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Abstract

We consider mechanism design environments in which agents commonly know that others’ types are
identically distributed, but without assuming that the actual distribution is common knowledge, nor
that it is known to the designer (common knowledge of identicality, CKI). Under these assumptions,
we study problems of partial and full implementation, as well as robustness. First, we characterize
the transfers which are incentive compatible under the CKI assumption, and provide necessary and
sufficient conditions for partial implementation. Second, we characterize the conditions under which
full implementation is possible via direct mechanisms, as well as the transfer schemes which achieve full
implementation whenever it is possible. We do this by pursuing a network approach, which is based on
the observation that the full implementation problem in our setting can be conveniently transformed
into one of designing a network of strategic externalities, subject to suitable constraints which are
dictated by the incentive compatibility requirements entailed by the CKI assumption. This approach
enables us to uncover a fairly surprising result: the possibility of full implementation is characterized
by the strength of the preference interdependence of the two agents with the least amount of preference
interdependence, regardless of the total number of agents, and of their preferences. Finally, we study
the robustness properties of the implementing transfers with respect to both misspecifications of agents’
preferences and with respect to lower orders beliefs in rationality.

Keywords: Moment Conditions, Robust Full Implementation, Rationalizability, Interdependent
Values, Identical but Unknown Distributions, Uniqueness, Strategic Externalities, Spectral Radius,
Canonical Transfers, Loading Transfers, Equal-externality Transfers.

JEL: D62, D82, D83

1 Introduction

Many economic models assume that agents believe that the types of others are drawn from the
same distribution. This is a natural way to represent situations in which agents regard each other
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as ex-ante symmetric from an informational viewpoint, or more broadly that they come from a
common population. Standard modeling techniques, however, not only impose that the distribution
of types is identical across agents, but also that it is common knowledge among them – and, in
mechanism design, also known to the designer. But if identicality is a natural way to capture
a basic qualitative property of these environments, common knowledge of the distribution is a
different kind of assumption: not only is it strong and unlikely to be satisfied; it is also well-known
to heavily affect the results.

A large and growing literature has taken up Wilson (1987) call for a “[...] repeated weak-
ening of common knowledge assumptions [...]”, and developed a robust approach to mechanism
design (see, e.g., Bergemann and Morris (2005, 2009a)). In this paper we pursue the objectives
of the Wilson doctrine in settings with informationally symmetric agents. More specifically, we
maintain common knowledge that others’ types are identically distributed, but without assuming
a commonly known distribution. Under these assumptions, we study question of both partial and
full implementation: First, we characterize the transfers which are incentive compatible under the
assumption of identicality, and provide necessary and sufficient conditions for partial implementa-
tion. Second, we characterize the conditions under which truthful revelation is the only solution
under common knowledge of identicality, as well as the transfers which achieve it whenever possible
(full implementation).1 These results are enabled by a network approach we put forward (in many
ways similar to the one pursued by Elliott and Golub (2019)), which is based on the observation
that the full implementation problem in our setting can be conveniently mapped to a specific ‘net-
work design’ problem, subject to suitable constraints which are dictated by the relevant incentive
compatibility requirement. As we will discuss, this formulation also offers valuable insights for
the literature on policy interventions on networks (e.g., Galeotti, Golub and Goyal (2020)), as
well as on incomplete information in networks (e.g., Leister, Zenou and Zhou (2020)). Finally, we
study the robustness properties of the implementing transfers with respect to the possibility that
agents are ‘slightly faulty’ (e.g., Eliaz (2002) – or equivalently, that their preferences are slightly
misspecified), and with respect to lower orders of rationality (which is also connected to recent
work on level-k implementation by de Clippel et al. (2018)).

We start our analysis with the introduction of the canonical transfers. These transfers are
pinned down by the necessary conditions for ex-post incentive compatibility, and hence they char-
acterize the possibility of achieving partial implementation in belief-free settings (cf. Bergemann
and Morris (2005)). Our first result shows that, when only common knowledge of identicality is
maintained, partial implementation is possible if and only if it can be achieved by the canonical
transfers. This, however, is not to say that partial implementation under common knowledge of
identicality is as demanding as ex-post incentive compatibility: the latter is a strictly more de-
manding notion of implementation; nonetheless, in both settings the canonical transfers are all
which needs to be considered to check if partial implementation is possible. Given these results,
in analogy to standard methods on Bayesian incentive compatibility, necessary and sufficient con-
ditions for partial implementation can be promptly obtained from studying the properties of the
payoffs induced by the canonical transfers at the truthful profiles.

1Our notion of full implementation is based on a special version of Battigalli and Siniscalchi (2003)’s ∆-
rationalizability. Special version of ∆-rationalizability have also been used in implementation theory by Bergemann
and Morris (2009a), Oury and Tercieux (2012), Ollár and Penta (2017), and Lipnowski and Sadler (2019) in static
mechanisms, and in dynamic ones by Müller (2016, 2020) and (albeit in a different sense) Catonini (2021).
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We move next to the analysis of full implementation, which is the main focus of this paper.
Here, it is useful to recall the result by Bergemann and Morris (2009a), who also study full im-
plementation via direct mechanisms, but in belief-free settings. They show that full belief-free
implementation is possible (in which case it is achieved by the canonical transfers) if and only
if the interdependence in agents’ valuations is not too strong. Since preference interdependence
is often too strong, this characterization is typically regarded as a negative result. As shown by
Ollár and Penta (2017), the reason for this result is that, when preferences interdependence is
strong, then the canonical transfers induce too strong strategic externalities, which in turn induce
multiplicity and hence a failure of full implementation. Ollár and Penta (2017)’s idea is then to use
information about agents’ beliefs, if available, to design incentive compatible transfers which induce
small strategic externalities (and hence uniqueness and full implementation) even when preference
interdependencies are strong. They thus provided sufficient conditions on agents’ beliefs so that
the designer could engineer such weakening of the strategic externalities.2 It turns out, however,
that if only common knowledge of identicality is maintained, without assuming knowledge of the
actual distribution of types, then Ollár and Penta (2017)’s design strategy cannot be pursued:
more precisely, we show that, under common knowledge of identicality, any incentive compatible
mechanism must display the same total level of strategic externalities as the canonical direct mech-
anism. Hence, in these settings, the designer may only pursue a redistribution – not a reduction –
of the strategic externalities, which in turn are pegged to the level of preference interdependence
in the environment. This obviously limits the possibility of achieving full implementation, and
requires developing a new design strategy.

Our analysis of full implementation develops such a novel design strategy. Intuitively, the key
is to understand how to ‘optimally’ re-assign the strategic externalities induced by the canonical
direct mechanism. For environments with single-crossing preferences and public concavity, we show
that this idea is exactly formalized by the problem of minimizing the spectral radius of a matrix
of externalities, subject to preserving the same row-sums as the matrix of strategic externalities
associated with the canonical transfers.3 As it turns out, the solution to the minimization problem
identifies the transfers which achieve full implementation in our sense whenever possible, and
generates a rather special hierarchical structure: besides preserving, for any player, the total level
of strategic externalities he is subject to from his opponents – which, by the results above, is
necessary to preserve incentive compatibility when only common belief in identicality is assumed –
these transfers load all the strategic externalities on the opponent who displays the lowest amount
of preference interdependence. The strategic externalities associated with the loading transfers are
thus described by a directed graph, which takes the form of a star network whose center is the agent
with the lowest preference interdependence. In this star network, each peripheral node has one
and only one incoming edge, which comes from the center, and the center has only one incoming
edge, which comes from the node with the next lowest level of preference interdependence.

The structure of the loading transfers enables us to uncover a fairly surprising result: the
possibility of full implementation under common knowledge of identicality is characterized by the

2For instance, Ollár and Penta (2017) showed that strategic externalities can always be eliminated in common
prior models with independent or affiliated types under certain preference restrictions, and hence full implementation
be achieved in (interim) dominant strategies.

3The spectral radius of a matrix is the largest absolute value of its eigenvalues. A different characterization of
economic concepts, based on the spectral radius of the matrix of payoff externalities, is provided by Elliott and
Golub (2019), in the context of efficiency with public goods.
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strength of the preference interdependence of the two agents with the least amount of preference
interdependence, regardless of the number of the other agents, and of their preferences. Aside from
depicting a much more permissive picture for full implementation than Bergemann and Morris
(2009a)’s belief-free benchmark (which, in light of the weakness of the identicality assumption and
of the results on partial implementation we discussed earlier, may perhaps strike as surprising),
this characterization also has powerful implications from a broader market design perspective: for
instance, if full implementation cannot be achieved for a given set of agents, then adding two
more agents whose preferences do not depend much on others’ information would suffice to make
full implementation possible. At the extreme, whenever an environment includes two agents with
private values, common belief in identicality ensures that full implementation is possible via a
simple direct mechanism, regardless of the number and interdependence of the other agents.

Besides the loading transfers, which as explained have a strongly asymmetric structure, we
also study the properties of what we call ‘equal-externality’ transfers, which are designed in order
to evenly redistribute the strategic externalities across the opponents. The resulting network of
externalities is thus a totally connected directed graph, in which each node has one outgoing edge
to all other nodes. Such an alternative design strategy is not without loss of generality in our
setting (i.e., there are environments in which full implementation is possible, but not with the
equal-externality transfers). Nonetheless, we show that these transfers are still widely applicable,
and that their symmetric structure grants them an important robustness property. In particular,
while the loading transfers have several desirable robustness properties (for instance, they minimize
the sensitivity of implementation with respect to lower-orders of rationality – cf. de Clippel et al.
(2018)), we show that the equal-externality transfers minimize the impact on the implemented
allocation with respect to the possibility of ‘slightly faulty’ agents or of misspecification of their
preferences (cf., Eliaz (2002)).

We conclude this introduction with a few remarks on our restriction to direct mechanisms. As
it is well-known, this restriction is without loss of generality for the purpose of partial implemen-
tation, but it may make the task of achieving full implementation harder. Note, however, that
if this means that the necessity part of our characterization may be stronger than what could
be identified with unrestricted mechanisms, the opposite is true for the sufficiency direction: the
fact that we provide remarkably permissive results, despite the restriction to the class of mech-
anisms, strengthens those results. Besides this observation, however, there are other reasons for
restricting the class of mechanisms. First, classical results on full implementation typically involve
unrealistically complicated mechanisms, which have been criticized for providing limited economic
insight (e.g., Jackson (1992)). The artificial nature of those mechanisms, and the related emphasis
in the literature on necessity results, in our view explain why the full implementation approach
has overall been less successful than the partial implementation one, in terms of delivering clear
qualitative insights on the design of real world mechanisms. Our insistence on using the same class
of mechanisms as is typical in the partial implementation literature allows for an easier compar-
ison with that literature, which favors the interpretability of the results and hence pushes a bit
further Jackson’s concern for economic ‘relevance’ of full implementation theory. It also enables
us to uncover what features of an incentive compatible transfer scheme – namely, the structure
of its strategic externalities – may or may not be problematic from the full implementation view-
point. With this understanding, our approach develops constructive insights on how failures of
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full implementation can be overcome, while maintaining the same fundamental structure as the
transfer schemes for partial implementation, which have a clear economic interpretation and may
thus be more portable to the real world. One by-product of this is the possibility of recasting
the implementation problem in terms of a weighted network design problem, thereby connecting
full implementation with more familiar concepts of mainstream economics, such as networks and
externalities. As we further discuss in the conclusions, we think that this connection may benefit
both the implementation and the network literature.

Finally, we illustrate the applicability of our main results considering a general class of utili-
tarian public good problems with network effects, in which the designer wishes to implement the
optimal quantity of public good, for general weights of the utilitarian welfare functional.

The rest of the paper is organized as follows: Section 2 introduces the model and presents some
illustrating examples; Sections 3 and 4 provide the characterizations of partial and full implemen-
tation, respectively. Section 5 focuses on alternative design strategies for full implementation via
transfers, and contains the sensitivity analysis. Section 6 provides the application to utilitarian
public good problems with network effects. Section 7 concludes.

2 Framework

Preferences, Types, and Allocation Rules. We consider environments with transferable
utility with a finite set of agents I = {1, ..., n}, in which the space of allocations X is a compact
and convex subset of a Euclidean space.

Agents privately observe their payoff types θi ∈ Θi := [θ, θ] ⊆ R, drawn from a closed interval
on the real line, which we assume is common to all agents (the latter assumption is inherent to
our main question, which is to study the assumption of identical distributions). We adopt the
standard notation θ−i ∈ Θ−i = ×j 6=iΘj and θ ∈ Θ = ×i∈IΘi for profiles. Agent i’s valuation
function is vi : X×Θ→ R, assumed twice continuously differentiable, and we let ti ∈ R denote the
private transfer to agent i: for each outcome (x, θ, (ti)i∈I), i’s utility is equal to vi (x, θ) + ti. The
tuple

〈
I, (Θi, vi)i∈I

〉
is common knowledge among the agents. If vi is constant in θ−i for every i,

then the environment has private values. If not, it has interdependent values.
An allocation rule is a mapping d : Θ → X which assigns to each payoff state the allocation

that the designer wishes to implement. We focus on allocation rules that are twice continuously
differentiable and responsive, in the sense that for all i and θi 6= θ′i, there exists θ−i ∈ Θ−i such
that d (θi, θ−i) 6= d (θ′i, θ−i) (see, e.g., Bergemann and Morris (2009a)).

The model accommodates general externalities in consumption, including both pure cases of
private and public divisible goods. The main substantive restrictions are the one-dimensionality
of types, and the smoothness of the allocation function. We will use the notation ∂f/∂x for all
derivatives, with the understanding that when X is multidimensional, ∂vi∂x (x, θ) and ∂d

∂θi
(θ) denote

the vectors of partial derivatives and ∂vi
∂x (x, θ) · ∂d∂θi (θ) denotes their inner product.

Beliefs. We assume that agents commonly know that they each regard the types of the
opponents to be identically distributed, but they do not necessarily know (or agree on) the actual
distribution, which importantly is unknown to the designer. Hence, for each type θi, the designer
regards many beliefs Bidθi ⊆ ∆ (Θ−i) as possible for type θi, namely all those which are consistent
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with the idea that the opponents’ types are identically distributed.4 Formally, the designer’s
assumptions about beliefs is represented by belief restrictions Bid = ((Bidθi )θi∈Θi)i∈I , assumed
common knowledge, such that:5

Bidθi = {bθi ∈ ∆ (Θ−i) : marg
Θj

bθi = marg
Θk

bθi for all j, k 6= i} for all i and θi. (1)

These belief restrictions entail weaker assumptions on agents’ beliefs than many standard
models in more applied theory and in empirical work.6 The belief restrictions in (1) are weaker,
for example, than assuming: (i) a joint distribution with identical marginals over agents’ types;
(ii) a joint distribution with exchangeable random variables; (iv) known independent and identical
distributions across agents (as in standard common prior i.i.d. environments); (v) independent and
identical but unknown distributions; (vi) unobserved heterogeneity but symmetrically distributed
values; (vi) environments with pure common values in which the state of the world is unknown to
the designer, but commonly known by the agents; etc. Hence, our belief restrictions entail a very
weak level of common knowledge in the environment.

Mechanisms. We consider direct mechanisms, in which agents report their payoff types and
the allocation is chosen according to d. A direct mechanism is thus uniquely determined by a
transfer scheme t = (ti)i∈I , ti : M → R, which specifies the transfer to each agent i, for all
profiles of reports m ∈ Θ. (To distinguish the report from the state, we maintain the notation
mi even though the message spaces are Mi = Θi.) Any transfer scheme induces a game with
ex-post payoff functions U ti (m; θ) = vi (d(m), θ) + ti (m). When the transfers are clear from
the context, we don’t emphasize the dependence of the payoff functions on t, and simply write
Ui (m; θ). For the analysis of partial implementation, in which each agent expects his opponents
to report truthfully, the following notation will be useful: For any θi, bθi ∈ ∆ (Θ−i) and mi, we
let Ebθi (Ui (mi, θ−i; θi, θ−i))) :=

∫
Θ−i Ui (mi, θ−i; θi, θ−i) dbθi . For full implementation instead we

will also consider other (non-truthful) reporting strategies for the opponents, and also use the
following notation: For every θi ∈ Θi, µ ∈ ∆ (M−i ×Θ−i) and mi ∈ Mi, we let EUµθi (mi) =∫
M−i×Θ−i Ui (mi,m−i; θi, θ−i) dµ denote agent i’s expected payoff from message mi, if i’s type is
θi and his conjectures are µ, and define BRθi (µ) := arg maxmi∈Mi EU

µ
θi

(mi).

2.1 Leading Examples and Preview of Results

In this section we provide some examples to illustrate the key ideas of the paper and their con-
nection with the previous literature. The examples are all based on the following environment:
There are three agents, {1, 2, 3}, with preferences over the quantity x ∈ R+ of public good such
that vi (x, θ) = (θi + γijθj + γikθk)x for all i, j 6= i and k 6= i, j. Types θi ∈ [0, 1] are private

4For a measurable set E, ∆ (E) denotes the set of probability measures on its Borel σ-algebra.
5The notion of a belief restriction is introduced by Ollár and Penta (2017) to model general restrictions on

agents’ beliefs: a belief restriction is a commonly known collection B = ((Bθi )θi∈Θi )i∈I such that Bθi ⊆ ∆ (Θ−i)
is non-empty and convex for all i and θi, and Bi : θi → Bθi ⊆ ∆ (Θ−i) is continuous for every i. As discussed
in Ollár and Penta (2017), special cases of interest include (i) standard Bayesian environments, in which Bθi is a
singleton for all θi and i; (ii) common prior environments, in which ∃p ∈ ∆ (Θ) such that Bθi = {p (·|θi)} for all i
and θi; (iii) belief-free environments, in which Bθi = ∆ (Θ−i) for all i and θi.

6Models with identical distributions of agents’ types are often applied to study, for example, information ag-
gregation in voting (e.g., Levy and Razin (2015)), information aggregation in exchanges (e.g., Ollár (2017)) and
identification in auctions with symmetric bidders (e.g., Athey and Haile (2007); Hendricks et al. (2003)).
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information to each agent i, and γ = ((γij)j 6=i)i=1,2,3 ∈ R6 are the parameters of preference inter-
dependence. The social planner wishes to implement the efficient allocation rule. With production
cost c (x) = x2/2, the efficient decision rule is d (θ) =

∑3
i=1 κiθi, where κi ≡ 1 + γji + γki for

all i, which we assume positive. Given this environment, we consider three sets of assumptions
on agents’ beliefs: (i) a belief-free setting, (ii) a standard common prior environment, and (iii) a
setting in which only common belief in identicality is maintained. Our paper focuses on the latter
environment, which will be discussed in Example 1.3. It is instructive, however, to first go over
the examples about the belief-free and i.i.d. common prior benchmarks.

Belief-Free Implementation. If the designer has no information about agents’ beliefs, or if he
wishes to achieve implementation without relying on any belief restriction, then only the generalized
VCG mechanism can be used (cf. Bergemann and Morris (2009a)).

Example 1.1 (Belief-free Implementation.). In our example, the VCG transfers are the following:

t∗i (m) = −κi
(
0.5m2

i +mi (γijmj + γikmk)
)
.

Given this, as long as κi > 0 for all i, for any profile (θ−i,m−i) of opponents’ types and reports,
the ex-post best-reply function for type θi of player i is

BR∗θi (θ−i,m−i) = proj[0,1]

(
θi +

∑
j 6=i

γij (θj −mj)
)
.7 (2)

Observe that, regardless of what γ is, for any realization of θ, truthful revelation (mi (θi) = θi) is
a best response to the opponent’s truthful strategy (mj (θj) = θj). This is the well-known ex-post
incentive compatibility of the VCG mechanism. Partial implementation of the efficient allocation
is thus guaranteed independent of agents’ beliefs. Furthermore, if

∑
j 6=i |γij | < 1 for all i ∈ I, then

equation (2) is a contraction, and its iteration delivers truthful revelation as the only rationalizable
strategy. In this case, the VCG mechanism also guarantees full belief-free implementation. Full
implementation, however, is only possible if the preference interdependence is ‘small’. For instance,
suppose that preference parameters are such that

(γ12, γ13, γ21, γ2,3, γ31, γ32) = (0.9,−0.5, 1.2,−0.6,−0.8, 1.6) =: γ̂

Then, all report profiles are rationalizable, and hence belief-free full implementation fails. �

Hence, partial belief-free implementation is always possible in this setting, but full belief-
free implementation fails if the preference interdependence is too strong (Bergemann and Morris
(2009a)). The reason is that if preference interdepedence is strong, then players’ best responses in
the VCG mechanism are strongly affected by others’ strategies. This in turn generates multiplicity
of equilibria, and hence failure of full implementation. We thus shift the focus from preference
interdependence to the strategic externalities of a mechanism, which can be captured by studying
how agents’ best responses are affected by changes in the opponents’ report. This information
can be conveniently summarized in a strategic externality matrix, whose ij-th entry contains the
derivative of player i’s best response with respect to j’s report, for j 6= i, normalized by the

7For any y ∈ R, we let proj[0,1] (y) := arg minθi∈[0,1] |θi − y| denote the projection of y on the interval [0, 1].
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concavity of i’s payoff function with respect to his own report. In the case of the canonical
mechanism, this amounts to:

SE∗ =

 0 γ12 γ13

γ21 0 γ23

γ31 γ32 0

 .
Identical and Known Distribution: Reduction of Strategic Externalities. Strategic ex-
ternalities and preference interdependence necessarily coincide in the VCG mechanism. But if the
designer has some information about the agents’ beliefs, then this coincidence is relaxed: the strate-
gic externalities can be weakened, so as to ensure uniqueness, even if preference interdependence
is strong. This is the main insight from Ollár and Penta (2017).

Example 1.2 (Known i.i.d. Common Prior.). Suppose that types are commonly known to be
i.i.d. draws from a uniform distribution over [0, 1], and this is known to the designer. Consider
the following transfers, which are a special case of Proposition 3 in Ollár and Penta (2017):

tOPi (m) := t∗i +miκi

(∑
l 6=i

γil (ml − 0.5)
)

= −κi
(

1
2m

2
i +mi

∑
l 6=i

γil0.5
)
. (3)

These transfers induce the following best response function to conjectures µ ∈ ∆(θ−i ×M−i):

BROPθi (µ) = proj[0,1]

(
θi +

∑
l 6=i

γil [E (θl|θi)− 0.5]
)
. (4)

Under the maintained assumptions, E (θl|θi) = 0.5 for all θi and l 6= i. Hence the term in square
brackets cancels out for all types. Truthful revelation therefore is strictly dominant, and full
implementation is achieved for any γ. Players’ best-responses are not affected by other reports,
and hence strategic externalities are completely eliminated in this case. �

The result in this example does rely on the restriction on agents’ beliefs, and in particular on
the knowledge that “E (θl|θi) = 0.5 for all θi and l 6= i”. If this moment condition were not satisfied,
these transfers would achieve neither full nor partial implementation. This moment condition was
used in (3) to weaken the strategic externalities of the baseline transfers from Example 1.1, but
in principle others could be used too.8 Intuitively, the more information the designer has about
agents’ beliefs, the more freedom he has to choose a convenient moment condition. As shown
by Ollár and Penta (2017), common prior models are maximal in the freedom they allow to the
designer and, for a large class of environments, as in the example, strategic externalities can be
completely eliminated when types are independent or affiliated.

Identical but Unknown Distribution: Redistribution of Strategic Externalities. Now
suppose that agents commonly know that they each regard the types of their opponents as being
drawn from the same distribution over Θi. The distribution itself, however, is not necessarily
known to the agents and, most importantly, it is unknown to the designer. Transfers from the
previous example do not ensure implementation anymore, since agents’ beliefs neet not satisfy the

8The idea of modifying ex-post incentive compatible transfers using information about beliefs appears in previous
literature as in d’Aspremont, Cremer and Gerard-Varet (1979), Arrow (1979), Cremer and McLean (1988), and more
recently in Mathevet (2010); Mathevet and Taneva (2013); Healy and Mathevet (2012); Deb and Pai (2017).
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moment condition “E (θl|θi) = 0.5 for all θi and l 6= i”, and hence incentive compatibility may
fail. In fact, as we will show, Ollár and Penta (2017)’s idea of reducing strategic externalities is
incompatible with incentive compatibility under these belief restrictions. The designer is therefore
much more limited than in a standard common prior setting, such as that of the previous example.
Nonetheless, a novel design strategy, based on a redistribution of the strategic externalities, may
still be used to achieve full implementation.

Example 1.3 (Bid-Implementation.). Suppose that γ = γ̂ as at the end of Example 1.1, and
hence belief-free implementation is not possible. Now consider the following transfers:

tei (m) = t∗i (m) +miκi
γij − γik

2 (mj −mk) for all i;

In this case, the best replies become

BReθi(µ) = proj[0,1]

(
θi + 1

2 (γij + γik)
∑
l 6=i

E((θl −ml) |θi) + 1
2 (γij − γik)E (θj − θk) |θi

)

= proj[0,1]

(
θi + 1

2 (γij + γik)
∑
l 6=i

E((θl −ml) |θi)
)

The simplification in the last line follows from the fact that, under the Bid restrictions, it is
common knowledge that E (θj − θk|θi) = 0 for all θi and i. Because of this simplification, this
mechanism is incentive compatible for all beliefs consistent with Bid: if ml = θl for all θl and
l 6= i, then the best response is mi = θi for all i. Moreover, it can be shown that these best-replies
induce a contraction, which ensures that truthful revelation is the only rationalizable profile for
all agents. Transfers (tei )i∈I therefore achieve both partial and full Bid-implementation.

Next consider the following, more complex, transfers: tl1 (m)
tl2 (m)
tl3 (m)

 =

 t∗1 (m) +m1κ1γ13 (m3 −m2)
t∗2 (m) +m2κ2γ23 (m3 −m1)
t∗3 (m) +m3κ3γ32 (m2 −m1)

 .
It can be shown that these transfers too are incentive compatible under the Bid-restrictions,

that is, they are based on moment conditions which are commonly known among the agents. More-
over, these transfers too induce contractive best replies and, hence, achieve full implementation.

To understand the logic behind these transfers, it is useful to look at the induced SE-matrices
when γ = ˆgamma, and compare them to the SE-matrix of the VCG transfers:

SE∗ =

 0 0.9 −0.5
1.2 0 −0.6
−0.8 1.6 0

 , SEe =

 0 0.2 0.2
0.3 0 0.3
0.4 0.4 0

 , SEl =

 0 0.4 0
0.6 0 0
0.8 0 0

 .
First notice that both (tei )i∈I and

(
tli
)
i∈I induce SE-matrices such that the sum of the strategic

externalities within each row is the same as in the baseline VCG mechanism. This is not a
coincidence: as one of our results will show, under the Bid-restrictions, any incentive compatible
transfer scheme would have to preserve, for every agent, the total externalities across all of his
opponents which are present in the underlying canonical mechanism, which in turn are pinned
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Figure 1: Strategic Externalities and Transfer Schemes in Example 1.3. These network representations
illustrate the strategic externalities induced, respectively, by the canonical, equal externality, and loading transfers.
For example, the green arrow from agent 2 to 1 illustrates the absolute influence of 2’s choice on 1’s best reply.

down by the total level of preference interdependence. (So, for instance, transfers such as
(
tOPi

)
i∈I

from Example 1.2, whose SE-matrix consists of all zeros, will not be incentive compatible under
the Bid-restrictions.) In this sense, strategic externalities can only be redistributed, not reduced.

Second, the SE-matrix of the (tei )i∈I transfers are such that the externalities that any agent i
is subject to is constant across all of his opponents. In this sense, the (tei )i∈I transfers induce an
equal redistribution of the total strategic externalities for every player. With the

(
tli
)
i∈I transfers

instead, for every i, the total strategic externalities are all loaded on the opponent l 6= i who is
subject to the lowest total strategic externalities (that is l = 2 for i = 1, and l = 1 for i = 2, 3).

But while both matrices induce a contraction and have the same row-sums – which implies
that, in both mechanisms, the same strategies survive the first round of elimination of never best-
responses – the square of the SEl-matrix exhibits lower row-sums than that of the SEe-matrix:

(SEe)2 =

 0.14 0.08 0.06
0.12 0.18 0.06
0.12 0.08 0.2

 ,
(
SEl

)2 =

 0.24 0 0
0 0.24 0
0 0.32 0

 .
Recursively, this also extends to all powers k ≥ 2, which implies that, from the second round of
elimination on, the set of rationalizable reports shrinks more under

(
tli
)
i∈I than under (tei )i∈I . In

fact, it can be shown that among all matrices which preserve the row-sums of the SE∗-matrix,
the strategic externality matrix associated with the loading transfers is the one with the smallest
spectral radius. This implies that, among all incentive compatible transfers, the loading transfers
are those which induce the fastest contraction of the best-reply sets. �

Our main results for full implementation show that, in a general class of environments, a
suitable generalization of the loading transfers in the example characterizes the mechanisms which
achieve full Bid-implementation: under these belief restrictions, full implementation is possible if
and only if it is achieved by the loading transfers. This in turn enables us to characterize the
environments in which full implementation is possible. We also show that the loading transfers
induce the fastest contraction among all implementing mechanisms, and that they are the ‘most
robust’ with respect to lower order beliefs in rationality. The equal-externality transfers, instead,
are ‘most robust’ if one considers the possibility of mispecifications of agents’ preferences.

10



2.2 Implementation Concepts

We next formalize the notions of both partial and full implementation. We start from partial im-
plementation, and first recall the standard notion of ex-post incentive compatibility, which requires
truthful revelation to be an ex-post equilibrium of the game induced by a direct mechanism:

Definition 1. A direct mechanism is ex-post incentive compatible (ep-IC) if, Ui(θ; θ) ≥ Ui(θ′i, θ−i; θ)
for all θ and for all θ′i.

As shown by Bergemann and Morris (2005)), ex-post incentive compatibility characterizes the
possibility of partial implementation when the designer has no information about agents’ beliefs.
In the present context, however, the designer knows that agents’ beliefs are consistent with the Bid-
restrictions, and hence our analysis of partial implementation relies on the following less demanding
notion of incentive compatibility:

Definition 2. A direct mechanism is Bid-incentive compatible (Bid-IC) if for all i ∈ I, for all
θi, θ

′
i ∈ Θi, and for all bθi ∈ Bidθi , E

bθi (Ui (θi, θ−i; θi, θ−i)) ≥ Ebθi (Ui (θ′i, θ−i; θi, θ−i)). If the
inequality holds strictly for all i, θi, bθi ∈ Bidθi and θ′i 6= θi, then we say that it is strictly Bid-IC.

Definition 3. If (d, t) is Bid-IC, then we say that the transfers t partially Bid-implement the
allocation function d. Allocation rule d is partially Bid-implementable if there exist some transfers
that partially Bid-implement it.

First note that Bid-IC is more demanding than standard Bayesian Incentive Compatibility,
since it requires truthful revelation to be a mutual best-reply for all beliefs in the set Bidθi , as
opposed to the single beliefs that each type would have in a standard Bayesian setting. However,
since eachBidθi is a strict subset of ∆ (Θ) (and, in particular, it does not contain all degenerate beliefs
of each (θ1, ..., θn) ∈ [θ, θ]n), then Bid-IC is less demanding than ex-post incentive compatibility.

Similar to Bergemann and Morris (2005), one could define Partial Bid-Implementation as
requiring truthful revelation to be a Bayes-Nash equilibrium for all type spaces consistent with
the Bid-restrictions. By arguments similar to Bergemann and Morris (2005), it can be shown such
a notion is equivalent to the incentive compatibility condition in Def. 2. Given this, the natural
full implementation notion is to require truthful revelation to be the only Bayes-Nash equilibrium
strategy for all type spaces consistent with the Bid-restrictions. Once again, arguments similar to
Bergemann and Morris (2009a) show that the set of all such Bayes-Nash equilibrium strategies
is conveniently characterized by a suitable notion of rationalizability, which will be introduced
shortly, and which we refer to as Bid-rationalizability.9 Our notion of full implementation will thus
require truthful revelation to be the only Bid-rationalizable strategy. For the reasons we explained,
this notion can be seen as a shortcut to analyze standard questions of Bayesian implementation
for all beliefs consistent with the Bid restrictions, and hence provides the natural counterpart to
the notion of partial implementation notion introduced above.10

9Bid-rationalizability is a special case of Battigalli and Siniscalchi (2003)’s ∆-rationalizability, which in general
allows for general restrictions on players’ first-order beliefs on others’ types and strategies. Within robust mechanism
design, special cases of ∆-rationalizability have been used by Bergemann and Morris (2009a), who impose no belief
restrictions, and by Ollár and Penta (2017), who focused on belief restrictions that are only on others’ types;
Lipnowski and Sadler (2019) instead adopted restrictions on beliefs about others’ behavior for their concept of
peer-confirming equilibrium, although not in an implementation setting.

10By the same arguments, Bergemann and Morris (2009a) and Ollár and Penta (2017) study full implementa-
tion, respectively in belief-free settings and under general belief-restrictions, using corresponding versions of ∆-
rationalizability. (For earlier versions of these results on ∆-rationalizability, see Battigalli and Siniscalchi (2003).)
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Formally, Bid-rationalizability is defined by an iterated deletion procedure in which, for each
type θi, a report survives the k-th round of deletion if and only if it can be justified by conjectures
(joint distributions over opponents’ types and strategies) which are consistent with the belief
restrictions Bid, and with the previous rounds of the deletion procedure. For every i and θi,
the set of conjectures that are consistent with common belief in identicality is defined as Cidθi :={
µi ∈ ∆ (M−i ×Θ−i) : margΘ−iµi ∈ Bidθi

}
.

Definition 4 (Bid-rationalizability). Fix a direct mechanism. For every i ∈ I, let Rid,0i = Θi×Mi

and for each k = 1, 2, ..., let Rid,k−1
−i = ×j 6=iRid,k−1

j ,

Rid,ki =
{

(θi,mi) : mi ∈ BRθi (µi) for some µi ∈ Cidθi ∩∆
(
Rid,k−1
−i

)}
, and Ridi =

⋂
k≥0

Rid,ki .

The set of Bid-rationalizable messages for type θi is defined as Ridi (θi) :=
{
mi : (θi,mi) ∈ Ridi

}
.

Definition 5 (Full Implementation). The transfer scheme t = (ti)i∈I fully implements d under
common knowledge of identicality if Ridi (θi) = {θi} for all θi and all i. Allocation rule d is fully
Bid-implementable if there exist some transfers that fully Bid-implement it.11

First we note that Bid-Rationalizability is in general a weak solution concept, and hence our
notion of implementation is a demanding one. On the other hand, sufficient conditions for full
Bid-implementation guarantee full implementation with respect to any (non-empty) refinement
of Bid-Rationalizability, and hence the weakness of the solution concept strengthens our results.
Finally, note that in order to achieve full Bid-implementation, the truthful profile must be a mutual
(strict) best response for all types θi and for all beliefs bθi ∈ ∆ (Θ−i). Strict Bid-IC therefore is a
necessary condition for full Bid-implementation. For this reason, while the main focus of the paper
is on the analysis of full implementation, we first tackle the partial Bid-implementation problem,
and return to full Bid–implementation in Section 4.

In the next two sections, we characterize the joint conditions on (v, d) under which partial
and full Bid-implementation is possible, as well as the transfer schemes that (partially or fully)
implement d whenever possible.

3 Incentive Compatibility and Partial Implementation

In this Section we characterize properties of the transfers which partially implement a given al-
location function d : Θ → X, and study necessary and sufficient conditions for Bid-partial imple-
mentation. We begin with introducing the canonical transfers, t∗ = (t∗i (·))i∈I , which are defined
as follows: for each i ∈ I and m ∈ Θ,

t∗i (m) = −vi (d (m) ,m) +
∫ mi

θ
i

∂vi
∂θi

(d (si,m−i) , si,m−i) dsi. (5)

In the following, we will refer to the pair (d, t∗) as the canonical direct mechanism.12

11A weaker notion of implementability would allow non-truthful reports, provided that they all induce the same
allocation as the true type profile. It can be shown that the two notions coincide for responsive allocation rules.

12The term ‘canonical mechanism’ is traditionally used to refer to Maskin’s mechanism for full implementation.
That mechanism is not ‘direct’ and it induces an integer game to eliminate undesirable equilibria. We call (d, t∗)
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As shown by Ollár and Penta (2017), the canonical transfers characterize the ex-post incentive
compatible transfers in general environments with interdependent valuations, up to a constant
which does not depend on i’s own report (ibid., Lemma 1). Hence, the canonical transfers char-
acterize the mechanisms which may achieve partial implementation in the belief-free sense. As
discussed, in the present context the designer knows that agents ‘commonly believe in identi-
cality’, and hence our analysis of partial implementation relies on the less demanding notion of
incentive compatibility that we introduced in Definition 2. Nonetheless, as shown by the next
result, the canonical transfers are still without loss of generality for partial Bid-Implementation:

Theorem 1 (Partial Implementation: Characterization). Under the maintained assumptions: d
is partially Bid-implementable if and only if it is partially Bid-implemented by t∗.

Theorem 1 implies that, under the Bid-restrictions, there is no reason to consider transfers
other than the canonical ones. As we will see, this will not be the case for full implementation:
full implementation may fail under the canonical transfers, but be achieved by other transfers.
Besides its intrinsic interest, this result also simplifies the task of identifying which conditions
on the environment are necessary or sufficient for partial implementation: it suffices to study
properties of the payoff functions induced by the canonical mechanism, U∗i (m; θ), which only
depend on the allocation function and on the agents’ preferences. First note that, under the
maintained assumptions, the canonical direct mechanism induces payoff functions which are twice
continuously differentiable. Since, by construction, the canonical transfers satisfy the first-order
conditions, sufficiency hinges on the second-order conditions of agents’ optimization problem at
the truthful profile. That is:

Corollary 1. Under the maintained assumptions:

1. If the allocation rule d is partially Bid-implementable, then:
Ebθi

(
∂2U∗i (θi, θ−i; θi, θ−i) /∂2mi

)
≤ 0 for all i, θi, and for all bθi ∈ Bidθi .

2. If Ebθi
(
∂2U∗i (θi, θ−i; θi, θ−i) /∂2mi

)
< 0 for all i, θi and for all bθi ∈ Bidθi , then:

the allocation rule d is partially Bid-implementable.

Note that, if the expectation operators were removed from these conditions, so that the second-
order conditions are satisfied in the ex-post sense, then these conditions would correspond to ep-IC.
It is clear, however, that there is a gap between the two: As the next example shows, there are
environments in which (d, t∗) satisfies the second-order conditions in expectation, for all beliefs
consistent with the Bid restrictions (as in part 2 of Theorem 1), but not in the ex-post sense:

Example 2. Consider an environment with three agents, I = {1, 2, 3}, with types θi ∈ [−1, 1] and
valuations vi (x, θ) = (θi + θi (θj − θk))x for all i ∈ I, where x ∈ R, and consider the allocation
rule d (θ) =

∑3
i=1 θi. In this environment, the second order derivative of the payoff functions

induced by the canonical transfers are the following:

∂2U∗i (m; θ)
∂2mi

= −2 (1 +mj −mk) + (1 +mj −mk) = − (1 +mj −mk) ,

the canonical direct mechanism, since special cases of this mechanism are pervasive in the partial implementation
literature. For example, in auctions (Myerson (1981), Dasgupta and Maskin (2000),Segal (2003), Li (2017)), in
pivot mechanisms (Milgrom (2004), Jehiel and Lamy (2018)), in public goods problems (Green and Laffont (1977)),
Laffont and Maskin (1980), etc. Lemma 1 in Ollár and Penta (2017) generalized the earlier results in the papers
above. The term canonical direct mechanism was first used with this acceptation in Ollár and Penta (2017).
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which, at the truth-telling profile m = θ, is equal to:

∂2U∗i (θ; θ)
∂2mi

= − (1 + θj − θk) ,

Since this term is positive at some θ ∈ Θ, truthful reporting is not optimal at all states. On the
other hand, t∗ ensures Bid-incentive compatibility, since at the truthtelling profile,

∂2Ebθi (U∗i (mi, θ−i; θ))
∂2mi

= −1 < 0 for all mi and for all bθi ∈ Bidθi .

Hence, (d, t∗) is Bid-IC, but not ep-IC. It follows that, with these preferences, this allocation rule
is partially Bid-implementable, but not belief-free implementable. �

This clarifies that the result in Theorem 1 does not imply that Bid-IC is possible if and only
if ep-IC is possible, but only that in both cases it suffices to consider the same mechanism, t∗.
Similar to the way that ex-post monotonicity (of d) and single-crossing (of v) are sufficient for
ep-IC, one can show that if interim monotonicity and single-crossing are satisfied for all beliefs
consistent with the Bid-restrictions, then the sufficient condition in part (ii) of Corollary 1 also
holds, and hence they provide sufficient conditions for partial Bid-implementation.13

The intuition for the result in Theorem 1 is the following: under the Bid-restrictions, types
do not differ in terms of their beliefs (i.e., Bidθi = Bidθ′

i
for all θi, θ′i ∈ Θi), and hence beliefs cannot

be used to separate types, beyond what can be achieved without exploiting them. Thus, relative
to the belief-free case, the role of the belief-restriction Bid is limited to relaxing the incentive
compatibility constraint that the canonical transfers need to satisfy (from ex-post, to Bid-IC), but
it cannot be further leveraged to improve the design of transfers, to screen types.

The fact that Bidθi = Bidθ′
i
for all θi, θ′i ∈ Θi also has the following interesting implication, which

in fact emerges from the proof of Theorem 1:

Proposition 1 (‘Payoff Equivalence’ for Bid-restrictions). For any Bid-incentive compatible direct
mechanism, for any type θi ∈ Θi and belief bθi ∈ Bidθi , the expected payments are the same as in
the canonical mechanism. Formally: if (d, t) is Bid-IC, then for each i ∈ I, θi ∈ Θi and bθi ∈ Bidθi ,
Ebθi (ti (θi, θ−i)) = Ebθi (t∗i (θi, θ−i)).

This result is an extension of the revenue-equivalence theorem, from the standard case of
independent common prior, to the Bid-restrictions. To understand this result, note that both the
Bid-restrictions and models of independent common prior share the feature that an agent’s beliefs
(a set, or a singleton) about others’ types are the same for all his types. As further discussed in
Ollár and Penta (2021), this property of generalized independence is key to revenue equivalence.

4 Full Implementation

For later reference, we introduce a class of environments which satisfy a standard single-crossing
condition, and in which the concavity of agents’ valuation functions is public information:

Definition 6 (SC-PC). An environment satisfies single crossing and public concavity (SC-PC) if:
13Example 2 above is an instance of an environment with a (ex-post) monotonic allocation rule, in which the

single crossing condition holds in expectation, for all bi ∈ Bidθi , but not in the ex-post sense.
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1. [Single-Crossing] For all i and (x, θ), ∂2vi
∂x∂θi

(x, θ) > 0 and ∂d/∂θi > 0

2. [Public Concavity] For all i and j, ∂2vi/∂
2x and ∂2vi/∂x∂θj are constant in θ, and

∂d/∂θi is constant in θj for all i and j .

These conditions generalize properties of standard quadratic-linear environments with single
crossing preferences, which are common both in the theoretical and in the empirical literature
for the convenient property that they imply linear best replies. Special cases of our conditions
are common in models of social interactions, markets with network externalities, supply function
competition, divisible good auctions, markets with adverse selection, provision of public goods.14

Compared to these applications, Definition 6 also accommodates more general dependence on x, as
long as the concavity and the cross derivatives are public information. The application to utilitarian
public good problems with network externalities in Section 6 provides an example of a general class
of economically important environments that satisfy the SC-PC assumptions. (Nonetheless, we
stress that most of the results below do not rely on these assumptions.)

The important consequences of these assumptions are two: Part 1 ensures that partial Bid-
implementation is possible;15 Part 2 also ensures that, in the canonical direct mechanisms, all
second order derivatives ∂2U∗i

∂mi∂mj
= − ∂2vi

∂x∂θj
· ∂d∂θi are constant in (θ,m) and s.t. ∂2U∗i /∂

2mi 6= 0.

We can thus define the (normalized) canonical externalities as real numbers ξij := ∂2U∗i /∂mi∂mj
∂2U∗

i
/∂2mi

.
For each i, let ξi :=

∑
j 6=i ξij , and relabel agents if necessary so that |ξ1| ≤ |ξ2| ≤ . . . ≤ |ξn|.

In SC-PC environment, the property that the second-order derivatives of the payoff function are
constant in (θ,m) actually holds for all mechanisms based on transfers with constant curvature,
i.e. such that ∂3ti

∂mi∂mj∂mk
= 0 for all i, j, k ∈ I.

4.1 Redistribution of Strategic Externalities

In order to achieve full Bid-implementation, the truthful profile must be a mutual (strict) best
response for all types θi and for all beliefs bθi ∈ ∆ (Θ−i). Strict Bid-IC therefore is a necessary
condition for full Bid-implementation. Beyond this partial implementation requirement, however,
we will show that full implementation imposes more stringent restrictions on the mechanism, and
specifically on the strategic externalities that it induces.

To this end, for any transfer scheme t, and for every (m, θ) ∈ M × Θ, we define the strategic
externality matrix, SEt (m, θ) ∈ R̄n×n, in which the entry in row i and column j is equal to
SEt (m, θ)ij = ∂2Uti (m,θ)/∂mi∂mj

∂2Ut
i
(m,θ)/∂2mi

∈ R̄ if i 6= j and SEtij = 0 if i = j. (Recall that U ti (m, θ) denotes
i’s payoff function induced by transfers t.) When the transfers in question are the canonical ones,
t∗, then we write SE∗ instead of SEt∗ . For example, in SC-PC settings, the canonical transfers t∗

14Quadratic-linear models are frequent in the literature of networks (e.g., Ballester et al. (2006), BramoullĂ¨ and
Kranton (2007), BramoullĂ¨ et al. (2014), Galeotti, Golub and Goyal (2020)), social interactions models (Blume
et al. (2015)), markets with network externalities (e.g., Fainmasser and Galeotti (2015)), divisible good auctions
(e.g., Wilson (1979) and public goods (e.g., Duggan and Roberts (2002)).

15This can be checked by noting that the environment satisfies the conditions of Corollary 1. In fact, these
conditions are also sufficient for ex-post incentive compatibility.
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induce the following matrix of strategic externalities: for all (m, θ),

SE∗ (m, θ) =


0 ξ12 . . . ξ1n

ξ21 0 . . . ξ2n
...

...
. . .

...
ξn1 ξn2 . . . 0

 .

The next result shows that strategic externalities are key for full implementation. In particular,
it shows that whether a strictly Bid-IC transfer scheme t achieves full implementation, depends on
the properties of two matrices which are closely related to SEt (m, θ). Such matrices are obtained
by focusing on the largest and smallest externalities across the domain, respecitvely normalized
by the smallest and largest concavity in the domain. Formally, let |SEtmax| and |SEtmin| be
such that |SEtmax|ii = |SEtmin|ii = 0 for each i and, for each i and j 6= i, let |SEtmax|ij :=
max(m,θ)∈Θ×Θ |∂2Uti (m,θ)/∂mi∂mj |

min(m,θ)∈Θ×Θ |∂2Ut
i
(m,θ)/∂2mi| and |SEtmin|ij := min(m,θ)∈Θ×Θ |∂2Uti (m,θ)/∂mi∂mj |

max(m,θ)∈Θ×Θ |∂2Ut
i
(m,θ)/∂2mi| . Given allocation

rule d, and preferences v = (vi)i∈I , let ICid(v, d) denote the set of twice continuously differentiable
transfers t = (ti)i∈I which are strictly Bid-incentive compatible. For any square matrix X ∈ Rn×n,
we let ρ (X) denote the spectral radius of X, i.e. the largest absolute value of its eigenvalues.16

The next lemma formalizes the connection between the spectral radius of the |SEtmax| and
|SEtmin|-matrices and full Bid-implementation:

Lemma 1 (Spectral Radius and Full Bid-Implementation). Let t ∈ ICid(v, d). Then:

(i) If ρ (|SEtmax|) < 1, then t fully Bid-implements d.

(ii) If ρ (|SEtmin|) ≥ 1, then t does not fully Bid-implement d

First note that, if t ∈ ICid(v, d) is such that SEt (m, θ) is constant in (m, θ) (as is the case,
for instance, in SC-PC environments and transfers with constant curvature), then |SEtmax| =
|SEtmin| ≡ |SEt|, and then this Lemma implies that a transfer scheme t fully Bid-implements d
if and only if ρ(|SEt|) < 1. Intuitively, the reason for this result is that eigenvalues in general
describe the properties of iterated matrices. For strategic externality matrices, this amounts to
describing the iterations of best replies which are implicit in the rationalizability operator. The
condition that the spectral radius is smaller than one determines whether the transfers induce
contractive best replies, and hence a unique rationalizable profile.17 Incentive Compatibility –
which is assumed in the Lemma – in turn ensures that such a unique profile is actually the truthful
revelation profile. Since, in general, strategic externalities may vary over the domain, the necessary
and sufficient conditions in the Lemma refer to the lower and upper bounds of such externalities,
i.e. respectively to the |SEtmin| and |SEtmax|-matrices.

As discussed, Bid-IC is a necessary condition for full Bid-implementation. Hence, we turn next
to the implications of Bid-IC for the mechanism’s strategic externalities:18

16If A is such that Aij = ∞ for some ij-entry, we let ρ(A) := limK→∞ ρ (AK), where AK is s.t. [AK ]ij := K if
Aij =∞ and [AK ]ij := Aij otherwise.

17Results analogous to Lemma 1 can be stated for other belief restrictions too, in that the spectral radius condition
can be shown to characterize contractiveness of best replies in general games with payoff uncertainty (other known
conditions, such as diagonal dominance, are easier to check but only sufficient).

18We note that, for the analysis of partial implementation (cf. Appendix A), it suffices to check conditions on
the agents’ optimization problem at the truthful profile (which is all that matters for partial implementation). In
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Lemma 2. Let t ∈ ICid(v, d). Then, for all θ and (mi, m̄−i) s.t. m̄j = m̄k for all j, k 6= i:

1. ∂2Ui (mi, m̄−i; θ) /∂2mi = ∂2U∗i (mi, m̄−i; θ) /∂2mi and

2.
∑
j 6=i ∂

2Ui (mi, m̄−i; θ) /∂mi∂mj =
∑
j 6=i ∂

2U∗i (mi, m̄−i; θ) /∂mi∂mj.

These conditions are also sufficient in SC-PC, when t has constant curvature.

In words, these conditions say that for any agent i and for any state θ, at any profile in which i’s
opponents report (not necessarily truthfully) the same type, then both the concavity in own-action
(condition 1), and the sum of the strategic externalities of all the opponents (condition 2), induced
by any Bid-IC transfer scheme, must be the same as those of the canonical direct mechanism.

The intuition for this result, which is formalized by Lemmas 3 and 4 in Appendix A, is the
following: by Lemma 3, the only way in which the designer can exploit the information on agents’
beliefs to design Bid-incentive compatible mechanisms, is to correct the baseline canonical transfers
by adding a belief dependent term which can be chosen for instance to minimize the spectral
radius of the strategic externality matrix. In order to preserve incentive compatibility, however,
the designer must know the expected value of this corrective term – formally, a function of the
opponents’ types – at the truthful strategy profile, for all beliefs that agents might have about
others’ types. Under the Bid, essentially the only restriction which holds for all beliefs of all types
is the idea that any player i regards the types of any two players as identically distributed. Hence,
the only functions of the opponents’ types whose expectation is known to the designer, regardless
of which beliefs among those in Bid are entertained by the agents, are functions for which any
‘increase’ on the effect of one opponent’s type, must be offset by a commensurate ‘decrease’ of
some other opponent’s type (cf. Lemma 4). The overall expectation of this corrective term must
thus ensure a rebalance of the effects across the opponents, at least at profiles of identical types,
which overall implies the constraint on the strategic externalities in the result above (cf. App. A).

The overall design strategy that emerges from combining Lemma 1 and 2 is that the designer
should seek to minimize the spectral radius of the |SEtmax|-matrix, subject to the constraints
imposed by Bid-IC (and, particularly, by Lemma 2). Such constraints imply that the designer
may only redistribute, not reduce, the total strategic externalities induced by the canonical direct
mechanism. In SC-PC environments, in which the SE∗-matrix is constant in (m, θ), the conditions
in Lemma 2 require that, in order to preserve Bid-IC, a transfer scheme should induce a matrix
of strategic externalities which preserves, row by row, the same row-sums as in the SE∗-matrix.
Hence, in SC-PC settings, the design strategy boils down to a problem of minimizing the spectral
radius of a matrix, subject to preserving the row-sums of the SE∗-matrix. With this in mind, we
let ρmax (v, d) and ρmin (v, d) denote the lowest spectral radii induced by transfers in ICid(v, d),
for the |SEtmax| and |SEtmin|-matrices, respectively:

ρmax (v, d) := mint ρ (|SEtmax|)
s.t.: t ∈ ICid(v, d)

and
ρmin (v, d) := mint ρ (|SEtmin|) .

s.t.: t ∈ ICid(v, d)
contrast, the next result refers to restrictions that Bid-IC imposes on the strategic externalities at the non-truthful
profiles. This is needed because the result in Lemma 1 refers to properties of the |SEt|-matrix, which in turn depend
on the properties of the strategic externalities at all profiles (m, θ), not only at the truthful ones.
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4.2 Full Implementation via Transfers: Characterization

In this section we restrict attention to SC-PC environments, which as discussed are especially
important from the viewpoint of the applied theoretical literature. Similar to what we did for
partial implementation, we seek to identify a transfer scheme which can be used to identify whether
or not full Bid-Implementation is possible. To this end, we introduce the loading transfers. As
illustrated in Example 1.3, the logic of the construction is to redistribute the strategic externalities
so that, in the resulting mechanism, they are all concentrated on the two agents with the smallest
canonical externalities (given the relabeling above, these are agents 1 and 2). Formally, the loading
transfers

(
tli
)
i∈I are defined as follows: for each i ∈ I and m ∈Mi ×M−i,

tli (m) = t∗i (m)︸ ︷︷ ︸
canonical transfers

+ Lli (m−i)mi︸ ︷︷ ︸
redistribution of

canonical externalities

, (6)

where Lli : M−i → R is such that

Lli (m−i) =


[
−
∑
k 6=1
k 6=2

∂2v1
∂x∂θk

m2 +
∑
k 6=1
k 6=2

∂2v1
∂x∂θk

mk

]
∂d
∂θ1

if i = 1[
−
∑
k 6=1
k 6=j

∂2vj
∂x∂θk

m1 +
∑
k 6=1
k 6=j

∂2vj
∂x∂θk

mk

]
∂d
∂θj

if i 6= 1
(7)

First, it can be checked that these transfers ensure Bid-IC (cf. Lemma 3 in Appendix A).
Second, letting U li (m; θ) denote the payoff function which results from these transfers, it can be
checked that ∂2

i1U
l
i =

∑
j 6=i ∂

2
ijU
∗
i for all i 6= 1; ∂2

12U
l
1 =

∑
j 6=1 ∂

2
1jU

∗
1 and otherwise ∂2

ijU
l
i = 0.

That is, the total canonical externalities are all loaded onto the two agents with the smallest
canonical externalities: for all i 6= 1, the sum of canonical externalitites for i are all loaded onto
agent 1; whereas the sum of canonical externalities for agent 1 are loaded onto 2.

SEl =


0 ξ1 . . . 0
ξ2 0 . . . 0
...

...
. . .

...
ξn 0 . . . 0

 .

Theorem 2 (Full Implementation: Characterization). For any environment (v, d) that satisfies
the SC-PC conditions, the following holds:

1. d is fully Bid-implementable if and only if it is fully Bid-implemented by tl.

2. d is fully Bid-implementable if and only if the canonical externalities are such that |ξ1ξ2| < 1
(or, equivalently, if and only if the preferences interdependence of agents 1 and 2 are suffi-
ciently small: that is, if and only if |

∑
j 6=1

∂2v1
∂x∂θj

·
∑
j 6=2

∂2v2
∂x∂θj

| < ∂2v1
∂x∂θ1

· ∂
2v2

∂x∂θ2
).

Part 1 of the theorem follows from the following facts, which are shown in the proof: first,
the loading transfers in SC-PC environments are strictly Bid-IC and induce constant strategic
externalities, and hence (by Lemma 1) they achieve full implementation if and only if ρ(|SEtl |) < 1;
second, among the class of Bid-IC transfers, the loading transfers are those that minimize the
spectral radius of both the |SEtlmin| and of the |SEtlmax| matrices. Hence, if ρ(|SEtl |) ≥ 1, then
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full Bid-implementation is impossible, because any Bid-IC transfer t ∈ ICid(v, d) would be such
that ρ(|SEtmin|) ≥ 1 (cf. Lemma 1, part (ii)); on the other hand, if ρ(|SEtl |) < 1, then full
implementation is possible, and it is achieved by tl. The reason why tl achieves both ρmax (v, d)
and ρmin (v, d) is that, as it turns out, the best way of minimizing the spectral radius of the strategic
externality matrix, subject to the constraint (imposed by Bid-IC) of preserving the same row-sums
as in the SE∗-matrix (cf. Lemma 2), is to concentrate all the strategic externalities of any agent
i on the opponent with the smallest |ξj |: that is on agent 2 for i = 1, and on agent 1 for all i 6= 1.
This is precisely what is achieved by the SEtl -matrix, and hence by the tl transfers.

Part 2 follows from the fact that ρ(|SEtl |) < 1 if and only if |ξ1ξ2| < 1. This in turn implies that
the possibility of achieving full Bid-implementation is pinned down by the canonical externalities of
the two agents with the smallest canonical externalities (or, equivalently, those with the smallest
level of preference interdependence). Thus, full implementation is possible if and only if the
combined effect of these two agents’ canonical externalities is not too large, and that is regardless
of the strength of the preference interdependence of other agents, or of their number.

As we mentioned in the introduction, this result also has interesting implications from a broader
market design perspective: for instance, if full implementation cannot be achieved for a set of
agents, then all is needed to achieve full implementation is to add to the system two agents with
small preference interdependence. At the extreme, whenever an implementation problem involves
at least two agents with private values, or whenever two such agents can be added to the group,
then full implementation is possible via a simple direct mechanism.

Before moving on to non-SCPC environments, it may be useful to discuss how the results
above compare with the typical characterizations in the full implementation literature. First,
that literature typically considers preferences which are not necessarily quasi-linear, and focuses
on social choice function (SCFs) f : Θ → Y , where Y denotes the space of outcomes (see, e.g.,
Bergemann and Morris (2009a)). With quasilinear preferences, Y = X × Rn, and hence such
characterizations can be used to check whether a given f (·) = (d (·) , t (·)) is implementable by a
direct mechanism (and hence, similar to Lemma 1, whether a given t implements d), but they do
not provide insights on how to design transfers for full implementation. Since we are interested in
this kind of constructive insights, we adopted here the standard setup of the partial implementation
literature, only taking d : Θ → X as given, and letting the designer choose t : Θ → Rn. Second,
as we already discussed, the restriction to direct mechanisms also entails some loss of generality
for full implementation, but in these environments it allows an easier comparison with the partial
implementation literature, and to focus on the structural properties of the transfer schemes. The
emphasis on the ability to generate insights for the design of transfers represents an important point
of departure from the full implementation literature, and is also reflected in the kind of conditions
we provide (cf. Lemma 1).19 By referring to the eigenvalues of the strategic externality matrices,

19As a comparison, Bergemann and Morris (2009a) characterize belief-free rationalizable implementation via di-
rect mechanisms in environments with monotone aggregators (i.e., such that ∀i, vi (x, θ) = wi (x, hi (θ)) for some
wi : X×R→R and hi : Θ→ R strictly increasing in θi) in terms of strict ep-IC and the following ‘contraction prop-
erty’ (Def.5, p.1183, ibid.): ∀β : Θ→ 2Θ s.t. θ ∈ β (θ) for all θ, but β (θ′) 6= {θ′} for some θ′, there exists i, θi and
θ′′i ∈ βi (θi) with θ′′i 6= θi such that, for all θ−i and θ′−i ∈ β−i (θ−i), sign(θi− θ′′i ) = sign(hi(θi, θ−i)−hi(θ′′i , θ

′
−i)).

With more general preferences and with unrestricted mechanisms, the analogous condition for belief-free rationaliz-
ability is robust monotonicity (Bergemann and Morris (2011)): ∀β : Θ→ 2Θ s.t. ∃θ, θ′: θ′ ∈ β (θ) and f(θ) 6= f(θ′),
∃i, θi, θ′′i ∈ βi (θi) s.t. ∀θ−i and ψ ∈ ∆(β−1

−i (θ′−i)), ∃y ∈ Y : (i)
∑

θ′−i∈β
−1
−i (θ−i)

ψ(θ−i)ui(y, (θi, θ−i)) >∑
θ′−i∈β

−1
−i (θ−i)

ψ(θ−i)ui(f(θ′i, θ
′
−i), (θi, θ−i)); and (ii) ∀θ′′i , ui(f(θ′′i , θ

′
−i), (θ

′′
i , θ
′
−i)) > ui(y, (θ′′i , θ

′
−i)). Similar

characterizations, alternative to Lemma 1, could be provided for full Bid-implementation.
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these conditions also enabled us to draw a bridge between full implementation and networks (e.g.,
Elliott and Golub (2019), Galeotti, Golub and Goyal (2020)), which may prove fertile for both
strands of the literatures (these points are further discussed in the Conclusions).

4.3 Full Bid-Implementation in Non SC-PC Environments

We turn next to environments which do not satisfy the SC-PC restriction. First of all, we recall that
the design principle we developed in Section 4.1 – namely, the idea of redistributing the strategic
externalities in order to minimize the spectral radius of the strategic externality matrix – also
holds outside of SC-PC environments. More specifically, the necessity part of Lemma 2 (which
shows that Bid-IC requires maintaining the same total strategic externalities as the canonical
direct mechanism at profiles of identical reports) and Lemma 1 (which shows, in particular, that
full Bid-implementation is achieved by any transfers which induces a strategic externality matrix
with spectral radius smaller than one) hold for general environments.

In this Section we exploit those general insights to study full implementation in non SC-
PC environments. The key difficulty in these settings is that the strategic externalities of the
canonical direct mechanism may not be constant over the domain of types and reports, and hence
operationalizing the general principle of redistributing the strategic externalities subject to the
incentive compatibility constraints requires tracing how they vary over the entire domain. One
way to approach this problem is to construct the modification of the baseline transfers t∗ based
on a midpoint between the lowest and highest stategic externalities generated by the environment.
The next result shows that such a design strategy ensures full Bid-implementation if the strategic
externalities at such a midpoint are not too large for at least two agents, and if they are not too
far from the strategic externalities attained over the full domain.

Formally, given the entries of the strategic externalities matrix (SE∗ (m; θ)ij)(i,j)∈I×I , we
define the ‘midpoint’ strategic externalities S̄E∗ij as follows:20

S̄E
∗
ij :=

max(m,θ) SE
∗
ij (m; θ) + min(m,θ) SE

∗
ij (m; θ)

2 .

Similar to Section 4.1, for each i ∈ I we let ξ̄li :=
∑
j 6=i S̄E

∗
ij denote i’s total strategic externalities

in the S̄E∗ij matrix, and relabel agents if needed so that |ξ̄1| ≤ |ξ̄2| ≤ . . . ≤ |ξ̄n|. Assume that
|ξ̄n| <∞. The Generalized Loading Tranfers, (t̄li)i∈I , are defined as follows:

t̄li (m) = t∗i (m)︸ ︷︷ ︸
canonical transfers

+ L̄li (m−i)mi︸ ︷︷ ︸
redistribution of

externalities in S̄E∗

, (8)

20Any convex combination of SE∗ij (m; θ) points, i.e.
∫
SE∗ij (m; θ) dµ where µ is a probability measure over Θ×Θ

is a viable definition for S̄E∗ij . Note that the relevant values of distances in A are impacted by the choice of µ. Here
we do not expand on the implications of this, but one may further reduce the resulting spectral radius ρ via the
optimal choice of µ.
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where L̄li : M−i → R is such that

L̄li (m−i) =


[
−
∑
k 6=1
k 6=2

S̄E
∗
1km2 +

∑
k 6=1
k 6=2

S̄E
∗
1kmk

]
∂d
∂θ1

if i = 1[
−
∑
k 6=1
k 6=j

S̄E
∗
jkm1 +

∑
k 6=1
k 6=j

S̄E
∗
jkmk

]
∂d
∂θj

if i 6= 1

To measure the distances between the actual strategic externalities SE∗(m, θ) and the midpoints
above, we let

αij := max
(m,θ)

SE∗ij (m; θ)− S̄E∗ij .

and define the matrix of approximation errors, A, s.t. [A]ij := αij for all i, j. Finally, we also
define α1 := maxj α1j , α2 := maxj α2j , and α := maxij:i 6=1,2 αij .

The next result provides necessary and sufficient conditions for the generalized loading transfers
to achieve full Bid-Implementation in general environments.21 The key idea is to study conditions
that ensure ρ(|S̄E t̄

l

| −A) < 1 for necessity, and ρ(|S̄E t̄
l

|+A) < 1 for sufficiency, where

|S̄E t̄
l

|+A =



0 |ξ̄1|+ α1 α1 . . . α1

|ξ̄2|+ α2 0 α2 . . . α2

|ξ̄3|+ α α 0 . . . α
...

...
...

. . .
...

|ξ̄n|+ α α α . . . 0


. (9)

Theorem 3. Let (v, d) be such that d is partially Bid-implementable. Then:

1. d is fully Bid-implemented by t̄l if: (i) |ξ̄1ξ̄2|+ α1G1 + α2G2 + (n− 3)α(1− |ξ̄1ξ̄2|) < 1,
and (ii) 1

3
[
|ξ̄1ξ̄2|+ α1F1 + α2F2

]
+ 2

3 (n− 3)α < 1.22

2. d is fully Bid-implemented by t̄l only if: |
(
|ξ̄1| − α12

) (
|ξ̄2| − α21

)
| < 1.

First of all, notice that if there are no ‘approximation errors’ (i.e., α = α1 = α2 = 0), then
(i) implies (ii), and the conditions in points 1 and 2 both boil down to |ξ1ξ2| < 1. Hence, the
characterization in Theorem 2 obtains from this theorem for the special case in which α = α1 =
α2 = 0. With positive approximation terms, there are two main changes in the sufficient conditions
(part 1): first, the two lowest canonical strategic externalities (ξ1, ξ2) (which are constant over
the entire domain in the SC-PC setting of Theorem 2), are replaced by the two lowest strategic
externalities at the ‘midpoint’, (ξ̄1, ξ̄2); second, the condition that the absolute value of their
product is less than one is strengthened in that it is required to hold with sufficient slack so as to
accommodate the extra terms that depend on the approximation errors (cf. (i) and (ii)).

Intuitively, the general message is that, as long as the strategic externalities do not vary too
much across the entire domain, so that the ‘approximation errors’ are small, then the basic insights
from Theorem 2 extend to non SC-PC, via the adoption of the generalized loading transfers defined

21We note that this result is significantly stronger than other results that appeared in earlier drafts of this paper.
In particular, earlier results (which are available upon request) provided sufficient conditions for the transfers in (6)
to achieve full Bid-implementation in non-SCPC settings. The next result, in contrast, is based on the generalized
loading transfers, which tailor the design of the mechanism to the non-SCPC environment.

22Where F1 =
∑

i 6=1 |ξ̄i|+α2 +(n− 2)α, F2 = (n− 2)α, G1 = (α2 + 1)
∑

i 6=1,2

(
|ξ̄i|+ α

)
+(α+ 1)

(
|ξ̄2|+ α2

)
,

and G2 = |ξ̄1|
∑

i6=1,2 |ξ̄i|+ (α+ 1) |ξ̄1|+ (n− 2)α.
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in (8). Note that by the continuity of ρ, for any |ξ̄1ξ̄2| < 1, there exists α sufficiently close to 0
such that full Bid-implementation follows. However if externalities vary and α is not very small,
then joint sufficient conditions on ξ̄ and α can still imply full implementation. To understand the
logic of the sufficiency result in Theorem 3, it is instructive to exploring the role that the different
components of the matrix in (9) play in the conditions (i) and (ii) in part 1. The next remark
gathers the main interesting special cases:

Remark 1. Consider the sufficient conditions in part 1 of Theorem 3:

1. If α1 = α2 = 0, then (i) and (ii) hold if and only if (n− 3)α < 1, and |ξ̄1ξ̄2| < 1.

2. If α = 0, then (i) implies (ii) and it is equivalent to:
|ξ̄1ξ̄2|+ α1

∑
i 6=1 |ξ̄i|+ α1α2

(
1 +

∑
i 6=1,2 |ξ̄i|

)
+ α2|ξ̄1|

(
1 +

∑
i 6=1,2 |ξ̄i|

)
< 1.

(a) If α = α2 = 0, then this reduces to |ξ̄1ξ̄2|+ α1
∑
i 6=1 |ξ̄i| < 1.

(b) If α = α1 = 0, then this reduces to |ξ̄1ξ̄2|+ α2|ξ̄1|
(

1 +
∑
i 6=1,2 |ξ̄i|

)
< 1.

5 Other Designs: The Equal-Externality Transfers

In this Section we consider alternative transfer schemes to the loading transfers, which have espe-
cially relevant structure and properties. As illustrated by the te transfers in Example 1.3, these
transfers pursue a uniform redistribution of the strategic externalities. As it will be shown, such
alternative design principle is still widely applicable and has desirable robustness properties.

We define the equal-externality transfers te = (tei )i∈I as follows: for each i and m,

tei (m) := t∗i (m)︸ ︷︷ ︸
canonical transfers

+ Lei (m−i)mi︸ ︷︷ ︸
redistribution of

canonical externalities

, (10)

where Lei : M−i → R is such that

Lei (m−i) =
∑
j 6=i

− ∂2vi
∂x∂θj

+ 1
n− 1

∑
k 6=i

∂2vi
∂x∂θk

mj

 ∂d

∂θi
.

Similar to the loading transfers, also these transfers are Bid-IC in SC-PC environments, and
they satisfy the constant curvature condition. Moreover, letting Uei (m; θ) denote the payoff func-
tion which results from these transfers, we have that ∂2

ijU
e
i = 1

n−1
∑
j 6=i ∂

2
ijU
∗
i for all i and j 6= i,

and ∂2
iiU

e
i = ∂2

iiU
∗
i for all i. Hence, these transfers redistribute the total externalities of the canon-

ical direct mechanism evenly across all of i’s opponents. This can be easily seen from the strategic
externality matrix they induce:

SEe =



0 ξ1
n−1 . . . . . . ξ1

n−1
ξ2
n−1 0 ξ1

n−1 . . . ξ2
n−1

...
. . . . . . . . .

...
ξ2
n−1 . . . ξ1

n−1 0 ξ2
n−1

ξ2
n−1 . . . . . . ξ2

n−1 0


.

22



5.1 Full Implementation via Equal-Externality Transfers

While Theorem 2 ensures that, in SC-PC environments, the loading transfers achieve full Bid-
implementation whenever such implementation is possible, the next result provides easy-to-check
conditions under which full implementation can be achieved via the equal-externality transfers te:

Theorem 4. Under SC-PC, the transfers in (10) achieve full Bid-implementation if

either (i)

∣∣∣∣∣∣
∑
j 6=i

∂2vi
∂x∂θj

∣∣∣∣∣∣ < ∂2vi
∂x∂θi

for all i; or (ii)
∑
j 6=i

∣∣∣∣ ∂2vj
∂x∂θi

/
∂2vj
∂x∂θj

∣∣∣∣ < 1 for all i. (11)

The proof of this result follows from more general results which we discuss in Appendix C.
To appreciate the conditions in (11), it is useful to compare them to the following known suffi-
cient conditions for full implementation via the canonical transfers: Under SC-PC, the canonical
transfers achieve (belief-free) full implementation if

∑
j 6=i

∣∣∣∣ ∂2vi
∂x∂θj

∣∣∣∣ < ∂2vi
∂x∂θi

for all i. (12)

Condition (12) requires that the sum of preference interdependencies, across all of opponents’
of agent i, to be small relative to the dependence of i’s marginal utility on his own type. When
this condition is satisfied, the resulting strategic externalities in the canonical direct mechanism
are small, and belief-free full implementation follows from the results in Ollár and Penta (2017)
and Bergemann and Morris (2009a). Relative to this belief-free benchmark, the Bid-restrictions
enable the designer to redistribute the strategic externalities, and hence to weaken Condition (12)
to part (i) of Theorem 4, in which the absolute value is moved outside of the summation. This
means that, by relying on the Bid-restrictions, preference interdependencies with opposite signs
can be leveraged, to obtain full implementation: Under Bid, it is the total amount of net preference
interdependence that matters, not the total amount of absolute interdependence.

The second condition in (11) instead focuses on the total impact that agent i’s type has on
other agents’ preferences. Rather than pointing at the way player i’s preferences depend on others’
information, it measures the total impact of i’s information on others’ preferences. The reason
why this alternative condition is also sufficient is related to the idea of Limited Strategic Impact,
formalized by part (ii) of Lemma 5 in Appendix C.

Example 3. In the setting of the leading examples, consider preferences vi : X × Θ → R which
satisfy the following condition:

(
∂2vi
∂x∂θj

)
i=1,2,3
j=1,2,3

=

 1 7
6 − 5

6
− 1

6 1 3
6

− 4
6 − 4

6 1


It is immediate to check that condition (12) does not hold, and one can also show that belief-free
full implementation is not possible in this setting. In fact, for agent 3 condition (i) is also violated.
Condition (ii), however, holds and implementation via the equal-externality transfers is possible.
(Of course, implementation via the loading transfers is possible too.)
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Proposition 4 in Appendix C further formalizes the sense in which – while still not as applicable
as the loading transfers (which, by Theorem 2, achieve full implementation whenever possible) –
the logic of the equal-externality transfers is still widely applicable.

5.2 Environments with Symmetric Aggregators

Next, we examine full Bid-implementability in a special case of our environments, which satisfy
a (still weak) assumption of symmetry in agents’ preferences. We show that, under this mild
assumption of symmetry, transfers with uniformly redistributed externalities are indeed without
loss of generality, in the sense that they achieve full implementation whenever it is possible.

Definition 7 (Symmetric Aggregators in Valuations). An environment has symmetric aggregators
in valuations if for all i, there exist w : X×R→ R and hi : Θ→ R strictly increasing in θi such that
vi (x, θ) = w (x, hi (θ)), ∂hi (θ) /∂θi = ∂hj (θ) /∂θj and

∑
k 6=i (∂hi (θ) /∂θk) =

∑
k 6=j (∂hj (θ) /∂θk)

for all i, j and θ.

Proposition 2 (Full Bid-Implementation with Symmetric Aggregators). Consider an SC-PC en-
vironment with symmetric aggregators in valuations.

1. Full Bid-Implementation is possible if and only if it is achieved by transfers (tei )i∈I .

2. Full Bid-Implementation is possible if and only if
∣∣∣∑k 6=i

∂2vi
∂x∂θk

∣∣∣ < ∂2vi
∂x∂θi

for all i.

Figure 5.2 summarizes the relations between different transfer design strategies. This figure
summarizes the implications of the counterexamples above; and the results on full implementabil-
ity under identical distributions (via the loading transfers in Theorem 2, via designing diagonal
dominance in Lemma 5 (in the Appendix), via the equal-externality transfers in Theorem 4, and
in environments with symmetric aggregators in Proposition 2).

5.3 Sensitivity Results

In this section we explore the sensitivity of the loading and equal-externality mechanisms to various
forms of model deviations from the baseline model of rationality, first with respect to the possibility
of ‘slightly faulty’ agents, and then with respect to lower-orders of rationality.

5.3.1 Lower Orders of Rationality and Robust Level-k Implementation

The first notion we consider is robustness with respect to lower order beliefs in rationality. To
this end, it is useful to introduce notation for the set of reports which survive the k-th round of
Bid-rationalizability (def. 4) for a given type θi: Rid,ki (θi) :=

{
mi : (θi,mi) ∈ Rid,ki

}
. To stress

the dependence of this set on the specific transfer scheme t, when needed, we will write Rid,ki (θi|t).
The properties of the loading transfers discussed in Section 4 – namely, that they maximize the
speed of the contraction induced by iterating the best responses, among the class of all Bid-IC
transfers, – also ensure the following result:

Theorem 5. Let t be any Bid-IC transfer scheme. Then: Rid,ki

(
θi|tl

)
⊆ Rid,ki (θi|t) for all k.
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Figure 2: Viability of alternative design strategies for full implementation. This diagram illustrates the
relationship between the possibility of achieving full Bid-implementability via different transfer schemes, for sets of
environments (v, d) which satisfy the SC-PC restriction in Def. 6.

This result is interesting because it points at a different notion of robustness, with respect
to lower order beliefs in rationality: the loading transfers are the most efficient at minimizing
the possible misreports which could arise due to failures of common belief in rationality. This is
an important property, because common belief in rationality (which is implicit in the notion of
rationalizability) is often very demanding, and need not be satisfied in a given environment. If
the designer is concerned with agents’ sharing lower orders of mutual belief in rationality, then
he would not only consider the sets Ridi (θi), but also

(
Rid,ki (θi)

)
k∈N

.23 Hence, among two fully
implementing transfers (i.e., both such that Rid (θi) = {θi}), he should prefer the one which also
induces the smaller Rid,ki (θi) at every k. The loading tranfers are optimal in this respect.

As further explained in Appendix D.2, this notion of robustness is connected to the literature
on level-k implementation (and, particularly, to de Clippel et al. (2018), which has explicitly
considered designing mechanisms for players who don’t share common knowledge of rationality.

5.3.2 Slightly Faulty Players and Preference Misspecification

In many settings, it may be desirable to ensure that the implementing mechanism does not rely
too heavily on agents’ behavior exactly coinciding with that entailed by the maintained assump-
tions on their preferences and rationality. In this section we explore the implications of this kind
of desiderata on the design of transfers for full implementation, by requiring the implementing
mechanism to minimize the impact of an ε-mistake in an agents’ report. Such ‘mistakes’ can be
interpreted as either stemming from agents’ slightly faulty behavior (similar to Eliaz (2002)), or

23Saran (2016) makes a similar point in the context of complete information environments, and studies full
implementation when common belief in rationality is relaxed and arbitrary level-0 anchors are allowed.
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due to a misspecification of agent’s preferences in the model.24

Formally, let F ⊆ I be an arbitrary set of possibly slightly faulty agents, in the sense that they
may report messages up to ε > 0 away from their optimal response. For any ε > 0, θi ∈ Θi and
µi ∈ ∆(Θ−i×M−i), we let BRεθi (µi) = {mi ∈ Θi : |mi −m′i| ≤ ε for some m′i ∈ BRθi (µi)} denote
the set of possible responses of a possibly ε-faulty agent with type θi and conjectures µi. The next
solution concept characterizes the behavioral implication of assuming common knowledge that a
subset F of players may be ε-faulty in the sense above:

Definition 8 (Fε-rationalizability). Fix a direct mechanism (d, t), ε ≥ 0 and F ⊆ I. For any
θi ∈ Θi and µi ∈ ∆(Θ−i × M−i), we let BRFεθi = BRεθi (µi)if i ∈ F , and BRFεθi = BRθi (µi)
otherwise. For every i ∈ I, and k = 1, 2, ...,, let RFε,0i = Θi ×Mi, RFε,k−1

−i = ×j 6=iRFε,k−1
i ,

RFε,ki =
{

(θi,mi) : mi ∈ BRFεθi (µi) for some µi ∈ Cidθi ∩∆
(
RFε,k−1
−i

)}
, and RFεi =

⋂
k≥0

RFε,ki .

The set of Fε-rationalizable messages for type θi is defined as RFεi (θi) :=
{
mi : (θi,mi) ∈ RFεi

}
.

RFεi represents our model of strategic interaction when players consider the possibility that
agents in F may be ε-faulty. The next definition formalizes our notion of robustness to ‘slightly
faulty’ agents. In words, the idea is that the designer does not know how many or which agents
might be potentially faulty, and the criterion with which he/she assesses the robustness of the
mechanism is the worst-case scenario across all possible configurations of sets of faulty agents.
The measure of the fragility of the mechanism is therefore provided by the largest misreport
consistent with RFεi , across all agents and all configurations of the set of faulty agents:

Definition 9 (Sensitivity to ε-Faulty Agents). Fix a direct mechanism (d, t). For any nf = 1, ..., n,
let N (k) := {F ⊆ I : |F | = nf}, and ηt (ε, nf ) := supF∈N(nf ) supi∈I supθi∈Θi supmi∈RFεi (θi) |mi − θi|
be t’s sensitivity to nf agents who are ε-faulty, and let ηt (ε) = (ηt (ε, 1) , ..., ηt (ε, n))

The next result shows that, in SC-PC environments with symmetric aggregators, the equal-
externality transfers are more robust than the loading transfers in this sense:

Theorem 6. [Sensitivity to ε-Faulty Players]Under SC-PC and Symmetric Aggregators, for all
ε > 0, ηte (ε) ≤ ηtl (ε), moreover for all nf < n, ηte (ε, nf ) < ηt

l (ε, nf ).

The intuition behind this result is simple: as explained, the loading transfers induce a very
hierarchical strategic structure, in which the contractiveness of the mechanism is completely de-
termined by the two agents with smallest preference interdependence. But loading all strategic
externalities on these agents also makes the mechanism especially vulnerable to the possibility of
these agents being faulty. In that case, the loading transfers would perform rather poorly. To
avoid this risk, and not knowing which of the agents may potentially be faulty, the safest solution
for the designer is to redistribute the strategic externalities uniformly across all players, so that no
player is especially critical for the mechanism.

24Robustness with respect of the possibility of slightly faulty agents is somewhat in the spirit of the analysis in
Eliaz (2002). There are, however, several differences: first, Eliaz (2002) considers a complete information envi-
ronment, whereas our environments features incomplete information and interdependent values; second, in Eliaz
(2002)’s model the possibility of agent’s mistakes affects the very solution concept, which yields a strong notion
of implementation, intermediate between Nash and dominant-strategy implementation; third,Eliaz (2002) does not
restrict the space of mechanisms, and in that paper implementation is achieved through a modulo game.
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6 Application: Utilitarian Public Good Problems with Net-
work Effects and Private Information.

In this section we illustrate how the general results above can be easily applied to a class of
environments which is especially relevant for the networks literature.25 Specifically, we consider an
economy with n angents, I = {1, ..., n}, with private information θi ∈ [θ, θ] ∈ R+. We let x ∈ R+

denote the quantity of a public good, and agents’ preferences are such that, for each i ∈ I,

vi(x; θ1, ..., θn) =
(
Ki +

∑
j∈I

γijθj

)
· x (13)

The term Ki ∈ R is a type-independent component of i’s marginal utility for the public good; the
rest is determined by a network of preference interdependence. For convenience, we describe the
latter component by means of a matrix of preference interdependence:

Γ =


γ11 γ12 . . . γ1n

γ21 γ22 . . . γ2n
...

...
. . .

...
γn1 γ32 . . . γnn

 .
This is an environment with network effects and private information. The private values case

holds if and only if γij = 0 for all i ∈ I and j 6= i, otherwise we have interdependent values.
We assume that the social planner aims to maximize a utilitarian social welfare functional, with
generalized weights (λi)i∈I s.t. λi ≥ 0 and

∑
i∈I λi = 1, net of the production costs. Formally, for

each θ ∈ Θ, he wishes to implement the following quantity of public good:

d(θ) ∈ argmaxx∈R+ =
∑
i∈I

λi · vi(x; θ)− c(x), (14)

where c : R+ → R+ is twice continuously differentiable, strictly increasing and strictly convex
function. Letting hi(θ) =

(
Ki +

∑
j∈I γijθj

)
denote i’s marginal utility for the public good, we

also assume that minθ∈Θ
∑
i∈I hi(θ) ≥ limx→0+c′(x) and limx→∞c

′(x) ≥ maxθ∈Θ
∑
i∈I hi(θ).26

We will refer to environments (v, d) which satisfy (13) and (14) and the assumptions above
as utilitarian public good problems with network effects. First we note that any such environment
satisfies the public-concavity condition in part 2 of Def. 6. Hence, this class of public good problems
in networked economies are an SC-PC environment if and only if they satisfy the standard single-
crossing condition in part 1 of Def. 6: the restriction on vi in this case holds if and only if (i)
γii > 0, and strict monotonicity of the allocation rule holds if and only if (ii) γi :=

∑
l∈I γil ·λl > 0

25E.g., Leister, Zenou and Zhou (2020), CalvĄ̆ -Armengol and De MartĂŹ (2007), Galeotti et al. (2010), CalvĄ̆ -
Armengol et al. (2015), Blume et al. (2015), De MartĂŹ and Zenou (2015), Golub and Morris (2017), Myatt and
Wallace (2019), Leister (2020).

26The latter assumptions merely ensure existence of an interior optimum in the planner’s problem in (14) for
all θ. In conjunction with the twice continuous differentiability of c, this also ensures that d is differentiable
and responsive. These conditions follow, for instance, from standard Inada conditions on the cost function (i.e.,
limx→∞c′(x) = ∞ and limx→0+c′(x) = 0), as soon as the sum of the marginal utilities for the public good is
non-negative (minθ∈Θ

∑
i∈I hi(θ) ≥ 0). These assumptions could be changed, as long as the argmax in (14) is

non-empty and interior for all θ, so that the allocation rule is well-defined and differentiable. The one-dimensionality
of the public good could be relaxed too, at the expense of heavier notation. Note that the quadratic case in the
examples of Section 2.1 is a special case of this class of environments.
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for each i ∈ I. Hence, the SC-PC assumption in these environments only has bite in that it imposes
a standard single-crossing condition, which requires that: (i) marginal utilities for the public good
are increasing in own type; and (ii) the total weighted preference externality from each agent to
all individuals, each weighted by his social weight, is strictly positive.

In these environments, the matrix of canonical strategic externalities, SE∗, is promptly ob-
tained from the matrix of preference interdependence as follows: SE∗ij = γij

γii
for all j 6= i, and

SE∗ii = 0. Relabel agents if necessary so that
∑
j 6=1

γ1j
γ11

<
∑
j 6=2

γ2j
γ21

< ... <
∑
j 6=n

γnj
γnn

. Then, the
following results follow directly from Theorems 1, 2 and 4:

Proposition 3. Consider a utilitarian public good problem with network effects, Γ. Then:

1. Partial Bid-implementation is possible (w.l.o.g., via the canonical transfers) if γii, γi > 0
∀i ∈ I and only if γii, γi ≥ 0 ∀i ∈ I.

2. If γii, γi > 0 ∀i ∈ I, Full-Bid implementation is possible (w.l.o.g., via the loading transfers)
if and only if |

∑
j 6=1 γ1j

∑
j 6=2 γ2j | < γ11 · γ22. It is also possible via the equal-externality

transfers if either (i)
∣∣∣∑j 6=i γij

∣∣∣ < γii for all i, or (ii)
∑
j 6=i

∣∣∣ γjiγjj ∣∣∣ < 1 for all i.

7 Conclusions

This paper continues a long tradition of works on implementation, which have taken up Wilson
(1987) and Jackson (1992) call for a greater ‘relevance’ of full implementation theory, through a
repeated weakening of common knowledge assumptions n the environment, and the exploration
of restricted classes of mechanisms.27 In this paper, we focused specifically on implementation
via transfers that only elicit agents’ payoff-relevant information, under weak common knowledge
assumptions that reflect a natural economic idea: namely, that agents’ types are drawn from an
identical distribution (‘common knowledge of identicality’, CKI). Our main results characterize the
transfer schemes which achieve, respectively, partial and full implementation under CKI whenever
possible, as well as the conditions on agents’ preferences and on the allocation rules under which
these notions of implementation are possible. Despite the restriction to the class of mechanisms,
which ensures a clear economic interpretation of the results, we uncovered surprisingly permissive
results. For instance, we showed that the possibility of full implementation is determined by the
strength of the preference interdependence of the two agents with the least amount of preference
interdependence, regardless of the number of the other agents, and of their preferences.

Our analysis also revealed that the joint restrictions on the mechanisms and on the common
knowledge assumptions impose a peculiar mathematical structure on the implementation problem,
which enabled us to recast the mechanism design problem as one of ‘optimally’ designing a network
of strategic externalities, subject to suitable constraints. The objective of this design exercise (dic-
tated by the aim to characterize the transfers for full implementation) is to minimize the spectral
radius of the matrix of strategic externalities; the constraints (which are dictated by incentive
compatibility under the CKI restriction) require preserving the total level of such externalities.

27For instance, under standard common knowledge assumptions, Jackson (1992) studied implementation via
bounded mechanisms, and Bergemann and Morris (2009a); Oury and Tercieux (2012) studied implementation via
direct mechanisms; With unrestricted mechanisms, Bergemann and Morris (2011); Müller (2020) studied implemen-
tation in belief-free settings; papers that included both non-standard (weak) common knowledge restrictions and
restricted mechanisms, include Bergemann and Morris (2009a,b) and Ollár and Penta (2017); etc.
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Aside from the implementation results in a strict sense, this formulation of the problem generates
further insights, which may prove valuable for other strands of the literature.

For instance, Galeotti, Golub and Goyal (2020) recently studied the important problem of
optimally intervening on the nodes of a game with networked externalities. The interventions
considered in that paper concern the idiosyncratic/non strategic components of players’ preferences,
taking as given a network of externalities which is assumed to induce contractive best replies and
uniqueness of equilibrium. In contrast, our analysis concerns the design of the very network of
strategic externalities (subjects to certain constraints, as we discussed in the previous paragraph).
The objective of minimizing the spectral radius, within a class of networks of strategic externalities,
may prove useful in itself, as several properties of a networked economy may be related to the
spectral radius of its matrix of strategic externalities: for instance, when the spectral radius is less
than one, it is closely related to Cournot stability of the associated Nash equilibrium. Our solution
to the spectral radius-minimization problem is thus also informative about structural properties of
networks, well beyond the full implementation problem from which it stemmed in this paper. In
fact, the solution we identified (namely, the star network that describes the strategic externalities
induced by the loaded transfers in Theorem 2) has interesting structural features, which we think
are quite revealing from a pure network perspective.

Our characterization of full implementation in terms of a spectral radius condition on a suitable
matrix of strategic externalities is also closely connected to Elliott and Golub (2019) characteri-
zation of efficient allocations in economies with networked externalities, which is also based on a
spectral radius condition of a matrix of externalities. The main difference is that their spectral
radius condition refers to a matrix of payoff externalities, which are captured by the first-order
derivatives of agents’ payoff functions. In contrast, our condition refers to a matrix of strategic
externalities, which describes how players’ best responses are affected by others’ actions, and hence
are described by the second-order derivatives of agents’ payoff function. Nonetheless, both papers
provide clear cases in point on how a network approach may shed a new light on classical prob-
lems, and enable novel results. For the problem we consider, specifically, this connection favors a
more clear integration of full implementation theory with more familiar concepts of mainstream
economics, such as transfers schemes, networks and externalities.

The other important difference is that Elliott and Golub (2019) consider complete information
settings, whereas we allow for incomplete information with both private and interdepenndent
values. From this viewpoint, our results also contribute to the growing literature on network
games with incomplete information (recent papers include Leister, Zenou and Zhou (2020), CalvĄ̆ -
Armengol and De MartĂŹ (2007), Galeotti et al. (2010), CalvĄ̆ -Armengol et al. (2015), De
MartĂŹ and Zenou (2015), Golub and Morris (2017), Myatt and Wallace (2019), Leister (2020)).
With respect to this literature, our results on the spectral radius of the strategic externality matrix
provide sufficient conditions for equilibrium uniqueness (as well as characterization of uniqueness of
rationalizable solutions) for incomplete information games, with both private and interdependent
values.28

With respect to robust mechanism design, this paper contributes to the literature which has
explored environments with limited information about agents’ beliefs, intermediate between the

28On a more technical note, Lemma 5 in Appendix C may also prove especially valuable, in that it provides easier
to check conditions for uniqueness, in terms of both ‘outgoing’ and ‘incoming’ externalities, formalized respectively
by a row- and a column-condition on the strategic externality matrix.
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standard Bayesian settings (e.g., Postlewaite and Schmeidler (1986), Jackson (1991)), and the
belief-free benchmark studied by the first-wave of the modern literature on robust mechanism
design (e.g., Bergemann and Morris (2005, 2009a)). Relative to Ollár and Penta (2017), which
introduced general belief-restrictions and studied sufficient conditions under which full implemen-
tation may be achieved via a reduction of strategic externalities, this paper represents an example
of a specific belief restriction based on an interesting class of economic environments (namely, the
CKI assumption). As discussed, these restrictions turn out to induce a tractable mathematical
structure, and also enable strong implementation results. Interesting directions for future research
include exploring other belief restrictions, similarly motivated to capture primitive qualitative
properties of beliefs, without imposing the standard common prior assumptions. For instance, it
would be interesting to study implementation under qualitative restrictions such as independence,
or affiliation (or other ways of formalizing the idea of ‘positivie correlation’), without imposing
standard common knowledge assumptions of classical models.

In a similar spirit, it would also be important to explore different restrictions to the class
of mechanisms, especially tailored to specific environments, or by imposing specific properties on
the mechanism.29 This is important because, if direct mechanisms are ideal to provide economic
insights on incentive compatibility, they are not always the simplest to implement in practice. In
some settings, indirect yet simpler mechanisms may also achieve implementation (auctions are a
classical example). While our results are silent on such specific indirect mechanisms, the general
idea of focusing on the matrix of strategic externality, and to pursue contractive best replies
via the addition of belief-dependent terms (cf. Appendix A.2), is based on general game theoretic
principles which may be applied to any kind of baseline mechanism.30 The logic of our construction
may thus provide useful guiding principles also for indirect implementation.

Appendix
A On Partial Bid-Implementation

A.1 On the Proof of Theorem 1: Main ideas

The key for the proof of Theorem 1 is provided by the following Lemma:

Lemma 3 (Bid-IC Transfers: Necessary and Sufficient Conditions).
[Necessity:] If (d, t) is twice differentiable and Bid-IC, then for all i, and for all m ∈M ≡ Θ,

ti (m) = t∗i (m) + τi (m−i)︸ ︷︷ ︸
belief-free transfers

(ep-IC characterization)

+
∫ mi

θ
i

Ki (si,m−i) dsi︸ ︷︷ ︸
belief-based component

(15)

29In recent years, many papers have re-visited standard implementation problems imposing extra desiderata on
the mechanisms. Deb and Pai (2017), for instance, pursue symmetry of the mechanism; Mathevet (2010) and
Mathevet and Taneva (2013) pursue supermodularity; Healy and Mathevet (2012) and Ollár and Penta (2017)
pursue contractiveness.

30For instance, in the papers mentioned in the previous footnote, the extra desiderata are achieved by adding a
belief-dependent component to some baseline payments, much as Ollár and Penta (2017) or the results above attain
full implementation appending an extra term to the canonical transfers.
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where τi : M−i → R and Ki : M → R are differentiable functions and Ki is such that:

Ebθi (Ki (θi, θ−i)) = 0 for all θi and for all bθi ∈ Bidθi .
31 (16)

[Sufficiency:] If (d, t) is twice differentiable, t satisfies (15) and (16), and the resulting payoffs
are such that Ebθi

(
∂2Ui (mi, θ−i; θ) /∂2mi

)
< 0 for all mi and bθi ∈ Bidθi , then (d, t) is Bid-IC.

Equation (15) implies that, as far as Bid-IC is concerned, it is without loss of generality
to design transfers starting from the canonical transfers, and then adding a belief-based term
Ki : M → R. This result therefore extends Ollár and Penta (2017)’s characterization of ex-post
incentive compatible transfers in belief-free settings to the belief restrictions Bid. The sense in which
the extra component is ‘belief-dependent’ is clarified by the condition in equation (16), which has
to be satisfied for all beliefs consistent with Bid. Note that any twice continuously differentiable
mechanism is Bid-IC if the truthful profile satisfies the first- and second-order conditions of agents’
optimization problem, for all interior types and for all beliefs consistent with the Bid restrictions.
Moreover, the associated payoff function must be such that, for all θi ∈ (θ, θ̄) and bθi ∈ Bidθi ,
(i) Ebθi (∂Ui (θi, θ−i; θi, θ−i) /∂mi) = 0 and (ii) Ebθi

(
∂2Ui (θi, θ−i; θi, θ−i) /∂2mi

)
≤ 0. But if t

partially implements d, then by Lemma 3 it can be written as in (15), and hence – letting U∗

denote the payoff function of the canonical direct mechanism – for any θi ∈ (θ, θ̄) and bθi ∈ Bidθi ,
we have:

Ebθi (∂Ui (θi, θ−i; θi, θ−i) /∂mi) = Ebθi (∂U∗i (θi, θ−i; θi, θ−i) /∂mi) + Ebθi (Ki (θi, θ−i)) , and

Ebθi
(
∂2Ui (θi, θ−i; θi, θ−i) /∂2mi

)
= Ebθi

(
∂2U∗i (θi, θ−i; θi, θ−i) /∂2mi

)
+ Ebθi (∂Ki (θi, θ−i) /∂mi) .

Condition (16) in Lemma 3 implies that the second term on the right-hand side of the first
equation is zero, and hence the first-order conditions of any Bid-IC mechanism coincide with those
of the canonical direct mechanism. Furthermore, it can be shown that any Ki function which
satisfies condition (16) also ensures that the second term of right-hand side of the second equation
is zero, for all beliefs bθi ∈ Bidθi . Hence, the first- and second-order conditions are met in (d, t) if and
only if they are met in the canonical direct mechanism. Theorem 1 expands on this observation.

A.2 Incentive Compatibility and Moment Conditions

Further intuition on the belief-based components in condition (16) of Lemma 3 can be gathered by
looking at the special case in which the Ki function can be written as Ki (m) = Li (m−i)−fi (mi),
for some Li : Θ−i → R and fi : Θi → R. Then, the expected value condition (16) can be written
as

Ebθi (Li (θ−i)) = fi (θi) for all θi and for all bθi ∈ Bidθi . (17)

If a collection (Li, fi)i∈I of functions Li : Θ−i → R and fi : Θi → R satisfies (17) for every i,
then it means that under the belief restrictions Bid, agents commonly believe that, for every i, his
expectation of moment Li (θ−i) of others’ types varies with θi according to fi. Hence, this condition
expresses commonly known assumptions on agents’ conditional expectations on a moment of others’
types. Based on this observation, Ollár and Penta (2017) introduced the following notion:

31For any f : Θ→ R, θi ∈ Θi and bθi ∈ Bidθi , we let Ebθi (f (θi, θ−i)) :=
∫

Θ−i
f (θi, θ−i) dbθi .
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Definition 10. A moment condition is represented by a collection (Li, fi)i∈I such that Li : Θ−i →
R and fi : Θi → R. It is consistent with the Bid-restrictions if it satisfies (17) for all i; it is a
linear moment condition if Li is linear for every i.

Setting Ki (θ) = Li (θ−i)− fi (θi) in the statement of Lemma 3, eq.(15) specializes to

ti (m) = t∗i (m) + τi (m−i)︸ ︷︷ ︸
characterization
of ep-IC transfers

+Li (m−i)mi −
∫ mi

fi (si) dsi︸ ︷︷ ︸
moment condition-based term

. (18)

This is precisely the class of transfers for which Ollár and Penta (2017) provide sufficient conditions
for full implementation.32 By Lemma 3, there may exist incentive compatible transfers which
cannot be written as in equation (18), since not all functions Ki : Θ → R in that Lemma are
equivalent to moment conditions in the sense of Definition 10. Nonetheless, understanding the set
of moment conditions which are commonly known under given belief restrictions is a useful way
of looking at the possibilities that the designer has to device incentive compatible transfers under
these easy-to-interpret belief-based components. Being concerned with full implementation under
general belief restrictions, and particularly on sufficient conditions, Ollár and Penta (2017) did not
characterize the set of available moment conditions. That task can be difficult in general, but such
a characterization is possible for the belief restrictions considered in this paper, and it provides
particularly clean insights into the set of transfers which are available to the designer:

Lemma 4 (Moment Conditions under Bid: Characterization). The moment condition (Li, fi)i∈I
is consistent with Bid if and only if

1. fi (θi) = c for some c ∈ R, for all θi;

2. Li is constant at identical types and agrees with c: Li (θ) = c for all θ s.t. θi = θj for all i, j;

3. Li is additively separable across players: there exist real functions Lij such that Li (θ−i) =∑
j 6=i Lij (θj) for all θ−i ∈ Θ−i.

Proof of Lemma 4. Setting Ki := Li − fi in Step 1 of the Proof of Theorem 2 below, which
gives the characterization of Bid-consistent Ki functions, implies this Lemma. �

An interesting question is how our analysis would change if, beyond common knowledge of
identicality, one also assumed common knowledge of independence across different players. This
can be formalized by replacing the Bid-restrictions with the stronger belief restrictions Biid, which
also require beliefs bθi ∈ ∆(Θ−i) in condition (1) to be the independent product of an identical
distribution over [θ, θ]. It can be shown that results analogous to Lemma 3 obtain for Biid-
restrictions, as well as a characterization analogous to Lemma 4, with the only difference that part
3 of Lemma 4 is not required. Intuitively, the stronger information that the designer has about
agents beliefs in Biid, compared to Bid, allows a richer set of moment conditions which can be
used to design incentive compatible transfers. Interestingly, however, such extra freedom does not
really expand the possibility of implementation: it can be shown that, under the Biid-restrictions,
the characterizations of both partial and full implementation is the same as in Theorems 1 and 2.

32In particular, Ollár and Penta (2017) show that if the belief-restrictions admit moment conditions with certain
properties, then this design strategy ensures full implementation. They also illustrate the usefulness of those
sufficient conditions in common prior environments and in settings in which only the conditional averages are
common knowledge. (Note that, under the Bid restrictions we consider in this paper, the conditional averages of
types are neither common knowledge nor known to the designer.)
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A.3 Proofs

Proof of Lemma 3. Assume that t ensures Bid-incentive compatibility which, by t’s differentia-
bility and the applicability of Leibniz’s rule, means that for all i and θi

Ebθi (∂ (vi (d (mi, θ−i) , θ) + ti (mi, θ−i)) /∂mi)
∣∣∣∣
mi=θi

= 0 for all bθi ∈ Bidθi .

The canonical transfer t∗i also satisfies this equation, thus for the difference between ti and t∗i ,

Ebθi (∂ (ti (mi, θ−i)− t∗i (mi, θ−i)) /∂mi)
∣∣∣∣
mi=θi

= 0 for all bθi ∈ Bidθi .

Let the difference between ti and t∗i be Di (m) := ti (m)− t∗i (m). By the smoothness assumptions
of this Lemma, Di is differentiable. Consider the part of Di that is independent from mi and let
this part be τi (m−i) := Di (m)−

∫mi
θ

∂Di
∂mi

(si,m−i) dsi, and further let Ki (m) := ∂Di (m) /∂mi for
all m. Then, the transfer ti takes the form ti (m) = t∗i (m) + τi (m−i) +

∫mi
θ

Ki (si,m−i) dsi for all
m and Ki satisfies the expected value condition in (16). Moreover, if (d, t) is twice differentiable,
then by the definition of canonical transfers t∗ is twice differentiable, and thus Ki is differentiable.
Since Ki is differentiable in all its arguments, τi is twice differentiable, which completes the proof
of the necessity part of this Lemma.

If (d, t) is twice differentiable and t satisfies the characterization in (15) and the expected value
condition in (16), then

Ebθi (∂Ui (θ; θ) /∂mi) = Ebθi (∂vi (θ; θ) /∂mi + ∂ti (θ; θ) /∂mi)

= Ebθi (∂vi (θ; θ) /∂mi + ∂t∗i (θ; θ) /∂mi) + 0 + Ebθi (Ki (θ; θ))

= Ebθi (∂vi (θ; θ) /∂mi − ∂vi (θ; θ) /∂mi) + 0 + 0 = 0,

and thus the message mi = θi is an extreme point. For all beliefs in Bidθi , the corresponding
expected utility, by assumption, is strictly concave, therefore this extreme point is a global optimum
for all beliefs in Bidθi , and thus (d, t) is Bid-IC which completes the proof of the sufficiency part of
this Lemma. �

Proof of Theorem 1.
Step 1: If Ki : M → R satisfies condition (16), then for all θi Ebθi (Ki (mi, θ−i)) = 0 for all

mi and for all bθi ∈ Bidθi .

To show this step, recall the expected value condition in 16, Ebθi (Ki (θi, θ−i)) = 0 for all θi
and for all bθi ∈ Bidθi . Fix p ∈ B

id
θi
. It is a consequence of identicality that if p ∈ Bidθi , then p ∈ B

id
mi

for all mi ∈ [θ, θ], that is Ep (Ki (mi, θ−i)) ≡ 0 as a function of mi, and this holds for any p ∈ Bidθi ,
which proves this Step.33 �

To show the Theorem, if (d, t) partially implements d, then by Lemma 3, t can be written as
in (15), and hence – letting U∗ denote the payoff function of the canonical direct mechanism – for

33Note that Ki need not be the 0 function. For example, (θj − θk) θi satisfies the expected value condition for
all identical distributions. Moreover, if K1

i and K2
i satisfy the condition, then any linear combination αK1

i + βK2
i

satisfies the condition as well.
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any θi and bθi ∈ Bid:

Ebθi (∂Ui (mi, θ−i; θi, θ−i) /∂mi) = Ebθi (∂U∗i (mi, θ−i; θi, θ−i) /∂mi) + Ebθi (Ki (mi, θ−i))

= Ebθi (∂U∗i (mi, θ−i; θi, θ−i) /∂mi) ,

where the latter is a well-defined function of mi. Hence, for all types, the set of optimal reports
for all beliefs in Bid are equivalent in (d, t) and (d, t∗), which proves this Theorem. �

B Proofs of Results from Section 4

Proof of Lemma 1.34 (i) (Sufficiency: Eigenvalue Condition for Full Implementation.)35 Fix
θi in

(
θ, θ
)
and examine the k-th round of eliminations: fix mi ∈ Rki (θi). Thus for mi, there exists

a conjecture which supports mi as a best reply and is concentrated on Rk−1
−i . Let this conjecture

be µL. At the same time, since (d, t) is Bid − IC, θi is best-reply to truthtelling conjectures. In
particular, consider a truthtelling conjecture which is concentrated on Rk−1

−i , let this conjecture be
µT ; and pick µT such that margΘ−i µT = margΘ−i µL .

We use the notation EµUi (mi; θi) to denote the expected utility of type θi, given this type’s
conjecture µ, when reporting mi.

First, if mi is an interior point, then we have that

0 = ∂iE
µLUi (mi; θi)− ∂iEµTUi (θi; θi)

= ∂iE
µLUi (mi; θi)− ∂iEµLUi (θi; θi)︸ ︷︷ ︸

difference due to own action

+ ∂iE
µLUi (θi; θi)− ∂iEµTUi (θi; θi)︸ ︷︷ ︸

difference due to external (others’) actions

.

Examining these two differences, notice that applying a mean value theorem to each of these
two differences gives that there exist si and m−i, s−i ∈ Rk−1

−i (θ−i) such that

−∂2
iiE

µLUi (si; θi) (mi − θi) =
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) .

Second, let bl ≤ bu be the boundary points of the set of k − 1-rationalizable messages of θi. If
mi is such that mi = bl, then, because mi is best reply,

−∂2
iiE

µLUi (si; θi) (mi − θi) ≥
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) .

If mi is boundary such that mi = bu, then, because mi is best reply,

−∂2
iiE

µLUi (si; θi) (mi − θi) ≤
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) .

After examining the signs of ∂2
iiE

µLUi (si; θi) and the respective signs of (mi − θi) in the latter
34The sufficiency of the eigenvalue condition for full implementation and the points in this lemma are stated for

identical distributions but, as it is clear from the proofs, they generalize beyond Bid to arbitrary belief restrictions.
35Recall that to extend the spectral radius operator to the affinely extended reals, given a non-negative matrix

A, we let AK be such that [AK ]ij := K if Aij =∞ and [AK ]ij := Aij otherwise. We let ρ(A) := limK→∞ ρ (AK).
Beyond the standard extensions of operators, we adopt the understanding that 0/0 =∞ and ∞/∞ =∞.
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two cases, we can summarize that for all, either boundary or inner, mi ∈ Rki (θi) there exist not-yet
eliminated messages si, s−i,m−i such that

|∂2
iiE

µLUi (si; θi) || (mi − θi) | ≤ |
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) |.

From this, for each agent j and round k, letting lkj := maxθj ,mj∈Rkj (θj) |θj − mj |, and letting
l0j = l = θ − θ, we have

|mi − θi| ≤
∑
j 6=i |∂2

ijUi (θi, s−i; θ) |lk−1
j

|∂2
iiE

µLUi (si; θi) |
≤
[
|SEtmax|lk−1]

i
.

Since this inequality holds for all k, we can apply it iteratively, which gives that in the kth
round for all mi ∈ Rki (θi),

|mi − θi| ≤
[
|SEtmax|lk−1]

i
≤
[
|SEtmax||SEtmax|lk−2]

i
≤ . . . ≤

[
|SEtmax|k1l

]
i
.

Since ρ (|SEtmax|) < 1, we have |SEtmax|k → 0, and thus full Bid-implementation follows. �
(ii)(Necessity: Eigenvalue Condition for Failure of Full Implementation.) The key step for

this part is to show that for all rounds k there is an agent i such that for all types θi, there
is a kth round B-rationalizable message – a message in Rki (θi) – which falls outside a positive
measure open set around θi. In particular, consider the largest subset of agents whose interaction
matrix in |SEtmin| is irreducible and features no 0 eigenvalues. (Such subset IE ⊆ I of the agents
exists and, since ρ (|SEtmin|) > 1 and the diagonal contains 0s, it has at least two agents.) We
maintain the ordering of the agents and use notation E for this irreducible block of |SEtmin|. We
will show next, that for each round k for some i ∈ IE , there is a best reply outside the open set(
θi ±

[
E · lk−1

min,E

]
i

)
∩ int cl Rk−1

i (θi). The notation lkmin,E is such that: for each agent j ∈ IE and

round k, let lkj,min,E := infθj min
{

supmj∈Rkj (θj);mj≤θj (θj −mj) ; supmj∈Rkj (θj);mj>θj (mj − θj)
}
,

and let l0j,min := lj = θj − θj .36

To show this, consider an internal type θi for some agent i ∈ IE . First notice that the
previous statement is true for k = 1. Moreover, since the truthtelling profile is never eliminated,
Rki (θi) is always non-empty. Next, consider round k and let mi be a message that is best reply
to a conjecture µEL that is consistent with B, with round k − 1 rationalizability, and is such that
for all j ∈ IE , margMj

µEL places probability one on positive misreports that are lkj,min,E apart
from θj if the absolute smallest ∂2

ijU
t
i is positive and on negative misreports if it is negative; and

for all j /∈ IE , margMj
µEL places probability one on the true type θj being reported. Now, if

the considered mi is an extremal point of cl Rk−1
i (θi), then we are done. However, if it is an

internal point, then ∂2
iiE

µELU ti (mi) ≤ 0 and there is a small ε such that the modified function
Eµ

E
LU t,εi := Eµ

E
LU ti (si)− ε (si −mi)2 admits mi as a strict optimizer. For the difference between

the derivative of this function and the expected utility at the corresponding truthtelling conjecture;
using mean value theorems, we can establish that for mi there exist messages si, s−i,m−i such
that mj reflects the distances in µEL and

36The intuition for lkmin,E is that it is a vector that keeps track of the minimum distance of worst-case positive
or negative misreports; resulting from interactions based on the irreducible E, among agents in IE .
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−∂2
iiE

µELU t,εi (si; θi) (mi − θi) =
∑

j 6=i,i∈IE

∂2
ijUi (θi, s−i; θ) (mj − θj) .

Taking absolute values and lower bounding by the relevant minimum partial derivatives, we
get that for all small ε > 0

(
−∂2

iiE
µELUi (si; θi) + ε

)
| (mi − θi) | ≥

∑
j 6=i

min
m,θ
|∂2
ijUi (m; θ) |lk−1

j,min,

which further implies for such mi that

|mi − θi| ≥
∑
j 6=i minm,θ |∂2

ijUi (m; θ) |lk−1
j,min

|∂2
iiE

µLUi (si; θi) |
≥
[
Elk−1

min

]
i
.

Thus, summarizing this, for each k, there is a kth round rationalizable message that is outside
the set

(
θi ±

[
E · lk−1

min,E

]
i

)
∩ int clRk−1

i (θi), which when iterated gives that it is outside the set(
θi ±

[
Ek · l0min,E

]
i

)
∩
(
θi, θi

)
. Iteratively, one can see that l0min,E , l1min,E are strictly positive.

Assuming that lk−1
min,E is strictly positive, and by the irreducibility of the non-negative E, we have

that lkmin,E is strictly positive. From this, we can see that if the spectral radius ρ (|SEtmin|) ≥ 1,
then the sequence

{
Ek
}∞
k=1 of nonnegative matrices is bounded away from 0 and thus there are

rationalizable messages for agents in IE which are distinct from their true types; and thus full
B-implementation fails.� �

Proof of Lemma 2. First, we give a characterization of belief-based terms under Bid. (The
following step is again used in Theorem 2 below.)

Step 1: (Belief-Based Components under Bid: Characterization) A differentiable function Ki :
M → R satisfies the expected value condition in (16) if and only if it can be written as

Ki (m) =
∞∑
k=0

mk
i

∑
j 6=i

Hk
ij (mj)

where
{
Hk
ij

}
j 6=i,k∈N are polynomials Hk

ij : Mj → R such that

for all m−i for which ml = mj for all j, l 6= i :
∑
j 6=i

Hk
ij (mj) = 0.

To show this step, assume, that Ki satisfies the expected value condition in (16) under Bid.
Since Ki is a continuous function, it can be approximated by Bernstein polynomials such that
Ki (m) = limn→∞

∑n
v=0Ki (m/n) bv,n (m). Since Ki is bounded, this polynomial expression can

be reorganized into a power series of mi and thus there exist polynomials Hk : M−i → R such that
Ki (m) =

∑∞
k=0Hk (m−i)mk

i .
In the next two sub-steps, we show that, since Ki satisfies the expected value condition in (16)

under Bid, these Hks are additively separable and at identical profiles, they are 0.
Step 1a: (Each Hk is additively separable.) From the polynomial format and since Ki satisfies

the expected value condition, we have that for all k, Ebθi (Hk (θ−i)) = 0 for all beliefs bθi ∈ Bidθi for
all θi. Fix a type θi. Assume, by way of contradiction, that Hk is not separable in its variables.
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More specifically and without loss of generality, assume thatHk is not separable in its first argument
and, to avoid confusions in indexing, refer to this agent as j. This step relies on comparing
two constructed joint distributions which both represent identical distributions but one of them
represents perfectly correlated random variables, while the other one represents independence; that
is, the jth random variable is independent from the other n−2 variables while these n−2 variables
are again perfectly correlated.37

By the assumed non-separability, there exist θ1 ∈ [θ, θ] and θ2 ∈ [θ, θ] such that θ1 6= θ2 and

Hk

(
θ1, θ2, . . . , θ2)−Hk

(
θ2, θ2, . . . , θ2) 6= Hk

(
θ1, θ1, . . . , θ1)−Hk

(
θ2, θ1, . . . , θ1) . (19)

Consider the following two joint distributions over Θ−i. Let pcorr be such that it prescribes
perfect correlation for all agents in I \ {i}, and let pindep be such that it prescribes perfect
correlations for all agents in I \ {i} except for j, where j’s type is independent of the others’
types. Let these two joint distributions further be such that on all their margins, they are equal
and concentrated on the two specific values θ1 and θ2 such that for all k 6= i, margΘk p

corr =
margΘk p

indep, and on θ1: margΘk p
corr

(
{θk = θ1}

)
= margΘk p

indep
(
{θk = θ1}

)
= 0.5, and on θ2:

margΘk p
corr

(
{θk = θ2}

)
= margΘk p

indep
(
{θk = θ2}

)
= 0.5. Observe that both pcorr and pindep

are available under the belief restrictions Bid, formally, pcorr ∈ Bidθi and pindep ∈ Bidθi . For ease of
notations, let p be a probability measure over [θ, θ] such that p

(
{θk = θ1}

)
= p

(
{θk = θ2}

)
= 0.5

and let fp be p’s distribution function.
Consider the perfectly correlated joint distribution pcorr, and observe that

Ep
corr

(Hk (θ−i)) =
∫

Θ−i
Hk (θ−i) dpcorr =

∫ θ

θ

Hk (θ, θ, . . . , θ) fpdθ =

= 0.5Hk

(
θ1, θ1, . . . , θ1)+ 0.5Hk

(
θ2, θ2, . . . , θ2) .

Consider the joint distribution, with independence from θj , pindep, and observe that

Ep
indep

(Hk (θ−i)) =
∫ Θ−i

Hk (θj , θ−j,−i) dpindep =
∫ θ

θ

∫ θ

θ

Hk (θj , θ, θ, . . . , θ) fp · fpdθjdθ =

=0.25Hk

(
θ1, θ1, . . . , θ1)+ 0.25Hk

(
θ1, θ2, . . . , θ2)+ 0.25Hk

(
θ2, θ1, . . . , θ1)+

+ 0.25Hk

(
θ2, θ2, . . . , θ2) 6=

6=0.5Hk

(
θ1, θ1, . . . , θ1)+ 0.5Hk

(
θ2, θ2, . . . , θ2) .

The last negation follows from Equation (19), which recall was the consequence of non-separability,
and this negation implies that Epindep (Hk (θ−i)) 6= Epcorr (Hk (θ−i)), which would imply the con-
tradiction that Ki does not satisfy the expected value condition. And therefore, Hk must be
separable.

Step 1b: (Each Hk gives 0 at identical profiles.) Fix a type θi. Consider beliefs of i which
are identical point-distributions; distributions which are concentrated on the same type of all
other agents. Formally, consider a belief bθi such that, for some θ ∈ [θ, θ], the probability
bθi ({θj = θ for all j 6= i}) is 1 for all j 6= i. Then, bθi is included in Bidθi , moreover such point-

37This proof is a proof by coupling, a proof technique here applied to distributions over continuous support.
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beliefs exist for all θ. Fix this (independent) point belief bθi . The expected value condition implies
that for the polynomial format 0 ≡

∑∞
k=1 E

bθi (Hk (θ−i)) θki and thus for any k Ebθi (Hk (θ−i)) = 0.
At identical profiles as represented by bθi , this latter means that Hk(θ, θ . . . , θ) = 0 for all θ ∈ [θ, θ],
which proves that the Hk are 0 at identical profiles.

To prove the other direction of this Step 1, assume that Ki satisfies the two conditions above,
that is Hks are additively separable and Hks give 0 at identical profiles. For a type θi and belief
bθi ∈ Bidθi , by the separability of Hks and by the boundedness of Ki, the conditional expectation
is such that

Ebθi (Ki (θ)) =
∫

Θ−i

∞∑
k=1

Hk (θ−i) θkdbθi =
∫

Θ−i

∞∑
k=1

∑
j 6=i

Hkj (θj) θkdbθi

=
∞∑
k=1

∑
j 6=i

[∫
Θj
Hkj (θj) dmarg

Θj
bθi

]
θk (20)

Let p denote the identical distribution over [θ, θ] such that p := margΘj bθi for all j 6= i. With
this notation, Equation (20) is

Ebθi (Ki (θ)) =
∞∑
k=1

∑
j 6=i

[∫ θ

θ

Hkj (θ) dp
]
θk =

∫ θ

θ

∞∑
k=1

∑
j 6=i

Hkj (θ) θkdp =
∫ θ

θ

Ki (θi, θ, θ, . . . , θ) dp,

and the two conditions,

Ebθi (Ki (θ)) =
∫ θ

θ

Ki (θi, θ, θ, . . . , θ) dp =
∫ θ

θ

0dp = 0.

and thus Ki satisfies the expected value condition under Bid and thus proves the characterization
result in this Step. �

If Ki satisfies the expected value condition in 15, then based on the characterization in Step 1
of Proof of Lemma 1, we have

(1) ∂Ki (mi,m−i) /∂mi =
∑∞
k=0 km

k−1
i

∑
j 6=iH

k
ij (mj) =

∑∞
k=0 km

k−1
i 0 = 0 for all mi and

m−i such that ml = mj for all j, l 6= i; and
(2)

∑
j 6=i (∂Ki (mi,m−i) /∂mj) =

∑
j 6=i

(∑∞
k=0m

k
i

∑
s6=iH

k
is (ms)

)
= 0 for all mi and m−i

such that ml = ms for all s, l 6= i.
If (d, t) is Bid-IC, then by Lemma 3, there exist Ki : M → R which satisfies the expected value

condition in 15; and is such that ∂U ti (m; θ) /∂mi = ∂U∗i (m; θ) /∂mi + Ki (mi,m−i). This equa-
tion and the two properties above imply the points of the lemma. Finally, the characterization’s
application to SC-PC environments and constant curvature in t proves this Lemma. �

Proof of Theorem 2. Consider the loading transfers. It is useful to characterize the resulting
sets of rationalizable strategies from the step by step eliminations of Bid-rationalizability.

Step 1: In every round k, for all i and θi, the set of rationalizable messages Rid,ki

(
θi|tl

)
is a

closed interval around θi.38

38Note that this property is stated for tl but it extends in SC-PC to every bounded and smooth Bid-IC t.
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To show this, note that by construction θi ∈Rid,ki

(
θi|tl

)
and assume thatm1,m2 ∈Rid,ki

(
θi|tl

)
.

Then, there are conjectures for which these messages are best replies, that is, there exist µ1 and
µ2 which are consistent with the k− 1-st round and with identicality such that m1 is best reply to
µ1 and m2 is best reply to µ2. Now, any convex combination λ ∈ (0, 1), λµ1 + (1− λ)µ2 is also a
conjecture which is consistent with the k− 1-st round and with Bid. Let mλ denote the best reply
to this conjecture, which exists by the boundedness (which is implied by the differentiability) of
v, d, tl. Then, mλ is continuous in λ, therefore the closed interval [m1,m2] ⊆ Rid,ki

(
θi|tl

)
for any

m1, m2 and thus this set is a closed interval. �

Recall that agents are ordered according to the absolute value of the ratio of the sum of
their canonical externalities and own concavity, from the lowest to the highest, such that ξij :=
∂2U∗i / (∂mi∂mj) = −

(
∂2vi/∂x∂θj

)
· (∂d/∂θi), ξi :=

∑
j 6=i ξij/ξii and |ξ1| ≤ |ξ2| ≤ . . . ≤ |ξn|.

Recall that under SC-PC, these canonical externalities and the cross-derivatives in the resulting
payoff functions in the loading mechanism

(
d, tl

)
are constants.

Step 2: In the loading mechanism, in every two rounds, the rate of shrinkage of the best reply
sets in the iterative eliminations is |ξ1ξ2| for all agents.

To show this step, consider the loading direct mechanism
(
d, tl

)
and the iterative elimination

process of Bid-rationalizability.
In the first round of iterations, the size of the intervals which contain the strategies that survive

the elimination derive from the loaded externality matrix such that:

SEl =



0 ξ1 0 . . . 0
ξ2 0 0 . . . 0
ξ3 0 0 . . . 0
...

...
...

. . .
...

ξn 0 0 . . . 0


and

[
Rid,1i

(
θi|tl

)]
i∈I

=



[θ1 ± ξ1] ∩
[
θ, θ
]

[θ2 ± ξ2] ∩
[
θ, θ
]

[θ3 ± ξ3] ∩
[
θ, θ
]

...
[θn ± ξn] ∩

[
θ, θ
]


.

In the second round of iterations:

(
SEl

)2 =



ξ1ξ2 0 0 . . . 0
0 ξ1ξ2 0 . . . 0
0 ξ1ξ3 0 . . . 0
...

...
...

. . .
...

0 ξ1ξn 0 . . . 0


and

[
Rid,2i

(
θi|tl

)]
i∈I

=



[θ1 ± ξ1ξ2] ∩Rid,1i

(
θ1|tl

)
[θ2 ± ξ1ξ2] ∩Rid,1i

(
θ2|tl

)
[θ3 ± ξ1ξ3] ∩Rid,1i

(
θ3|tl

)
...

[θn ± ξ1ξn] ∩Rid,1i

(
θn|tl

)


.

In the third round of iterations:

(
SEl

)3 =



0 ξ2
1ξ2 0 . . . 0

ξ1ξ
2
2 0 0 . . . 0

ξ1ξ2ξ3 0 0 . . . 0
...

...
...

. . .
...

ξ1ξ2ξn 0 0 . . . 0


and

[
Rid,3i

(
θi|tl

)]
i∈I

=



[
θ1 ± ξ2

1ξ2
]
∩Rid,21

(
θ1|tl

)[
θ2 ± ξ1ξ2

2
]
∩Rid,22

(
θ2|tl

)
[θ3 ± ξ1ξ2ξ3] ∩Rid,23

(
θ3|tl

)
...

[θn ± ξ1ξ2ξn] ∩Rid,2n

(
θn|tl

)


.
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And so on, in the k-th round of iteration, the size of the intervals which contain the strategies
that survive the elimination derive from the loaded externality matrix to the power k and, if k is
even, these intervals are given by

[
Rid,ki

(
θi|tl

)]
i∈I

=



[
θ1 ± ξk/21 ξ

k/2
2

]
∩Rid,k−1

1
(
θ1|tl

)[
θ2 ± ξk/21 ξ

k/2
2

]
∩Rid,k−1

2
(
θ2|tl

)[
θ3 ± ξk/21 ξ

k/2−1
2 ξ3

]
∩Rid,k−1

3
(
θ3|tl

)
...[

θn ± ξk/21 ξ
k/2−1
2 ξn

]
∩Rid,k−1

n

(
θn|tl

)


,

and, if k is odd, these intervals are given by

[
Rid,ki

(
θi|tl

)]
i∈I

=



[
θ1 ± ξ(k+1)/2

1 ξ
(k−1)/2
2

]
∩Rid,k−1

1
(
θ1|tl

)[
θ2 ± ξ(k−1)/2

1 ξ
(k+1)/2
2

]
∩Rid,k−1

2
(
θ2|tl

)[
θ3 ± ξ(k−1)/2

1 ξ
(k−1)/2
2 ξ3

]
∩Rid,k−1

3
(
θ3|tl

)
...[

θn ± ξ(k−1)/2
1 ξ

(k−1)/2
2 ξn

]
∩Rid,k−1

n

(
θn|tl

)


.

In words, this means that in every even round of iteration, for each type of agent 1, the
rationalizable set is either given by the previous rationalizable set or it is shrank to |ξ2| of this set
and, for each type of agent j 6= 1, the rationalizable set is either the previous rationalizable set or
it is shrank to |ξ1| of this set. Similarly, it holds for every odd round of iteration that for each type
of agent 1, the rationalizable set is either the previous rationalizable set or it is shrank to |ξ1| of
this set and, for each type of agent j 6= 1, the rationalizable set is either the previous rationalizable
set or it is shrank to |ξ2| of this set. Combining the conclusions for odd and even rounds, we get
that in every two rounds of iterations, for each type of each agent, the rationalizable set is either
unchanged or it is shrank to |ξ1ξ2| of this previous rationalizable set. �

And thus this step implies that if the sum of canonical externalities is such that |ξ1ξ2| < 1, then
the size of the k-rationalizable sets converges to 0, and Ridi

(
θi|tl

)
= {θi} for all i for all θi. On the

other hand, if |ξ1ξ2| ≥ 1, then |ξ2| ≥ 1 and in every round k, Rid,k2
(
θ2|tl

)
=
[
θ2 ±

(
θ − θ

)]
∩
[
θ, θ
]

=[
θ, θ
]
, in other words, all reports remain rationalizable for all types of agent 2 (and for all agents

with an index larger than 2, too) and thus full implementation via tl fails (which will lead to the
characterizing inequalities in part 2 of this Theorem).

Recall that in this proof, we need to show that the allocation function d is Bid-implementable
if and only if it is Bid-implementable via the loading transfers tl in Equation 6. The if part
is straightforward. The only if part, relies on the following Step, which shows that a Bid-IC
transfer scheme ensures that the step-by-step iterative eliminations result in sets of k-rationalizable
strategies whose sizes reflect the canonical externalitites.

Step 3: (Iterations and Canonical Externalities, given Bid.) Consider a twice differentiable,
Bid-IC direct mechanism (d, t). In relation to the canonical direct mechanism, for all θi there exist
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message profiles s+ and s+′ such that the message

proj
Rid,k−1
i

(θi)

(
θi +

∑
j 6=i ∂

2
ijE

bθiU∗i (s+; θi) lk−1,+
o,i

|∂2
iiE

bθiU∗i (s+′ ; θi) |

)

is in Rid,ki (θi), and there exist message profiles s− and s−′ such that the message

proj
Rid,k−1
i

(θi)

(
θi −

∑
j 6=i ∂

2
ijE

bθiU∗i (s−; θi) lk−1,−
o,i

|∂2
iiE

bθiU∗i (s−′ ; θi) |

)

is in Rid,ki (θi) too.

To show this Step, fix θi in
(
θ, θ
)
and fix some type θo ∈

(
θ, θ
)
and some message mo ∈

(
θ, θ
)

for i’s opponents. Since t defines a Bid−IC mechanism, θi is best-reply to truthtelling conjectures.
In particular, it is best-reply to the conjecture which, assigns probability 1 to the event that all
oppponents types are θj = θo and report their true types. Let this - concentrated truth-reporting
- conjecture be µT . There exists also a message of i which is best-reply to the conjecture that
assigns probability 1 to the event that opponents are θj = θo and reportmo regardless of their types.
Denote this undominated strategy by mi and let this - concentrated mo-reporting - conjecture be
µL. Note that both µT and µL are consistent with Bid. Consider the message mi which is best
reply to µL.

First, if mi is an interior point, then we have that

0 = ∂iE
µLUi (mi; θi)− ∂iEµTUi (θi; θi) = ∂iE

µLU∗i (mi; θi)− ∂iEµTU∗i (θi; θi)

= ∂iE
µLU∗i (mi; θi)− ∂iEµLU∗i (θi; θi)︸ ︷︷ ︸

difference due to own action

+ ∂iE
µLU∗i (θi; θi)− ∂iEµTU∗i (θi; θi)︸ ︷︷ ︸

difference due to external (others’) actions

,

where the first equality holds because of the canonical representation of (d, t) in Lemma 3, the of
belief-based terms in Step 1 of Theorem 1 and because of the conjectures µT and µL are constructed
such that they satisfy identicality on the margins of the messages too.

In this Step, we simplify the notation of those profiles in which opponents’ elements are identical
in that instead of (so, . . . , so, θi, so, . . . , so) we write

(
θi, s

o
−i
)
.

Examining the two differences above, notice that by the mean value theorem, there exists si
such that

∂iE
µLU∗i (mi; θi)− ∂iEµLU∗i (θi; θi) = ∂2

iiE
µLU∗i (si; θi) (mi − θi) ,

and there exists so such that

∂iE
µLU∗i (θi; θi)− ∂iEµTU∗i (θi; θi) =

∑
j 6=i

∂2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo) .

Note that any k-th-round best-reply mi is either inner point (as above) or a boundary point.
Let bl ≤ bu be the boundary points of the set of k − 1-rationalizable messages of θi.

Second, if mi is boundary such that mi = bl, then, because mi is best reply,

0 ≥ ∂iEµLUi (mi; θi)− ∂iEµTUi (θi; θi) = ∂iE
µLU∗i (mi; θi)− ∂iEµTU∗i (θi; θi) ,
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which, following the steps as above, gives that there exists si and so such that

0 ≥ ∂2
iiE

µLU∗i (si; θi) (mi − θi) +
∑
j 6=i

∂2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo) .

This gives that mi = bl only if there exists profiles such that

θi −
∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo)

∂2
iiE

µLU∗i (si; θi)
≤ bl = mi.

Third, if mi is boundary such that mi = bu, then, because mi is best reply,

0 ≤ ∂iEµLUi (mi; θi)− ∂iEµTUi (θi; θi) = ∂iE
µLU∗i (mi; θi)− ∂iEµTU∗i (θi; θi) ,

which gives that, for some profile,

θi −
∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo)

∂2
iiE

µLU∗i (si; θi)
≥ bu = mi.

We summarize these three cases and note that, for every θi, one can set θo and mo such that
mo − θo = lk−1+

i,o , which gives that there exists so and si such that

mi = proj
Rid,k−1
i

(θi)

(
θi −

∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
lk−1,+
i,o

|∂2
iiU
∗
i

(
si,mo

−i; θi, θo−i
)
|

)
∈ Rid,ki (θi) ,

Now, for every θi, it is also possible to set θo and mo such that mo − θo = −lk−1,−
i,o . Considering

the corresponding k-th round best reply mi being interior or boundary, and following the previous
steps we have that there exists s′o and s′i such that

mi = proj
Rid,k−1
i

(θi)

θi +

∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o′

−i; θi, θo−i
)
lk−1,−
i,o

|∂2
iiU
∗
i

(
s′i,m

o
−i; θi, θo−i

)
|

 ∈ Rid,ki (θi) ,

which, completes the proof of this Step. �
Step 3 is the key step in establishing the if and only if result. In words, it implies that in

any Bid-implementing direct mechanism, the externalities can not be reduced beyond the sum of
externalities in the canonical direct mechanism. The consequence of such irreducibility of exter-
nalities is reflected in each k-rationalizable set of the step-by-step iterations; for all Bid-IC t. The
final step below formalizes the observation that it is the loading transfer scheme that minimizes
the size of rationalizable sets, given the constraint on nessecary externalitites and therefore leads
to full implmenetation whenever that is possible.

Step 4: We use Step 3 of this proof to show that in every round k, for all i and θi, the set of
rationalizable messages of the loaded direct mechanism Rid,ki

(
θi|tl

)
are contained in Rid,ki (θi|t),

for any partially implementing direct mechanism (d, t).

To show this, fix a direct mechanism (d, t). Under SC-PC environments, Step 3 implies that
every k-rationalizable interval of θi of any implementing (d, t) direct mechanism contains the
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following set:

proj
Rid,k−1
i

(θi|t)

[
θi − ξi · lk−1,−

i,o , θi + ξi · lk−1,+
i,o

]
⊆ Rid,ki (θi|t) .

Recall that lk−1,+
i,o is the largest distance between positive misreport and the true type, which

can arise for all opponents of i based on the previous round of iteration and lk−1,−
i,o is similarly this

largest distance for negative misreport.
Next, we compare the k-rationalizable sets of (d, t) to the k-rationalizable sets of

(
d, tl

)
, where

the latter sets are already given in Step 2 of this proof. In particular, for the first round of iteration,

[θi − ξi, θi + ξi] ∩
[
θ, θ
]
⊆ Rid,1i (θi|t) .

For the second round of iteration,

[θ1 − ξ1ξ2, θ1 + ξ1ξ2] ∩
[
θ, θ
]
⊆ Rid,2i (θi|t) if i = 1 and

[θi − ξiξ1, θi + ξiξ1] ∩
[
θ, θ
]
⊆ Rid,2i (θi|t) if i 6= 1.

For the third round of iteration,

[θ1 − ξ1 (ξ1ξ2) , θ1 + ξ1 (ξ1ξ2)] ∩
[
θ, θ
]
⊆ Rid,3i (θi|t) if i = 1 and

[θi − ξi (ξ1ξ2) , θi + ξi (ξ1ξ2)] ∩
[
θ, θ
]
⊆ Rid,3i (θi|t) if i 6= 1.

For the forth round of iteration,

[
θ1 − ξ1

(
ξ1ξ

2
2
)
, θ1 + ξ1

(
ξ1ξ

2
2
)]
∩
[
θ, θ
]
⊆ Rid,4i (θi|t) if i = 1 and[

θi − ξi
(
ξ2
1ξ2
)
, θi + ξi

(
ξ2
1ξ2
)]
∩
[
θ, θ
]
⊆ Rid,4i (θi|t) if i 6= 1.

Observe that in these expressions on the left hand side, the iterated sets derived in Step 3,
for every k, coincide with the iterated rationalizable sets of the loaded direct mechanism

(
d, tl

)
,

and thus by induction, for all k, Rid,ki

(
θi|tl

)
⊆ Rid,ki (θi|t). This latter holds for any partially

implementing direct mechanism (d, t), which completes the proof of this Step. �
Since, as we assumed, (d, t) achieves full Bid-implementation, by the containments, we must

have that as k → ∞, |Rid,ki

(
θi|tl

)
| → 0, and thus

(
d, tl

)
achieves full Bid-implementation too,

which completes the proof of this Theorem. �

Proof of Theorem 3. Fix an environment (v, d), and consider t̄l. Note that these transfers ensure
Bid-IC, moreover, the resulting strategic externalitites are such that for all i, j, SE t̄lij (m; θ) ∈ S̄E t̄

l

ij±

αij . From this, for all (m; θ), the following matrix inequalities hold element-wise: ||S̄E t̄
l

| − A| ≤
|SE t̄l (m; θ) | ≤ |S̄E t̄

l

|+A.
For part 1, by Gelfand’s formula39 we have that ρ

(
|SE t̄l (m; θ) |

)
≤ ρ
(
|S̄E t̄

l

|+A
)
for all (m, θ),

and thus ρ
(
|SE t̄lmax|

)
≤ ρ
(
|S̄E t̄

l

|+A
)
. Recall that ξ̄i is the row-sum of the midpoints of strategic

39Gelfand’s formula characterizes the spectral radius of a matrix A such that ρ (A) = limk→∞ ||Ak||1/k. Using
Gelfand’s formula, if a non-negative matrix A is element-wise dominated by a non-negative matrix B, that is if
Aij ≤ Bij for all i, j, then ρ (A) ≤ ρ (B).
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externalitites affecting agent i and that the upper bounding matrix is such that

|S̄E t̄
l

|+A =



0 |ξ̄1|+ α1 α1 . . . α1

|ξ̄2|+ α2 0 α2 . . . α2

|ξ̄3|+ α α 0 . . . α
...

...
...

. . .
...

|ξ̄n|+ α α α . . . 0


.

We need to study the eigenvalues of this matrix. Assume that n > 2.40 Notice that this matrix
has n− 3 independent eigenvectors of the form (0, . . . , 0, 1,−1, 0, . . . , 0), with eigenvalues −α. Let
λ1, λ2, λ3 denote the other three eigenvalues and let λ1 denote the leading eigenvalue. From the
determinant of |S̄E t̄

l

|+A,41 the trace of |S̄E t̄
l

|+A and the trace of
(
|S̄E t̄

l

|+A
)2, we have that

λ1λ2λ3 = H (21)

λ1 + λ2 + λ3 = (n− 3)α (22)

λ2
1 + λ2

2 + λ2
3 = 2K + (n− 3)2

α2 (23)

where

H =
(
α2|ξ̄1|+ α1α2

) ∑
i6=1,2

|ξ̄i|+
(
α2|ξ̄1|+ α1|ξ̄2|

)
α+ (n− 1)α1α2α− (n− 3)α|ξ̄1ξ̄2|

K = |ξ̄1ξ̄2|+ α2|ξ̄1|+ α1
∑
i 6=1
|ξ̄i|+ α1α2 + (n− 2) (α1 + α2)α.

The difference between the square of (22) and (23) gives that λ1λ2 + λ1λ3 + λ2λ3 = −K. Using
Vieta’s formulas we can relate the (possibly complex) eigenvalues to the three complex roots of
the following cubic:42

x3 − (n− 3)αx2 −Kx−H = 0.

By the Perron-Frobenius theorem, λ1 is real and λ1 ≥ 0. And thus λ1 is the largest root of the
cubic. Observe that the derivative of this cubic is decreasing at x = 0 and that the cubic is infinite
at infinity. This means that λ1 < 1 if and only if x = 1 is on the increasing positive side and
the value at 1 is positive. That is λ1 < 1 if and only if LHS′ (1) = 3 − 2 (n− 3)α −K > 0 and
H+K+(n− 3)α < 1. These two inequalities are equivalently given in part 1 and thus they imply
that λ1 < 1.43 Thus part (i) of Lemma 1 implies that t̄l ensures full Bid-implementation.

For part 2, the lower bounding inequality ||S̄E t̄
l

| − A| ≤ |SE t̄l (m; θ) | for all (m; θ) implies
that ρ

(
||S̄E t̄

l

| − A|
)
≤ ρ

(
|SE t̄lmin|

)
. The lower bounding matrix has an upper left 2 by 2 block

40If n = 2, then ρ
(
|S̄E t̄

l

|+A
)

=
√(
|ξ̄1|+ α1

) (
|ξ̄2 + α2|

)
.

41For this calculation, use Schur’s determinant identity such that det
(
|S̄E t̄

l

|+A
)

= det (D) det
(
A−BD−1C

)
,

where A is the upper left 2 by 2 block, D is the lower right, B is the upper right and C is the lower left block.
42Vieta’s formulas for cubic polynomials give that (x− λ1) (x− λ2) (x− λ3) = x3 − (λ1 + λ2 + λ3)x2 +

(λ1λ2 + λ1λ3 + λ2λ3)x− λ1λ2λ3.
43In the special case when α1 = α2 = 0, we have K = |ξ̄1ξ̄2| and H = − (n− 3)α|ξ̄1ξ̄2|. The inequalitites in

part 1 are 2 (n− 3)α + |ξ̄1ξ̄2| < 3 and |ξ̄1ξ̄2| − (n− 3)α|ξ̄1ξ̄2| + (n− 3)α < 1; which are equivalent to the system
(|ξ̄1ξ̄2| < 1, (n− 3)α < 1). Further, regarding Remark 1 – using Vieta’s formulas in the two inequalities – notice
that if H > (n− 3)α− 2, then inequality (i) implies (ii).
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whose spectral radius is
√
|
(
|ξ̄1| − α12

) (
|ξ̄2| − α21

)
| which by assumption is at least as large as 1.

Thus by part (ii) of Lemma 1, t̄l fails Bid-implementation, and part 2 follows. �

C Further Design Strategies for Full Implementation

In this Section we consider alternative design strategies for full implementation, and we prove the
results in Section 5. The next Lemma provides general sufficient conditions which will be useful
for the following discussion:

Lemma 5. The Bid-IC transfer scheme t achieves full Bid-implementation if either: (i) it ensures
limited strategic externalities from other agents – that is, if

∑
j 6=i |SEtmax|ij < 1 for all i; or (ii)

it ensures limited strategic impact on other agents – that is, if
∑
j 6=i |SEtmax|ji < 1 for all i.

Proof of Lemma 5. By the Gershgorin circle theorem, both under condition (i) and (ii) the
absolute value of all eigenvalues of |SEtmax| are smaller than 1, which by Lemma 1 ensures full
Bid-implementation. �

The condition in the first point of this Lemma resembles the design principle in Ollár and
Penta (2017), in that it requires ‘not too strong’ strategic externalities.44 Formally, it is a row-wise
condition on the |SEtmax|-matrix. The second condition instead is a column-wise restriction on
|SEtmax|, which can be interpreted as requiring that any agent’s strategic impacts on others is not
too strong.

Theorem 4 in Section 5 follows directly from Lemma 5:

Proof of Theorem 4. Under the SC-PC assumption, the equal-externality transfer scheme te is
Bid-IC. Moreover, te induces a strategic externality matrix which is such that for all i, j 6= i, SEeij =(∑

j 6=i
∂2vi
∂x∂θj

/ ∂2vi
∂x∂θi

)
1

n−1 . For this externality matrix, notice that condition (i) of this Proposition
implies condition (i) of Lemma 5; and condition (ii) of this Proposition implies condition (ii) of
Lemma 5, and thus by Lemma 5, full Bid-implementation follows. �

The next result formalizes the sense in which – while still not as applicable as the loading
transfers (which, by Theorem 2, achieve full implementation whenever possible) – the logic of the
equal-externality transfers is still widely applicable:

Proposition 4. Under SC-PC, if one of the conditions in Lemma 5 are satisfied by some Bid-IC
transfer scheme t , then the equal-externality transfers (tei )i∈I achieve full Bid-implementation.

Proof of Proposition 4. Under SC-PC, te ensures Bid-incentive compatibility. Next, we show
that te ensures full Bid-implementation too.

First, assume that there exists a transfer scheme t which ensures full Bid-implementation and
limited strategic externalities as in (i) of Lemma 5.

By the characterization of belief-based terms for Bid-IC in Lemma 2, there exists (m, θ) for
which

∑
j 6=i SE

t
ij (m; θ) =

∑
j 6=i SE

∗
ij . Next we show that te induces an externality matrix which

satisfies the conditions of the eigenvalue lemma in part (i) of Lemma 1. By construction of te,
44Unlike here, the analysis in Ollár and Penta (2017) was limited to transfers based on linear moment conditions,

a special case of transfers which are linear in own report.
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∑
j 6=i |SEeij | =

∑
j 6=i |

∑
j 6=i SE

∗
ij/ (n− 1) | = |

∑
j 6=i SE

∗
ij |. And thus, there exists (m, θ) such that∑

j 6=i |SEeij | = |
∑
j 6=i SE

t
ij (m; θ) | ≤

∑
j 6=i |SEtij (m; θ) | < 1. The latter strict inequality holds by

(i) of Lemma 5 and thus by the Gershgorin circle theorem, ρ (|SEe|) < 1 and thus by (i) of Lemma
1, te too ensures full Bid-implementation.

Second, assume that there exists a transfer scheme t which ensures full Bid-implementation
and limited strategic impacts as in (ii) of Lemma 5.

By the characterization of belief-based terms for Bid-IC in Lemma 2, there exists (m, θ) for
which |

∑
i∈I
∑
j 6=i SE

∗
ij | = |

∑
i∈I
∑
j 6=i SE

t
ij (m; θ) | ≤

∑
i∈I
∑
j 6=i |SEtij (m; θ) | and thus, by t

satisfying (ii) of Lemma 5, |
∑
i∈I
∑
j 6=i SE

∗
ij | < n and writing this with the total externality

notation,
∑
i∈I ξi < n. Now, consider the absolute externality matrix induced by the equal-

externality transfers te. In what follows, using the Perron-Frobenius theorem, we show that this
matrix has a spectral radius which is less than 1. |SEe| is a non-negative matrix, with zeros in
its diagonal and by its construction, for all i and j 6= i, |SEe|ij = |

∑
j 6=i SE

∗
ij |/ (n− 1), in other

notation, |SEe|ij = |ξi| / (n− 1). Let ρ denote the largest eigenvalue of this matrix. (Assume
that ξis, the absolute total canonical externalities, are ordered as before, based on their absolute
values, from the smallest to the largest.) By the Perron-Frobenius theorem, there is a positive
1-norm vector v ∈ Rn such that ρv = |SEe|v. The componentwise consequence of this is that,

for all i, ρ vi
|ξi| =

∑
j 6=i

vj

n−1 , which also implies that if |ξi| ≤ |ξj |, then vi ≥ vj . Adding up these

n equations and expressing ρ, gives that ρ =
∑

j∈I
vi∑

j∈I
vi

|ξi|
, which is a weighted harmonic mean of

ξis with weights vis. And thus from a weighted harmonic mean – arithmetic mean inequality,

ρ =
∑

j∈I
vi∑

j∈I
vi

|ξi|
≤
∑
i∈I

vi∑
j∈I

vj
|ξi|. Since larger |ξi|s have smaller weights, this latter expression is

bounded by the average of |ξi|s, and thus ρ ≤
∑
i∈I
|ξi|
n < 1. Recall from above that, the latter

strict inequality is a consequence of t satisfying (ii) of Lemma 5. Therefore, by (i) of Lemma 1, te

ensures full Bid-implementation. �

Corollary 2. If Condition (12) holds, then both t∗ and te ensure full Bid-implementation.

Hence, whenever there is an implementing transfer scheme which satisfies the easy-to-check
conditions of Lemma 5, then the equal-externality transfers te also achieve full Bid-implementation.
There are, however, environments in which the canonical transfers t∗ achieve full Bid-implementation,
but the equal-externality transfers te do not:

Example 4. Consider 4 agents and an SC-PC environment for which the canonical direct mech-
anism and the corresponding balancing transfers induce the following externality matrix:

SE∗ = SEl =


0 0.1 0 0

0.2 0 0 0
6 0 0 0
6 0 0 0

 and SEe =


0 1

30
1
30

1
30

2
30 0 2

30
2
30

2 2 0 2
2 2 2 0

 ,

In this example, the |SE∗|-matrix has spectral ratio less than 1, however the |SEe|-matrix has
an eigenvalue larger than 2. Here the canonical transfers coincide with the loading transfers, and
so achieve full implementation, but the equal-externality transfers do not.45 �

45For cases in which, contrary to this example, the canonical transfers fail full implementation but the transfers
with uniformly redistributed externalities work well, see Examples 1.1 and 3.
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We conclude this Section of the Appendix C with the proof of the last result in Section 5:

Proof of Proposition 2. Observe that, under symmetric aggregators in valuations,
∑
k 6=i

∂2vi
∂x∂θk

is the same for all agents:

∑
k 6=i

∂2vi
∂x∂θk

=
∑
k 6=i

∂2
x,hw ·

∂hi
∂θk

= ∂2
x,hw ·

∑
k 6=i

∂hi
∂θk

= ∂2
x,hw

∑
k 6=j

∂hj
∂θk

for all j

=
∑
k 6=j

∂2vj
∂x∂θk

for all j.

Observe also that, under symmetric aggregators in valuations, ∂2vi
∂x∂θi

is the same for all agents:

∂2vi
∂x∂θi

= ∂2
x,hw ·

∂hi
∂θi

= ∂2
x,hw ·

∂hj
∂θj

for all j

= ∂2vj
∂x∂θj

for all j.

To prove part 2 of this proposition, recall the characterization of Theorem 2, which says that
an increasing allocation function is full Bid-implementable if and only if |ξ1ξ2| < 1. This latter
condition is equivalent to |

∑
k 6=1

∂2v1
∂x∂θk

·
∑
k 6=2

∂2v2
∂x∂θk

| < ∂2v1
∂x∂θ1

· ∂
2v2

∂x∂θk
. Under symmetric aggregators,

this latter inequality is equivalent to |
∑
k 6=i

∂2vi
∂x∂θk

| < ∂2vi
∂x∂θi

for all i, which completes the proof of
this part.

To prove part 1 of this proposition, note that from Theorem 2, if the equal-externality mecha-
nism (d, te) achieves full Bid-implementation, then the loaded direct mechanism

(
d, tl

)
achieves this

too. To prove the other direction, note that if the loaded direct mechanism
(
d, tl

)
achieves full Bid-

implementation, then by the previous part of this proof, we have
∣∣∣∑k 6=i

∂2vi
∂x∂θk

∣∣∣ < ∂2vi
∂x∂θi

for every
i, and (i) of Theorem 4 implies that the equal-externality transfers ensure full Bid-implementation
too, which completes the proof of this part. �

D Sensitivity Results

D.1 Proof of Theorem 6

The proof of Theorem 6 relies on the following lemma, which characterizes the set of possible
misreports at each iteration of the Fε-rationalizability procedure:

Lemma 6. Consider an SC-PC environment and linear moment conditions in the fully Bid-
implementing t. For given ε and F , the largest set of reports in RFεi is the largest element of the

vector
[
I − |SEt|

]−1
CεF l, where C is the matrix such that Cij = 1/|∂2

iiUi| if i = j and Cij = 0
otherwise, εF = (εi)i∈I is the vector such that εi = ε if i ∈ F and εi = 0 if i /∈ F and l = θ − θ.

Proof of Lemma 6 Consider an arbitrary non-negative vector ε = (εi)i∈I .Recall that it is the
consequence of SC-PC and linear moment conditions that in the utility functions of the direct
mechanism (d, t), the second order derivatives are constants. This latter combined with the char-
acterization of the best reply sets in Step 3 of Proof of Theorem 2 implies that
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for the first round of iterative eliminations with ε-faulty agents, with notation A1 := |SEt|+
εTC and l := θ − θ, we have that for all θi

RB
id,ε,1

i (θi) = [θi ± [A11l]i] ∩
[
θ, θ
]
.

In the second round of iterative eliminations, for any mi ∈ RB
id,ε,2

i (θi),

|θi −mi| ≤
∑
j 6=i

|∂2
ijUi|
|∂2
iiUi|

∑
l 6=j

|∂2
jlUj |+ εj

|∂2
jjUj |

+ εi
|∂2
iiUi|

.

Moreover, applying Step 3 of Proof of Theorem 2, in this second round of iterative eliminations,
with notation A2 := |SEt|2 + εT |SEt|C + εTC for all θi the rationalizable messages are

RB
id,ε,2

i (θi) = [θi ± [A21l]i] ∩
[
θ, θ
]

By induction, at the kth round, with notation Ak := |SEt|k+εT |SEt|k−1C+ . . .+εT |SEt|C+
εTC = |SEt|k + εT

(
I − |SEt|k

)
(I − |SEt|)−1

C (the latter equation assuming that ρ (|SEt|) < 1)
for all θi the rationalizable messages are

RB
id,ε,k

i (θi) = [θi ± [Ak1l]i] ∩
[
θ, θ
]

Taking limits as k →∞, we have that for all i and θi, the rationalizable messages for all θi are

RB
id,ε

i (θi) =
[
θi ±

[(
εT
(
I − |SEt|

)−1
C
)

1l
]
i

]
∩
[
θ, θ
]
.

Applying this formulat to ε-faulty agents with Fε complates the proof of this Lemma.�

Proof of Theorem6. For the loading transfers tl, the inverse of I − |SEl| is as follows:

(
I − |SEl|

)−1 =



1 −|ξ1| 0 . . . 0
−|ξ2| 1 0 . . . 0

−|ξ3| 0 1
...

...
...

... 0
. . . 0

−|ξm| 0 . . . 0 1



−1

= 1
1− |ξ1ξ2|



1 |ξ1| 0 . . . 0
|ξ2| 1 0 . . . 0

|ξ3| |ξ1ξ3| 1− |ξ1ξ2|
...

...
...

... 0
. . . 0

|ξm| |ξ1ξm|
... 0 1− |ξ1ξ2|


.
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For the equal-externality transfers te, the inverse of I − |SEe|, with symmetric aggregators, is

(I − |SEe|)−1 =



1 − |ξ|
(n−1) − |ξ|

(n−1) . . . − |ξ|
(n−1)

− |ξ|
(n−1) 1 − |ξ|

(n−1) . . . − |ξ|
(n−1)

− |ξ|
(n−1) − |ξ|

(n−1) 1
...

...
...

... − |ξ|
(n−1)

. . . − |ξ|
(n−1)

− |ξ|
(n−1) − |ξ|

(n−1) . . . − |ξ|
(n−1) 1



−1

= 1(
1 + |ξ|

n−1

)
(1− |ξ|)


1− (n−2)|ξ|

n−1
|ξ|
n−1 . . . |ξ|

n−1
|ξ|
n−1 1− (n−2)|ξ|

n−1 . . . |ξ|
n−1

...
...

. . . |ξ|
n−1

|ξ|
n−1 . . . |ξ|

n−1 1− (n−2)|ξ|
n−1

 .
Applying Lemma 6 to these inverses, with the notation that 1/c := ∂2

x,θi
vi, we have that for

the loading transfers, for all nf > 1,

ηt
l

(ε, nf ) = 1 + |ξ|
1− ξ2 · c · l · ε = 1

1− |ξ| · c · l · ε,

and for the equal-exgternality transfers,

ηt
e

(ε, nf ) =
1− n−2

n−1 |ξ|+
nf−1
n−1 |ξ|(

1 + |ξ|
n−1

)
(1− |ξ|)

· c · l · ε =
1− n−nf−1

n−1 |ξ|(
1 + |ξ|

n−1

)
(1− |ξ|)

· c · l · ε.

Comparing
1

1− |ξ| to
1− n−nf−1

n−1 |ξ|(
1 + |ξ|

n−1

)
(1− |ξ|)

is equivalent to comparing

1 + |ξ|
n− 1 to 1− n− nf − 1

n− 1 |ξ|,

from which we get that for all 1 < nf < n and for all ε > 0, ηte (ε, nf ) < ηt
l (ε, nf ), in other words,

in environments with symmetric aggregators, the equal-externality transfers are less sensitive to
the risk in mistakes in play. �
Proof of Theorem 5. See Step 4 in the Proof of Theorem 2. �

D.2 Sensitivity to Lower Orders of Rationality and Robust Level-k Im-
plementation

In an important recent paper, de Clippel et al. (2018) have studied a notion of level-k implementa-
tion which, for the class of environments and the direct mechanisms we consider, can be described
as follows: Let p ∈ ∆ (Θ) denote a common prior, and Θ = ×i∈IΘi. For any direct mechanism
(d, t), let Σi denote the set of strategies σi : Θi → Mi (Mi = Θi in the direct mechanism). Each
player is characterized by an anchor, αi : Θi → ∆ (Mi), which specifies the message chosen in the

49



mechanism by the non-strategic level-0 type. As usual, let α and α−i denote the profiles of anchors
(with independent randomization across players).

de Clippel et al. (2018) introduce the following solution concept for level-k implementation:

S1
i (α) =

{
σi ∈ Σi : ∀θi, σi (θi) ∈ arg max

mi

∫
Θ−i

U ti (mi, α−i (θ−i) , θi, θ−i) dp (θ−i|θi)
}

∀k ≥ 2, Ski (α) =
{
σi ∈ Σi :

∃σ−i ∈ Sk−1
−i (α) s.t. ∀θi,

σi (θi) ∈ arg maxmi
∫

Θ−i U
t
i (mi, α−i (θ−i) , θi, θ−i) dp (θ−i|θi)

}

Definition 11 (Level-k Implementation (de Clippel et al. (2018))). A direct mechanism (d, t)
achieves level-k implementation if Sk (µ|α) = {σ∗} for every k.

Compared to the previous literature on level-k implementation, de Clippel et al. (2018)’s
notion is more robust in that it doesn’t rely on the designer’s knowledge of the agents’ levels of
sophistication: implementation is required to be achieved for all k. Their results are also more
general than previous analysis in that they provide results for various anchors α. Their analysis,
however, maintains the classical assumption of a commonly known prior p ∈ ∆ (Θ).46 But this
notion of implementation can be easily adapted to our belief restrictions, Bid = (

(
Bidθi
)
θi∈Θi

)i∈I ,
by replacing the solution concept in the above definition to the following weaker version:

Ŝ1
i (α) =

{
σi ∈ Σi :

∀θi,∃bi ∈ Bidθi
σi (θi) ∈ arg maxmi

∫
Θ−i U

t
i (mi, α−i (θ−i) , θi, θ−i) dbi (θ−i)

}

∀k ≥ 2, Ŝki (α) =
{
σi ∈ Σi :

∃σ−i ∈ Ŝk−1
−i (α) s.t. ∀θi,∃bi ∈ Bidθi

σi (θi) ∈ arg maxmi
∫

Θ−i U
t
i (mi, σ−i (θ−i) , θi, θ−i) dbi (θ−i)

}

As de Clippel et al. (2018) remark, the behavioral anchors are completely arbitrary, they may
be mechanism specific and may differ across agents. In their setting, however, it is still the case that
anchors αj : Θj →Mj are common knowledge among the agents, and also known to the designer.
A natural strengthening of the implementation requirement would be to allow for different players
to have different views about others’ anchors, or be uncertain over them, or on others’ views
about anchors, and so on. And, most importantly, without requiring that the designer knows each
player’s anchor, nor his beliefs about others’, at any order. If we let possible anchors in each player
i’s mind to be any α−i : Θ−i → ∆ (M−i) – i.e., also allowing for possible correlations – then we
obtain the following solution concept for robust level-k implementation:

RL1
i =

⋃
α−i∈∆(M−i)T−i

Ŝ1
i (α) and

∀k ≥ 2, RLki =
{
σi ∈ Σi :

∃σ−i ∈ RLk−1
−i s.t. ∀θi,∃bi ∈ Bidθi

σi (θi) ∈ arg maxmi
∫

Θ−i U
t
i (mi, σ−i (θ−i) , θi, θ−i) dbi (θ−i)

}

Definition 12 (Robust Level-k Bid-Implementation). A direct mechanism (d, t) achieves robust
level-k Bid-implementation if RLk = {σ∗} for every k.

46Kneeland (2018) studied level-k implementation both in common prior and belief-free settings. Unlike de Clippel
et al. (2018), however, she restricts anchors to be type-independent and equal to the uniform distribution, and she
allows different SCFs (selected from a multi-valued social choice rule) to be implemented for different level-k’s.
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It is easy to verify that, for every k, σi ∈ RLki if and only if σi (θi) ∈ Rid,ki (θi) for every
θi. Hence, if one wishes to obtain full implementation for every k – i.e., level-k implementation à
la de Clippel et al. (2018), but in the much more robust specification for what concerns agents’
anchors – then one needs to obtain implementation in B-dominant strategies, because it requires
Rid,1i (θi) = {θi} for every θi. If that can be obtained, as for instance Ollár and Penta (2017) show
in SC-PC environments with independent or affiliated common priors, then the result follows for all
levels, and hence interim B-Dominant Strategy Incentive Compatibility (iDSIC) characterizes this
notion of robust level-k implementation.47 But iDSIC is very demanding, and in particular under
the Bid-restrictions it cannot be satisfied outside of the very special case of private values. It is
then natural to ask what is the best that one could obtain, if such stricter notion of implementation
cannot be obtained for every k. One possibility is to ensure that, for each k, the Rid,ki -sets are
as small as possible around the truthful revelation profile. The result in Theorem 5 addresses
precisely this question, and implies that the loading transfers introduced above are optimal with
respect to this notion of robust level-k Bid-implementation.
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