. Equivalently,

A(ν) = {a ∈ A | ai = 0 for all i /∈ S(ν)}.

By definition, ∑
a∈A(ν),θ∈Θ

ν(a, θ) = 1,

and Φν(1) = Φν(a) for all a ∈ A such that ai = 1 for all i ∈ S(ν), in particular, for a = 1S(ν).

Our coalitional obedience condition will require that players strictly prefer to play 1, or 1S(ν), to

jointly deviating to any a ∈ A(ν) \ {1S(ν)}.

Definition 8. Outcome ν satisfies coalitional obedience (resp. weak coalitional obedience) if

Φν(1) > (resp. ≥) Φν(a) (5)

for all a ∈ A(ν) \ {1S(ν)}.

Our first simplification of sequential obedience is:

Proposition 3. In a potential game, an outcome satisfies sequential obedience (resp. weak se-

quential obedience) if and only if it satisfies coalitional obedience (resp. weak coalitional obedi-

ence).

The intuition is that if the game is a potential game, we can add up the gains from deviating

across players.

The proof is given in Appendix A.3.
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4.2.2 Grand Coalitional Obedience and Perfect Coordination

Grand coalitional obedience corresponds to the even simpler condition that the coalitional obe-

dience condition holds for the set of all players.

Definition 9. Outcome ν satisfies grand coalitional obedience (resp. weak grand coalitional obe-

dience) if

Φν(1) > (resp. ≥) Φν(0) = 0, (6)

or equivalently, ∑
a∈A,θ∈Θ

ν(a, θ)Φ(a, θ) > (resp. ≥) 0.

Sequential obedience will reduce to grand coalitional obedience when incentives to coordinate

are high (Proposition 4).

We say that an outcome is a perfect coordination outcome if all players are always choosing

the same action.

Definition 10. Outcome ν satisfies perfect coordination if ν(a, θ) > 0 ⇒ a ∈ {0,1}.

As we noted in the introduction, this property arises in the work of Inostroza and Pavan

(2019) and Li et al. (2019) and will play an important role in our applications.

When should we expect perfection coordination to arise? If players’ actions maximized the

potential function at each state, the necessary and sufficient condition would be:

argmax
a∈A

Φ(a, θ) ⊂ {0,1}

for all θ ∈ Θ.7

A key property in our analysis will be a cardinal strengthening of this property which requires

that Φ(a, θ) is always more than a convex combination of Φ(0, θ) = 0 and Φ(1, θ).

Definition 11. Potential Φ satisfies convexity if

Φ(a, θ) ≤ n(a)

|I|
Φ(1, θ) (7)

for all a ∈ A and θ ∈ Θ.
7Frankel et al. (2003) show that this is a sufficient condition for a perfect coordination in the no noise limit

of a global global game, since the potential maximizing action profile will always be played. Leister et al. (2018)

report a “balancedness” condition which is sufficient for this in a class of BAS games motivated by interaction

on a network.
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This condition requires that payoffs are not too asymmetric across players. To see why, note

that if payoffs of the game were symmetric, so Φ(a, θ) = Φ̂(n(a), θ), then supermodularity implies

that Φ̂(n + 1, θ)− Φ̂(n, θ) is increasing in n and thus (7) is satisfied. If payoffs are asymmetric,

define a symmetrized potential Φ̂ : {0, . . . , |I|} ×Θ → R by

Φ̂(n, θ) =
1(
N

n

) ∑
a:n(a)=n

Φ(a, θ)

This represents the average value of the potential Φ(a, θ) across all action profiles where n players

choose action 1. Now a natural measure of the asymmetry of payoffs is

∆(a, θ) = Φ(a, θ)− Φ̂(n(a), θ).

Here, ∆(a, θ) measures how much higher the value of the potential is for a relative to the average

of actions profiles where the same number of players are choosing action 1. Now supermodularity

implies that

S(n, θ) =
n

I
Φ(1, θ)− Φ̂(n, θ) ≥ 0

for all n and θ, where S(n, θ) is a measure of the supermodularity of the symmetrized potential.

So the bounded heterogeneity can be written as the requirement that

Φ(a, θ) = ∆(a, θ) + Φ̂(n, θ) ≤ n(a)

|I|
Φ(1, θ) (8)

and so

∆(a, θ) ≤ S(n, θ) (9)

for any a ∈ A and θ ∈ Θ.

Example 3 (Investment Game). In the game as defined in Example 1, convexity holds if and

only if

ℓ

|I|∑
k=1

(hk − ck) ≥ |I|
ℓ∑

k=1

(hk − ck) (10)

for any ℓ = 1, . . . , |I|−1. This condition automatically holds if costs are symmetric and amounts

to the assumption that costs are not too asymmetric. In particular, a sufficient condition for

convexity is that:

hk+1 − ck+1 ≥ hk − ck

for any k = 1, . . . , |I| − 1, where hk is increasing by supermodularity.
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Example 4 (Regime Change Game). In the game as defined in Example 2, convexity holds only

if c1 = · · · = c|I|.

Now we have:

Proposition 4. Suppose that the potential satisfies convexity. Then a perfectly coordinated

outcome satisfies sequential obedience (resp. weak sequential obedience) if and only if it satisfies

grand coalitional obedience (resp. weak grand coalitional obedience).

The proof is given in Appendix A.4.

4.3 Application 1: Information Design with Adversarial Equilibrium

Selection

Characterizations of implementability are key ingredients in information design problems. Sup-

pose that an information designer receives V (a, θ) if agents choose a ∈ A in state θ ∈ Θ. We will

maintain:

Assumption 1. For each θ ∈ Θ, V (a, θ) is weakly increasing in a.

We will adopt the normalization that V (0, θ) = 0. For simplicity, we assume that V (1, θ) > 0

for all θ ∈ Θ. We are interested in the informational design problem, where the designer wants

to obtain the best possible payoffs even if players will play her worst equilibrium, which, by the

monotonicity of V in a, is the smallest equilibrium σ = σ(T ). Thus her problem is:

sup
T

∑
a,θ

(∑
t

π(t, θ)
∏
i

σi(ti)(ai)

)
V (a, θ).

But under our definition of smallest equilibrium implementable outcomes, this is equivalent to

sup
ν∈SI

∑
a,θ

ν(a, θ)V (a, θ) = max
ν∈SI

∑
a,θ

ν(a, θ)V (a, θ).

An optimal solution is an element of SI that maximizes
∑

a,θ ν(a, θ)V (a, θ).

Our main result requires one additional assumption on the designer’s objective:

Definition 12. Designer’s objective V satisfies restricted convexity with respect to potential Φ

if

V (a, θ) ≤ n(a)

|I|
V (1, θ)

whenever Φ(a, θ) > Φ(1, θ).
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Restricted convexity holds, for example, if V (a, θ) =
(

n(a)
|I|

)α
with α ≥ 1; in particular when

the designer wants to maximize the expected number of players who play action 1 (α = 1), or

the probability that all players play 1 (α → ∞).

Example 5 (Regime Change Game). In the game as defined in Example 2, Φ(a, θ) > Φ(1, θ)

holds only when n(a) ≤ |I| − k(θ) (i.e., when the regime collapses). Thus, V satisfies restricted

convexity with respect to Φ, for example, if

V (a, θ) =

1 if n(a) > |I| − k(θ),

0 if n(a) ≤ |I| − k(θ).

Theorem 2. Suppose that Φ satisfies convexity and V satisfies restricted convexity with respect

to Φ. Then there exists an optimal solution to the adversarial information design problem that

satisfies the perfect coordination property.

The proof is given in Appendix A.5.

Given Theorem 2, it is easy to characterize a solution to the information designer’s problem.

Since the game is uniformly convex and the solution satisfies the perfect coordination property,

Proposition 4 establishes that it is enough to consider the perfect coordination outcome that

maximizes the designer’s objective subject to grand coalitional obedience.

To describe this outcome, we relabel the states as Θ = {1, . . . , |Θ|} in such a way that Φ(1,θ)
V (1,θ)

is increasing in θ:
Φ(1, 1)

V (1, 1)
≤ · · · ≤ Φ(1, |Θ|)

V (1, |Θ|)
.

By the dominance state assumption, Φ(1, θ̄) > 0. Under the perfect coordination property, the

optimization problem boils down to

max
ν(1,·)

∑
θ∈Θ

ν(1, θ)V (1, θ)

subject to ∑
θ∈Θ

ν(1, θ)Φ(1, θ) ≥ 0,

0 ≤ ν(1, θ) ≤ µ(θ) (θ ∈ Θ).
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Define

Ψ(θ) =
∑
θ′≥θ

µ(θ′)Φ(1, θ′).

If Ψ(1) ≥ 0, then the outcome “all play 1” is an optimal solution. In the following, we assume

that Ψ(1) < 0. Let θ∗ ∈ Θ be a unique state such that Ψ(θ) ≥ 0 if and only if θ ≥ θ∗. Thus,

Ψ(θ∗) =
∑
θ≥θ∗

µ(θ)Φ(1, θ) ≥ 0,

Ψ(θ∗ − 1) =
∑

θ≥θ∗−1

µ(θ)Φ(1, θ) < 0.

Note that θ∗ > 1 and Φ(1, θ∗ − 1) < 0. Let

p∗ =
Ψ(θ∗)

−Φ(1, θ∗ − 1)
. (11)

By construction, 0 ≤ p∗ < µ(θ∗−1); indeed, we have p∗ ≥ 0 since Ψ(θ∗) ≥ 0, and p∗−µ(θ∗−1) =

Ψ(θ∗ − 1)/(−Φ(1, θ∗ − 1)) < 0 since Ψ(θ∗ − 1) < 0.

Now define the outcome ν∗ by

ν∗(a, θ) =



µ(θ) if a = 1 and θ ≥ θ∗,

p∗ if a = 1 and θ = θ∗ − 1,

µ(θ)− p∗ if a = 0 and θ = θ∗ − 1,

µ(θ) if a = 0 and θ < θ∗ − 1,

0 otherwise.

(12)

This satisfies the grand coalitional obedience condition with equality:∑
(a,θ)∈A×Θ

ν∗(a, θ)Φ(a, θ) = Ψ(θ∗) + p∗Φ(1, θ∗ − 1) = 0. (13)

Clearly, it also satisfies obedience. Its value of the objective function is∑
(a,θ)∈A×Θ

ν∗(a, θ)V (a, θ) =
∑
θ≥θ∗

µ(θ)V (1, θ) + p∗V (1, θ∗ − 1)

=
∑
θ≥θ∗

µ(θ)

(
V (1, θ) +

Φ(1, θ)

−Φ(1, θ∗ − 1)
V (1, θ∗ − 1)

)
.

Proposition 5. Suppose that Φ satisfies convexity and V satisfies restricted convexity with re-

spect to Φ. Then the outcome ν∗ defined in (12) is an optimal solution.
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The proof is given in Appendix A.6.

The general construction in the proof of Theorem 1 provides an information structure that

implements this outcome. However, because we have a potential game, a simpler argument

is possible. To avoid complications, let us discuss how to smallest equilibrium implement the

slightly suboptimal outcome ν̂ as defined by ν̂(1, θ) = µ(θ) for θ ≥ θ∗ and ν̂(0, θ) = µ(θ) for

θ < θ∗, while assuming that ν̂ satisfies coalitional obedience (hence sequential obedience):∑
θ≥θ∗

µ(θ)Φ(1, θ) > 0.

If θ < θ∗, then this fact is publicly announced. If θ ≥ θ∗, then an email game/global game

like signal protocol is employed: m ∈ N is drawn according to an almost uniform exponential

distribution and a ranking γ is drawn according to the uniform distribution on all permutations

(by symmetry), while if θ = |Θ| (assume this is a dominance state), signals are skewed towards

1, . . . , |I| − 1. Upon receipt of signals 1, . . . , |I| − 1, action 1 is dominant. For signals ti ≥ |I|,
the expected payoff to action 1 is (approximately) the expected average payoff with respect to

the Laplacian belief: ∑|I|
ℓ=1

∑
θ≥θ∗ µ(θ)d̂(ℓ, θ)

|I|
=
∑
θ≥θ∗

µ(θ)
Φ̂(|I|, θ)− Φ̂(0, θ)

|I|
.

This being positive is equivalent to coalitional obedience (hence sequential obedience).

4.4 Application 2: Implementing An Outcome with Information De-

sign and Payments

In our previous application, we proved general results about the pure information design problem

using our simplified characterizations of sequential obedience in Section 4.2. In this section,

we demonstrate that those same results offer a simple and clean analysis to the problem of

joint design of payoff and information structures in the context of contracting with externalities

(Winter (2004), Moriya and Yamashita (2020)), where the designer has the ability to make

payments to the players as well as designing the information.

There is a team I of agents who are engaged in a joint project. Each agent decides whether to

exert effort (action 1) or not (action 0), where the effort cost is c > 0, common across agents. The

success of the project depends on the number of agents who exert effort as well as the state of the
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world, unknown to the agents, which is drawn from Θ according to µ. The project’s technology

is given by the function p : {0, . . . , |I|}×Θ → [0, 1], where p(n, θ) is the success probability when

n agents exert effort at state θ. For n = 1, . . . , |I|, write

∆p(n, θ) = p(n, θ)− p(n− 1, θ).

We assume increasing returns to scale (IRS) on p, i.e., we assume that ∆p(n, θ) is strictly

increasing in n for each θ.

The principal chooses an information structure (as in the previous section) and a bonus

payment scheme. We assume that the actions of the agents are unobservable and the state

realization is unverifiable, so that the bonus payment to each agent can depend only on the

success of the project. If the bonus payment to agent i is bi, this agent’s payoff is thus given by

p(n(a−i) + 1, θ)bi − c for ai = 1 and p(n(a−i), θ)bi for ai = 0. By normalization, we let the payoff

difference function be given by

di(a−i, θ) = ∆p(n(a−i) + 1, θ)− c

bi
.

By the assumption of IRS, di is nondecreasing in a−i.

The objective of the principal is to find a bonus scheme with a least total payment and an

information structure that induce all types of all agents to exert effort in the smallest, hence

unique, equilibrium of the induced Bayesian game. Thus, the problem becomes:

inf
(bi)i∈I :ν̄∈SI

∑
i∈I

bi,

where ν̄ ∈ ∆(A×Θ) is the “always play 1” outcome, i.e., the outcome such that ν̄(1, θ) = µ(θ)

for all θ ∈ Θ, and SI ⊂ ∆(A × Θ) is the set of smallest equilibrium implementable outcomes

under the bonus scheme (bi)i∈I . We say that a bonus scheme (b∗i )i∈I is optimal if
∑

i∈I b
∗
i is equal

to this infimum and ν̄ ∈ SI under (b∗i + ε)i∈I for every ε > 0.

Let θ̄ ∈ Θ be a state such that ∆p(1, θ̄) ≥ ∆p(1, θ) for all θ ∈ Θ. We impose the following

assumption:

∆p(1, θ̄) ≥
∑
θ∈Θ

µ(θ)
p(|I|, θ)− p(0, θ)

|I|
. (14)

This corresponds to the dominance state assumption in the main analysis. It says that the

marginal productivity by a single agent’s effort at θ̄ (left hand side) is large enough that it

exceeds the expected average productivity (right hand side). Under this condition, we derive the

optimal bonus scheme.
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Proposition 6. The unique optimal bonus scheme is given by (b∗, . . . , b∗), where

b∗ =
|I|c∑

θ∈Θ µ(θ)(p(|I|, θ)− p(0, θ))
.

The proof, given in Appendix A.7, proceeds as follows. By Theorem 1(1), sequential obedience

of ν̄ is a necessary condition for ν̄ ∈ SI , which will give us a condition on payoffs (di)i∈I , or

bonuses (bi)i∈I . But the base game given (bi)i∈I is a potential game with a potential

Φ(a, θ) = p(n(a), θ)− p(0, θ)−
∑
i∈I

ai
c

bi
.

Therefore, by Proposition 3, sequential obedience reduces to the simpler condition of coalitional

obedience, which is easy to inspect. It gives a lower bound of the total value of bonuses under

which ν̄ ∈ SI . The symmetric bonus scheme (b∗, . . . , b∗) as given in the statement attains this

lower bound. Conversely, for any ε > 0, under (b∗+ε, . . . , b∗+ε), ν̄ satisfies coalitional obedience,

hence sequential obedience, and also, the dominance state assumption, which is endogenous with

bonus choice, is satisfied by the assumption (14): it therefore follows from Theorem 1(2) that

ν̄ ∈ SI . Thus, (b∗, . . . , b∗) is an optimal bonus scheme.

Let us close this section by briefly discussing related studies. The original model of Winter

(2004) has no state uncertainty (i.e., |Θ| = 1). Winter (2004) shows that, even with symmet-

ric effort costs, an optimal bonus scheme must be discriminatory. Specifically, it is given by(
c

∆p(1)
, . . . , c

∆p(|I|)

)
(modulo permutation). Moriya and Yamashita (2020) introduce state uncer-

tainty to Winter’s (2004) model and study the join design of bonus payments and information

allocation with two agents and two states. They derive the optimal bonus scheme restricting to

symmetric schemes b1 = b2. Our analysis extends theirs to any (finite) numbers of agents and

states and shows that, under the dominance state assumption (i.e., assumption (14)), a sym-

metric bonus scheme is indeed optimal among asymmetric schemes, and asymmetric ones are

strictly suboptimal. Halac et al. (2019) also consider the join design of payments and informa-

tion in Winter’s (2004) model (with many agents and no state uncertainty, but with asymmetric

costs), but where the payments may vary across types within an information structure (in our

terminology, bi is a function on Ti). They derive the optimal value of the total payment and

the optimal “ranking scheme”, which is analogous to the construction in our Theorem 1(1) (and

more closely to that in Oyama and Takahashi (2020)).
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5 Full Implementation

We focussed on smallest equilibrium implementation, rather than full implementation, because

it is the most relevant notion for applications and is simpler to state. However, our argument

easily extends to full implementation. In this case, we can show that both sequential obedience

and its reverse version are necessary and jointly sufficient for full implementation.

To proceed, we add a symmetric dominant state assumption that there exists θ ∈ Θ such that

µ(θ) > 0 and di(0−i, θ) > 0 for all i ∈ I. We now interpret an ordered outcome as describing

switches from action 1 to action 0. So write ā0(γ) = 1 − ā(γ) ∈ A for the action profile such

that player i plays action 0 if and only if i is listed in γ and ā0−i(γ) for the action profile such

that only players before i in γ play action 0. Now an ordered outcome νΓ ∈ ∆(Γ × Θ) reverse

induces ν ∈ ∆(A×Θ) if

ν(a, θ) =
∑

γ : ā0(γ)=a

νΓ(γ, θ).

Ordered outcome νΓ satisfies reverse sequential obedience∑
γ∈Γi,θ

νΓ(γ, θ)di(a
0
−i(γ), θ) < 0

for all i ∈ I such that νΓ(Γi×Θ) > 0. An outcome ν satisfies reverse sequential obedience if there

exists an ordered outcome νΓ that reverse induces ν and satisfies reverse sequential obedience.

Finally, say that an outcome satisfies dominance if ν(0, θ) > 0 as well as ν(1, θ) > 0. Then we

have

Theorem 3. 1. If an outcome is fully implementable, then it satisfies consistency, sequential

obedience, and reverse sequential obedience.

2. If an outcome satisfies consistency, sequential obedience, reverse sequential obedience, and

dominance, then it is is fully implementable.

The proof is given in Appendix A.8.
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Appendix

A.1 Proof of Theorem 1

A.1.1 Proof of Theorem 1(1)

In this proof, by abusing notation, for a pure strategy σi we let σi(ti) represent a pure action

(an element of Ai), rather than a mixed action (an element of ∆(Ai)).

Let ν ∈ ∆(A × Θ) be smallest equilibrium implementable, and let (T, π) be a type space

whose smallest Bayesian Nash equilibrium σ induces ν:

ν(a, θ) =
∑

t:σ(t)=a

π(t, θ).

By Proposition 1, ν satisfies consistency and obedience.

Consider the sequence of pure strategy profiles {σn} obtained by sequential best response

starting with the smallest strategy profile: let σ0
i (ti) = 0 for all i ∈ I and ti ∈ Ti, and for round

n = 1, 2, . . ., all types of player n (mod |I|) switch from action 0 to action 1 if it is a strict best

response to σn−1
−i . Thus,

σn
i (ti) =


1 if i ≡ n (mod |I|),

and
∑

t−i,θ
π((ti, t−i), θ)di(σ

n−1
−i (t−i, θ)) > 0,

σn−1
i (ti) otherwise.

By supermodularity, for each i and ti, the sequence {σn
i (ti)} (of pure actions 0 and 1) is monotone

increasing and converges to σi(ti). Let ni(ti) = n if σn−1
i (ti) = 0 and σn

i (ti) = 1 (and hence

σi(ti) = 1); let ni(ti) = ∞ if σn
i (ti) = 0 for all n (and hence σi(ti) = 0). Write n(t) =

(n1(t1), . . . , n|I|(t|I|)). For γ = (i1, . . . , ik) ∈ Γ, we say that n(t) is consistent with8 γ if ni(ti) < ∞
if and only if i ∈ S(γ),9 and for i ∈ S(γ), niℓ(tiℓ) < nim(tim) if and only if ℓ < m. Let T (γ)

denote the set of type profiles t such that n(t) is consistent with γ.

Now, define νΓ ∈ ∆(Γ×Θ) by

νΓ(γ, θ) =
∑

t∈T (γ)

ν(t, θ)

8Or, ordered according to.
9Define S(γ) somewhere before.
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for each (γ, θ) ∈ Γ×Θ. Observe that νΓ induces ν: indeed, each (γ, θ) ∈ Γ×Θ, we have∑
γ:ā(γ)=a

νΓ(γ, θ) =
∑

γ:ā(γ)=a

∑
t∈T (γ)

ν(t, θ)

=
∑

t:ni(ti)<∞ ⇐⇒ ai=1

π(t, θ)

=
∑

t:σ(t)=a

π(t, θ) = ν(a, θ).

To show sequential obedience, fix any i ∈ I with νΓ(Γi × Θ) > 0. Note that for all ti ∈ Ti with

ni(ti) < ∞, we have ∑
t−i,θ

π((ti, t−i), θ)di

(
σ
ni(ti)−1
−i (t−i, θ)

)
> 0.

By adding up the inequality over all such ti, we have

0 <
∑

ti:ni(ti)<∞

∑
t−i,θ

π((ti, t−i), θ)di

(
σ
ni(ti)−1
−i (t−i), θ)

)
=
∑
γ∈Γi

∑
t∈T (γ)

∑
θ

π(t, θ)di(ā−i(γ), θ))

=
∑

γ∈Γi,θ

νΓ(γ, a)di(ā−i(γ), θ)).

Thus, ν satisfies sequential obedience.

A.1.2 Proof of Theorem 1(2)

Let ν ∈ ∆(A×Θ) satisfy consistency, obedience, sequential obedience and upper dominance, and

let νΓ ∈ ∆(Γ × Θ) be an ordered outcome establishing sequential obedience. Since ν(1, θ) > 0

by upper dominance, there exists γ̄ ∈ Γ containing all players with νΓ(γ̄, θ) > 0. For ε > 0 with

ε < νΓ(γ̄, θ), let

ν̃Γ(γ, θ) =


νΓ(γ, θ)− ε

1− ε
if (γ, θ) = (γ̄, θ),

νΓ(γ, θ)

1− ε
otherwise,

where we assume that ε is sufficiently small that ν̃Γ satisfies sequential obedience, i.e.,∑
γ∈Γi,θ∈Θ

ν̃Γ(γ, θ)di(a−i(γ), θ) > 0
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for all i ∈ I. By richness, we can take a q̄ < 1 such that

q̄di(0−i, θ) + (1− q̄)min
θ ̸=θ

di(0−i, θ) > 0 (15)

for all i ∈ I. Then let η > 0 be such that

ε
|I|−1

ε
|I|−1

+ η
≥ q̄ (16)

and ∑
γ∈Γi,θ∈Θ

(1− η)|I|−|a−i(γ)|−1ν̃Γ(γ, θ)di(a−i(γ), θ) > 0 (17)

for all i ∈ I. Now construct the type space (T, π) as follows. For each i ∈ I, let

Ti =

{1, 2, . . .} if ν̃Γ(Γi ×Θ) = 1,

{1, 2, . . .} ∪ {∞} otherwise.

Let π ∈ ∆(T ×Θ) be given by

π(t, θ)

=



(1− ε)η(1− η)mν̃Γ(γ, θ) if there exist m ∈ N and γ ∈ Γ such that

ti = m+ ℓ(i, γ) for all i ∈ I,

ε

|I| − 1
if 1 ≤ t1 = · · · = t|I| ≤ |I| − 1 and θ = θ,

0 otherwise

for each t = (ti)i∈I ∈ T and θ ∈ Θ, where

ℓ(i, γ) =

ℓ if there exists ℓ ∈ {1, . . . , k} such that iℓ = i,

∞ otherwise

for each i ∈ I and γ = (i1, . . . , ik) ∈ Γ.

Claim 1. For any i ∈ I and any τ ∈ {1, . . . , |I| − 1}, π(θ|ti = τ) ≥ q̄.

Proof. For τ ∈ {1, . . . , |I| − 1}, we have

π(θ|ti = τ) =

∑
t−i

π(ti = τ , t−i, θ)∑
t−i,θ

π(ti = τ , t−i, θ)
≥

ε
|I|−1

ε
|I|−1

+ η
≥ q̄,

where the last inequality is by (16).
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Claim 2. For any i ∈ I and any τ ∈ {|I|, |I|+ 1, . . .},

π({j ̸= i | tj < τ} = S, θ|ti = τ)

= (1− η)|I|−|S|−1ν̃Γ({γ ∈ Γi | a−i(γ) = 1S} × {θ})/Ci

for all S ⊂ I \ {i}, where Ci =
∑|I|

ℓ=1(1− η)|I|−ℓν̃Γ({γ = (i1, . . . , ik) ∈ Γi | iℓ = i} ×Θ) > 0.

Proof. For τ ∈ {|I|, |I|+ 1, . . .} and for S ⊂ I \ {i}, we have

π({j ̸= i | tj < τ} = S, θ|ti = τ)

= π(ti = τ , {j ̸= i | tj < τ} = S, θ)/π(ti = τ)

= (1− ε)η(1− η)τ−|S|−1ν̃Γ({γ ∈ Γi | a−i(γ) = 1S} × {θ})/π(ti = τ)

= (1− η)|I|−|S|−1ν̃Γ({γ ∈ Γi | a−i(γ) = 1S} × {θ})/Ci,

as claimed.

Claim 3. For any i ∈ I such that ν̃Γ(Γi × Θ) < 1, π({j ̸= i | tj < ∞} = S, θ|ti = ∞) =

ν(1S, θ)/Di for all S ⊂ I \ {i}, where Di = (1− ε)(1− ν̃Γ(Γi ×Θ)) > 0.

Proof. For S ⊂ I \ {i}, we have

π({j ̸= i | tj < ∞} = S, θ|ti = ∞)

= π(ti = ∞, {j ̸= i | tj < ∞} = S, θ)/π(ti = ∞)

= (1− ε)ν̃Γ({γ ∈ Γ | S(γ) = S} × {θ})/Di

= νΓ({γ ∈ Γ | S(γ) = S} × {θ})/Di = ν(1S, θ)/Di,

as claimed, where (1− ε)ν̃Γ(γ, θ) = νΓ(γ, θ) whenever i /∈ S(γ).

We are in a position to conclude the proof of Theorem 1. We first show that action 1 is

uniquely rationalizable for all players of types ti < ∞. For types ti ≤ |I|−1, action 1 is a strictly

dominant action by Claim 1 and condition (15). For τ ≥ |I|, suppose that action 1 is uniquely

rationalizable for all players of types ti ≤ τ − 1. Then the expected payoff for a player i of type

ti = τ from playing action 1 is no smaller than∑
S⊂I\{i},θ∈Θ

π({j ̸= i | tj < τ} = S, θ|ti = τ)di(1S, θ)

31



=
∑

γ∈Γi,θ∈Θ

(1− η)|I|−|a−i(γ)|−1ν̃Γ(γ, θ)di(a−i(γ), θ)/Ci > 0,

where the equality is by Claim 2 and the inequality by the “perturbed” sequential obedience

condition (17). Therefore, action 1 is uniquely rationalizable for ti = τ . Hence, by induction,

action 1 is uniquely rationalizable for all types ti < ∞. Then for each i ∈ I, let σi be the pure

strategy such that σi(ti)(1) = 1 if and only if ti < ∞. For a player i (with ν̃Γ(Γi × Θ) < 1) of

type ti = ∞, against σ−i the expected payoff is given by∑
S⊂I\{i},θ∈Θ

π({j ̸= i | tj < ∞} = S, θ|ti = ∞)di(1S, θ)

=
∑

a−i∈A−i,θ∈Θ

ν((0, a−i), θ)di(a−i, θ)/Di ≤ 0,

where the equality is by Claim 3 and the inequality by the 0-obedience, which implies that

playing 0 is a best response to σ−i. It therefore follows that σ is indeed the smallest Bayesian

Nash equilibrium. Finally, by construction, σ induces ν, as desired.

A.1.3 Proof of Corollary 1

The “only if” part is easy to prove. To prove the “if” part, let ν ∈ ∆(A×Θ) satisfy consistency,

obedience, and weak sequential obedience with νΓ ∈ ∆(Γ × Θ). Let γ̄ ∈ Γ be a permutation of

all players, say, γ̄ = 1 · · · |I|. For ε > 0, define νε
Γ ∈ ∆(Γ×Θ) by

νε
Γ(γ, θ) =

(1− ε)νΓ(γ, θ) + ε if [γ = γ̄ and θ = θ̄] or [γ = ∅ and θ ̸= θ̄],

(1− ε)νΓ(γ, θ) otherwise,

and νε ∈ ∆(A× Θ) by νε(a, θ) =
∑

γ:ā(γ)=a ν
ε
Γ(γ, θ), which satisfies consistency and dominance.

The outcome νε satisfies 0-obedience since for all i ∈ I, we have∑
a−i,θ

νε((0, a−i), θ)di(a−i, θ)

=
∑
a−i,θ

ν((0, a−i), θ)di(a−i, θ)− ε
∑
a−i

ν((0, a−i), θ̄)di(a−i, θ̄)

− ε
∑

a−i,θ ̸=θ̄

ν((0, a−i), θ)(di(a−i, θ)− di(0−i, θ))

≤
∑
a−i,θ

ν((0, a−i), θ)di(a−i, θ) ≤ 0,
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where the first inequality follows from dominance state and monotonicity. It also satisfies se-

quential obedience since for all i ∈ I such that νε
Γ(Γi × Θ) > 0, for which νΓ(Γi × Θ) > 0, we

have ∑
γ∈Γi,θ

νε
Γ(γ, θ)di(a−i(γ), θ)

= (1− ε)
∑

γ∈Γi,θ

νΓ(γ, θ)di(a−i(γ), θ) + εdi(a−i(γ̄), θ̄)

> (1− ε)
∑

γ∈Γi,θ

νΓ(γ, θ)di(a−i(γ), θ) ≥ 0,

where the strict inequality follows from dominance state. Hence, we have νε ∈ SI by Theorem 1.

Since νε → ν as ε → 0, we therefore have ν ∈ SI .

A.1.4 Proof of Corollary 2

Let ν satisfy consistency and weak sequential obedience. By (the proof of) Corollary 1, there

exists a sequence (νn) of outcomes converging to ν that satisfy consistency, sequential obedience,

and dominance. For each n, the smallest equilibrium of the type space as constructed in the

proof of Theorem 1(2) induces an outcome ν̃n that first-order stochastically dominates ν while

satisfying consistency, obedience, and sequential obedience. Then a limit point of (ν̃n) first-order

stochastically dominates ν and satisfies consistency, obedience, and weak sequential obedience.

A.2 Proof of Proposition 2

The “only if“ part: Suppose that ν ∈ ∆(A × Θ) satisfies sequential obedience (resp. weak

sequential obedience) with νΓ ∈ ∆(Γ×Θ). Then for any (λi)i∈S(ν) ≥ 0, (λi)i∈S(ν) ̸= 0, we have∑
a∈A(ν),θ∈Θ

ν(a, θ) max
γ∈Γ(a)

∑
i∈S(γ)

λidi(a−i(γ), θ)

=
∑

a∈A(ν),θ∈Θ

∑
γ′∈Γ(a)

νΓ(γ
′, θ) max

γ∈Γ(a)

∑
i∈S(γ)

λidi(a−i(γ), θ)

≥
∑

a∈A(ν),θ∈Θ

∑
γ∈Γ(a)

νΓ(γ, θ)
∑

i∈S(γ)

λidi(a−i(γ), θ)

=
∑

i∈S(ν)

λi

∑
γ∈Γi,θ∈Θ

νΓ(γ, θ)di(a−i(γ), θ),
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which is positive (resp. nonnegative) by sequential obedience (resp. weak sequential obedience).

The “if” part: Suppose that (4) holds. Let Γ(ν) = {γ ∈ Γ | S(γ) ⊂ S(ν)}, and N(ν) =

{νΓ ∈ ∆(Γ(ν)×Θ) |
∑

γ:ā(γ)=a νΓ(γ, θ) = ν(a, θ)}, which is convex and compact. For νΓ ∈ N(ν)

and λ ∈ ∆(S(ν)), let

D(νΓ, λ) =
∑

i∈S(ν)

λi

∑
γ∈Γi,θ∈Θ

νΓ(γ, θ)di(a−i(γ), θ)

=
∑

γ∈Γ(ν),θ∈Θ

νΓ(γ, θ)
∑

i∈S(γ)

λidi(a−i(γ), θ),

which is linear in each of νΓ and λ. Note that ν satisfies sequential obedience (resp. weak

sequential obedience) if and only if there exists ν̄Γ ∈ N(ν) (⊂ ∆(Γ(ν)×Θ) such that D(ν̄Γ, λ) >

(resp. ≥) 0 for all λ ∈ ∆(S(ν)), where such a ν̄Γ is naturally extended to ∆(Γ×Θ) by ν̄Γ(γ, θ) = 0

for γ /∈ Γ(ν).

Now, by the minimax theorem, there exist ν̄Γ ∈ N(ν) and λ̄ ∈ ∆(S(ν)) such that

D(νΓ, λ̄) ≤ D(ν̄Γ, λ̄) ≤ D(ν̄Γ, λ)

for all νΓ ∈ N(ν) and λ ∈ ∆(S(ν)). It therefore suffices to show that D(ν̄Γ, λ̄) > (resp. ≥) 0.

For each (a, θ) ∈ A(ν) × Θ, let γa,θ ∈ Γ(a) be a sequence that maximizes∑
i∈S(γ) λ̄idi(a−i(γ), θ). Define ν ′

Γ ∈ N(ν) by ν ′
Γ(γ, θ) = ν(a, θ) if γ = γa,θ and ν ′

Γ(γ, θ) = 0

otherwise. Then we have

D(ν̄Γ, λ̄) ≥ D(ν ′
Γ, λ̄)

=
∑

a∈A(ν),θ∈Θ

ν(a, θ)
∑

i∈S(γa,θ)

λ̄idi(a−i(γa,θ), θ),

which is positive (resp. nonnegative) by (4), as desired.

A.3 Proof of Proposition 3

Suppose that the game admits a potential Φ. By Proposition 2, it suffices to show that ν ∈ ∆(A×
Θ) satisfies condition (4) in Proposition 2 if and only if it satisfies coalitional obedience (resp. weak

coalitional obedience). Recall S(ν) = {i ∈ I | ν((1, a−i), θ) > 0 for some a−i ∈ A−i and θ ∈ Θ}
and S(a) = {i ∈ I | ai = 1} for a ∈ A. Note that a dominates ν if and only if S(ν) ⊂ S(a), and

in particular, 1S(ν) dominates ν, so that Φν(1) = Φν(1S(ν)).
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The “only if“ part: Suppose that ν satisfies sequential obedience (resp. weak sequential

obedience) and hence condition (4). Fix any a ∈ A that does not dominate ν. Define (λi)i∈S(ν) ≥
0 by λi = 1 if i ∈ S(ν) \ S(a) ( ̸= ∅) and λi = 0 if i ∈ S(ν) ∩ S(a).

Consider any (a′, θ) ∈ A(ν)×Θ, where A(ν) = {a ∈ A | S(a) ⊂ S(ν)}. By supermodularity,

any sequence γ ∈ Γ(a′) that maximizes
∑

i∈S(γ) λidi(a−i(γ), θ) =
∑

i∈S(a′)\S(a) di(a−i(γ), θ) ranks

all players in S(a′) ∩ S(a) earlier than those in S(a′) \ S(a). Thus,

max
γ∈Γ(a′)

∑
i∈S(γ)

λidi(a−i(γ), θ) = Φ(a′, θ)− Φ(a ∧ a′, θ).

Therefore, we have

Φν(1)− Φν(a) =
∑

a′∈A(ν),θ∈Θ

ν(a′, θ)(Φ(a′, θ)− Φ(a ∧ a′, θ))

=
∑

a′∈A(ν),θ∈Θ

ν(a′, θ) max
γ∈Γ(a′)

∑
i∈S(γ)

λidi(a−i(γ), θ),

which is positive (resp. nonnegative) by condition (4).

The “if” part: Suppose that ν satisfies coalitional obedience (resp. weak coalitional obe-

dience), so that Φν(1) = Φν(1S(ν)) > (resp. ≥) Φν(a) for all a that does not dominate ν.

We want to show that ν satisfies condition (4). Fix any (λi)i∈S(ν) ≥ 0, (λi)i∈S(ν) ̸= 0. Let

γ = (i1, . . . , i|S(ν)|) ∈ Γ(S(ν)) be a permutation of players in S(ν) such that λi1 ≤ · · · ≤ λi|S(ν)| .

Then we have

LHS of (4)

≥
∑

a′∈A(ν),θ∈Θ

ν(a′, θ)
∑

i∈S(a′)∩S(ν)

λi(Φ((1, a−i(γλ)), θ)− Φ((0, a−i(γλ)), θ))

=
∑

a′∈A(ν),θ∈Θ

ν(a′, θ)
∑

i∈S(ν)

λi(Φ((1, a−i(γλ)) ∧ a′, θ)− Φ((0, a−i(γλ)) ∧ a′), θ))

=
∑

i∈S(ν)

λi

∑
a′∈A(ν),θ∈Θ

ν(a′, θ)(Φ((1, a−i(γλ)) ∧ a′, θ)− Φ((0, a−i(γλ)) ∧ a′), θ))

=
∑

i∈S(ν)

λi(Φν(1, a−i(γλ))− Φν(0, a−i(γλ)))

=

|S(ν)|∑
k=1

(λik − λik−1
)

|S(ν)|∑
ℓ=k

(Φν(1, a−iℓ(γλ))− Φν(0, a−iℓ(γλ)))

=

|S(ν)|∑
k=1

(λik − λik−1
)(Φν(1S(ν))− Φν(1{i1,...,ik−1})),
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which is positive (resp. nonnegative) by coalitional obedience (resp. weak coalitional obedience),

as desired, where 1{i1,...,ik−1} does not dominate ν.

A.4 Proof of Proposition 4

By Proposition 3, sequential obedience (resp. weak sequential obedience) is equivalent to weak

coalitional obedience (resp. weak coalitional obedience) in a potential game. The “only if” part is

obvious. The “if” direction follows from convexity of Φ since for a perfect coordination outcome

ν, we have

Φν(1)− Φν(a) =
∑
θ∈Θ

ν(1, θ)(Φ(1, θ)− Φ(a, θ))

≥
(
1− n(a)

|I|

)∑
θ∈Θ

ν(1, θ)Φ(1, θ)

=

(
1− n(a)

|I|

)
Φν(1) > (resp. ≥) 0

for any a ̸= 1.

A.5 Proof of Theorem 2

Suppose that Φ satisfies convexity and V satisfies restricted convexity with respect to Φ. For

each (a, θ), let α(a, θ) ∈ [0, 1] by

α =


1 if Φ(a, θ) ≤ Φ(1, θ),

n(a)

|I|
if Φ(a, θ) > Φ(1, θ).

Then for all (a, θ), we have Φ(a, θ) ≤ α(a, θ)Φ(1, θ) (by convexity) and V (a, θ) ≤ α(a, θ)V (1, θ)

(by monotonicity and restricted convexity).

Take any ν ∈ SI . By Corollary 1 and Proposition 3, ν satisfies weak coalitional obedience

and consistency. Define ν ′ ∈ ∆(A×Θ) by

ν ′(a, θ) =


∑

a′∈A(1− α(a′, θ))ν(a′, θ) if a = 0,∑
a′∈A α(a′, θ)ν(a′, θ) if a = 1,

0 if a ̸= 0,1,
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which satisfies the perfect coordination property. Since ν is consistent with µ, so is ν ′. Since ν

satisfies weak coalitional obedience, we also have

Φν′(1) =
∑
θ∈Θ

ν ′(1, θ)Φ(1, θ)

=
∑

a∈A,θ∈Θ

α(a, θ)ν(a, θ)Φ(1, θ)

≥
∑

a∈A,θ∈Θ

ν(a, θ)Φ(a, θ)

= Φν(1)− Φν(0) ≥ 0.

Therefore, ν ′ satisfies weak grand coalitional obedience. Hence, by the convexity of Φ, we have

ν ′ ∈ SI by Proposition 4 and Corollary 1.

For the value of the objective function, we have∑
a∈A,θ∈Θ

ν ′(a, θ)V (a, θ) =
∑
θ∈Θ

[ν ′(0, θ)V (0, θ) + ν ′(1, θ)V (1, θ)]

=
∑

a∈A,θ∈Θ

ν(a, θ) [(1− α(a, θ))V (0, θ) + α(a, θ)V (1, θ)]

≥
∑

a∈A,θ∈Θ

ν(a, θ)V (a, θ).

Thus, an optimal outcome exists among those that satisfy the perfect coordination property.

A.6 Proof of Proposition 5

Let ν(1, ·) be such that 0 ≤ ν(1, θ) ≤ µ(θ) and
∑

θ∈Θ ν∗(1, θ)V (1, θ) <
∑

θ∈Θ ν(1, θ)V (1, θ).

Define ξ(·), ξ∗(·), and ξ∗∗(·) by ξ(θ) = ν(1, θ)V (1, θ) for all θ ∈ Θ, ξ∗(θ) = ν∗(1, θ)V (1, θ) for all

θ ∈ Θ, and ξ∗∗(θ∗ − 1) = ξ∗(θ∗ − 1) +
∑

θ∈Θ ν(1, θ)V (1, θ) −
∑

θ∈Θ ν∗(1, θ)V (1, θ) > ξ∗(θ∗ − 1)

and ξ∗∗(θ) = ξ∗(θ) for all θ ̸= θ∗ − 1.

Since ξ∗∗(·) first-order stochastically dominates ξ(·) and Φ(1,θ)
V (1,θ)

is increasing in θ, we have

∑
θ∈Θ

ν(1, θ)Φ(1, θ) =
∑
θ∈Θ

ξ(θ)
Φ(1, θ)

V (1, θ)
≤
∑
θ∈Θ

ξ∗∗(θ)
Φ(1, θ)

V (1, θ)
.

But we have ∑
θ∈Θ

ξ∗∗(θ)
Φ(1, θ)

V (1, θ)
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=
∑
θ∈Θ

ξ∗(θ)
Φ(1, θ)

V (1, θ)
+ (ξ∗∗(θ∗ − 1)− ξ∗(θ∗ − 1))

Φ(1, θ∗ − 1)

V (1, θ∗ − 1)
< 0,

since the first term equals 0 by (13), and Φ(1, θ∗−1) < 0. This means that ν(1, ·) is not feasible.

A.7 Proof of Proposition 6

Since the base game given (bi)i∈I is a potential game with a potential

Φ(a, θ) = p(n(a), θ)− p(0, θ)−
∑
i∈I

ai
c

bi
,

sequential obedience is equivalent to coalitional obedience: Φν̄(1) > Φν̄(a) for all a ̸= 1 (Propo-

sition 3). A necessary condition is thus Φν̄(1) > Φν̄(0), which is written as∑
θ∈Θ

µ(θ)(p(|I|, θ)− P (0, θ))−
∑
i∈I

c

bi
> 0,

or ∑
i∈I

1

bi
<

∑
θ∈Θ µ(θ)(p(|I|, θ)− p(0, θ))

c
.

By the strict convexity of the function x 7→ 1/x, we have 1/
∑

i bi/|I| ≤ (
∑

i(1/bi))/|I|, or

|I|2/
∑

i bi ≤
∑

i(1/bi), where a strict inequality holds unless bi’s are identical. Hence, by Theo-

rem 1(1), if a scheme (bi)i∈I smallest equilibrium implements ν̄, it is necessary that

|I|2∑
i∈I bi

<

∑
θ∈Θ µ(θ)(p(|I|, θ)− p(0, θ))

c
,

or ∑
i∈I

bi >
|I|2c∑

θ∈Θ µ(θ)(p(|I|, θ)− p(0, θ))
.

Thus, the right hand side is a lower bound of the total bonus payment for bonus schemes under

which ν̄ ∈ SI . As discussed above, by the strict convexity of x 7→ 1/x, an optimal scheme must

entail symmetric payments.

Now let b∗ be as given in the statement. The total bonus |I|b∗ is in fact equal to the lower

bound obtained above. We want to show that ν̄ ∈ SI under (b∗ + ε, . . . , b∗ + ε) for every ε > 0.

The potential function is now

Φ(a, θ) = p(n(a), θ)− p(0, θ)− n(a)
c

b∗ + ε
,
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which is convex. Therefore, sequential obedience is equivalent to grand coalitional obedience:

Φν̄(1) > Φν̄(0) (Proposition 4), which is written as∑
θ∈Θ

µ(θ)(p(|I|, θ)− p(0, θ))− |I| c

b∗ + ε
> 0.

This is satisfied for every ε > 0 by the definition of b∗. Finally, by the assumption (14), we have

b∗ ≥ c/∆p(1, θ̄), and therefore,

di(0−i, θ̄) = ∆p(1, θ̄)− c

b∗ + ε
> 0,

so that the dominance state assumption is satisfied for any ε > 0. Hence, by Theorem 1(2), we

have ν̄ ∈ SI for any ε > 0.

A.8 Proof of Theorem 3

Let ν ∈ ∆(A × Θ) satisfy consistency, sequential obedience, reverse sequential obedience, and

dominance, and let ν+
Γ ∈ ∆(Γ×Θ) and ν−

Γ ∈ ∆(Γ×Θ) be ordered outcomes establishing sequential

obedience and reverse sequential obedience, respectively. By dominance, there exist γ, γ ∈ Γ(I)

such that ν+
Γ (γ, θ) > 0 and ν−

Γ (γ, θ) > 0 (where ν+
Γ (γ, θ) ≤ ν−

Γ (∅, θ) and ν−
Γ (γ, θ) ≤ ν+

Γ (∅, θ)). For
ε > 0 with ε < min{ν+

Γ (γ, θ), ν
−
Γ (γ, θ)}, define ν̃+

Γ , ν̃
−
Γ ∈ ∆(Γ×Θ) by

ν̃+
Γ (γ, θ) =


ν+
Γ (γ, θ)− ε

1− 2ε
if (γ, θ) = (γ, θ), (∅, θ),

ν+
Γ (γ, θ)

1− 2ε
otherwise,

and

ν̃−
Γ (γ, θ) =


ν−
Γ (γ, θ)− ε

1− 2ε
if (γ, θ) = (γ, θ), (∅, θ),

ν−
Γ (γ, θ)

1− 2ε
otherwise,

where we assume that ε is sufficiently small that ν̃+
Γ and ν̃−

Γ satisfy sequential obedience and

reverse sequential obedience, respectively, i.e.,∑
γ∈Γi,θ∈Θ

ν̃+
Γ (γ, θ)di(a−i(γ), θ) > 0

for all i ∈ I such that ν̃+
Γ (Γi ×Θ) > 0, and∑

γ∈Γi,θ∈Θ

ν̃−
Γ (γ, θ)di(a

0
−i(γ), θ) < 0
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for all i ∈ I such that ν̃−
Γ (Γi ×Θ) > 0. Define also ν̃ ∈ ∆(A×Θ) by

ν̃(a, θ) =


ν(a, θ)− ε

1− 2ε
if (a, θ) = (1, θ), (0, θ),

ν(a, θ)

1− 2ε
otherwise.

Observe that
∑

γ+:ā(γ+)=a ν̃
+
Γ (γ

+, θ) =
∑

γ−:ā0(γ−)=a ν̃
−
Γ (γ

−, θ) = ν̃(a, θ) for all (a, θ) ∈ A×Θ.

By richness, we can take a q̄ < 1 such that

q̄di(0−i, θ) + (1− q̄)min
θ ̸=θ

di(0−i, θ) > 0, (18)

q̄di(1−i, θ) + (1− q̄)max
θ ̸=θ

di(1−i, θ) < 0 (19)

for all i ∈ I. Then let η > 0 be such that
ε

|I|−1

ε
|I|−1

+ η
≥ q̄, (20)

and ∑
γ∈Γi,θ∈Θ

(1− η)|I|−|a−i(γ)|−1ν̃+
Γ (γ, θ)di(a−i(γ), θ) > 0 (21)

for all i ∈ I such that ν̃+
Γ (Γi ×Θ) > 0, and∑
γ∈Γi,θ∈Θ

(1− η)|I|−|a0−i(γ)|−1ν̃−
Γ (γ, θ)di(a

0
−i(γ), θ) < 0 (22)

for all i ∈ I such that ν̃−
Γ (Γi ×Θ) > 0.

Now construct the type space (T, π) as follows. For each i ∈ I, let Ti = {1, 2, . . .} × {0, 1}.
Let π ∈ ∆(T ×Θ) be given by

π(t, θ)

=



(1− 2ε)η(1− η)m
ν̃+
Γ (γ

+, θ)ν̃−
Γ (γ

−, θ)

ν̃(a, θ)
if ν̃(a, θ) > 0 and there exist m ∈ N

and γ+, γ− ∈ Γ such that si = m +

ℓ(i, γ+) for all i ∈ S(a) and si = m +

ℓ(i, γ−) for all i ∈ I \ S(a),
ε

|I| − 1
if 1 ≤ s1 = · · · = s|I| ≤ |I| − 1 and

(a, θ) = (1, θ), (0, θ),

0 otherwise

for each t = (si, ai)i∈I ∈ T and θ ∈ Θ, where for γ = (i1, . . . , ik) ∈ Γ and i ∈ S(γ), ℓ(i, γ) = ℓ if

i = iℓ. Observe that π is consistent with µ:
∑

t π(t, θ) = µ(θ) for all θ ∈ Θ.
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Claim 4. For any i ∈ I and any τ ∈ {1, . . . , |I|−1}, π(θ|ti = (τ , 1)) ≥ q̄ and π(θ|ti = (τ , 0)) ≥ q̄.

Proof. For τ ∈ {1, . . . , |I| − 1}, we have

π(θ|ti = (τ , 1)) =

∑
t−i

π(ti = (τ , 1), t−i, θ)∑
t−i,θ

π(ti = (τ , 1), t−i, θ)
≥

ε
|I|−1

ε
|I|−1

+ η
≥ q̄,

where the last inequality is by (20). A symmetric argument verifies the other claim.

Claim 5. For any i ∈ I and any τ ∈ {|I|, |I|+ 1, . . .},

π({j ̸= i | sj < τ, aj = 1} = S, θ|ti = (τ , 1))

= (1− η)|I|−|S|−1ν̃+
Γ ({γ

+ ∈ Γi | a−i(γ
+) = 1S} × {θ})/C+

i ,

π({j ̸= i | sj < τ, aj = 0} = S, θ|ti = (τ , 0))

= (1− η)|I|−|S|−1ν̃−
Γ ({γ

− ∈ Γi | a0−i(γ
−) = 0S} × {θ})/C−

i

for all S ⊂ I \ {i}, where C+
i =

∑|I|
ℓ=1(1− η)|I|−ℓν̃+

Γ ({γ = (i1, . . . , ik) ∈ Γi | iℓ = i} ×Θ) > 0 and

C−
i =

∑|I|
ℓ=1(1− η)|I|−ℓν̃−

Γ ({γ = (i1, . . . , ik) ∈ Γi | iℓ = i} ×Θ) > 0.

Proof. For τ ∈ {|I|, |I|+ 1, . . .} and for S ⊂ I \ {i}, we have

π({j ̸= i | sj < τ, aj = 1} = S, θ|ti = (τ , 1))

= π(ti = (τ , 1), {j ̸= i | sj < τ, aj = 1} = S, θ)/π(ti = (τ , 1))

= (1− 2ε)η(1− η)τ−|S|−1ν̃+
Γ ({γ ∈ Γi | a−i(γ) = 1S} × {θ})/π(ti = (τ , 1))

= (1− η)|I|−|S|−1ν̃+
Γ ({γ ∈ Γi | a−i(γ) = 1S} × {θ})/C+

i ,

as claimed. A symmetric argument verifies the other claim.

We are in a position to conclude the proof of Theorem 3(2). We show that action 1 is uniquely

rationalizable for all players of types ti = (si, ai) with ai = 1. First, for types ti = (si, 1) with

si ≤ |I| − 1, action 1 is a strictly dominant action by Claim 4 and condition (18). Then, for

τ ≥ |I|, suppose that action 1 is uniquely rationalizable for all players of types ti = (si, 1) with

si ≤ τ − 1. Then the expected payoff for a player i of type ti = (τ , 1) from playing action 1 is no

smaller than ∑
S⊂I\{i},θ∈Θ

π({j ̸= i | tj < τ} = S, θ|ti = (τ , 1))di(1S, θ)
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=
∑

γ∈Γi,θ∈Θ

(1− η)|I|−|a−i(γ)|−1ν̃+
Γ (γ, θ)di(a−i(γ), θ)/C

+
i > 0,

where the equality is by Claim 5 and the inequality by the “perturbed” sequential obedience

condition (21). Therefore, action 1 is uniquely rationalizable for ti = τ . Hence, by induction,

action 1 is uniquely rationalizable for all types ti = (si, ai) with ai = 1. A symmetric argument

shows that action 0 is uniquely rationalizable for all players of types ti = (si, ai) with ai = 0.

Finally, by construction, the unique rationalizable strategy profile, hence the unique equilib-

rium, induces ν, as desired.
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