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Abstract

We consider the problem of efficient matching in school choice by defining a match-

ing  to be priority-neutral iff no matching  can make any student whose priority

is violated by  better off unless  violates the priority of some student who is made

worse off. Clearly, every stable matching is priority-neutral. A matching is priority-

efficient iff it is both priority-neutral and Pareto efficient. We show that there is a

unique priority-efficient matching. Moreover every student weakly prefers the unique

priority-efficient matching to every priority-neutral matching and so to every stable

matching. We also consider the mechanism that selects the unique priority-efficient

matching when students report their preferences to the mechanism. We provide prac-

tical advice for students participating in this mechanism and we provide conditions

that are both novel and natural under which truth-telling is an equilibirum.

Keywords: school choice, stable matchings, fair matchings, Pareto efficient match-

ings, priority-efficiency, priority-neutrality.

1 Introduction

Many U.S. cities (including New York City, Boston, Seattle, Cambridge, Charlotte, Denver,

Minneapolis, and Columbus) allow some form of school choice wherein families can choose a

school for their children that is outside the district in which they live. But because there may

not be enough seats at any given school to accommodate all students for whom that school

is their first choice, school districts must set priority rules in order to resolve the conflicts

that inevitably arise.

For example, in Boston, children in a school’s predefined walk zone who have a sibling at

that school have priority over children who only have a sibling at the school, and the latter

children have priority over children who are only in the school’s walk zone. All remaining
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students have lowest priority. Any conflicts between students in the same priority group

are resolved according to the outcome of a random lottery. So after receiving their lottery

numbers, all students are strictly ranked in terms of their priority at each Boston school.

A matching of students to schools creates a priority violation when some student  prefers

another school  to their own school and, either, school  has a vacant seat, or, student 

has higher priority at  than some student assigned to  Such a matching is said to violate

’s priority (at school ). We will assume here that, like Boston public schools, each school

strictly orders the students from highest to lowest priority. Consequently, any conflicts

between students over a given school can be resolved by that school’s priority order. Even

so, it is not at all clear whether the priority orders across all of the schools are mutually

compatible, i.e., whether there is a matching of students to schools that does not violate any

student’s priority at any school. When such a matching does exist, it is called stable.

Remarkably, stable matchings always do exist, regardless of the schools’ priority orders

and regardless of the students’ preferences over schools. Even more remarkable perhaps is

that, among all of the stable matchings, there is one (and only one) that all of the students

agree is best. Both of these results are due to Gale and Shapley (1962), who call the stable

matching that is best for all the students, student-optimal.

Unfortunately, as is well-known, the student-optimal stable matching need not be Pareto

efficient.1 In fact, the extent of the inefficiency can be very large. For example, Kesten (2010)

shows that for any set of schools and seat quotas, there are school priorities, students, and

student preferences over schools such that the student-optimal stable matching assigns each

student to his or her worst or second-worst school. While this theoretical possibility is indeed

an extremely poor outcome, one might wonder whether any significant inefficiencies actually

occur in practice.

According to Abdulkadiroǧlu, Pathak, and Roth (2009), in a New York City school dis-

trict in 2006-2007, over 4,000 grade 8 students could have been made better off by reassigning

them to a school different than their match in the student-optimal stable matching, with-

out hurting any other students. Thus the extent of the inefficiencies that can arise in the

student-optimal stable matching is a matter of real practical importance.

So it is no surprise that a good deal of attention has been paid to the problem of selecting

a Pareto efficient matching for the school choice problem, and this will be our main goal here

as well. At the same time however, we will pay due attention to two important practical

matters that must be addressed if a theoretical solution to the problem is to have any hope

of finding success in the field.

The first important practical matter is that any theoretical solution must be described

1We follow the school-choice literature convention, starting with Balinski and Sönmez (1999), that schools

are objects to be allocated to students. So Pareto efficiency is always with respect to students only.
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in straightforward language that is meaningful to school board officials, city councillors, and

state legislators. For if a solution cannot be so explained, then it is difficult to imagine how

a school board would be willing to move away from its current system, potentially risking

lawsuits brought by upset parents whose child’s priority is violated as a result of a new

system that no one seems to understand. The second important practical matter is that

it must be possible to give simple and effective advice to students as to how they should

behave in any mechanism that is intended to implement the solution, so that the outcome of

the mechanism is more likely than not to produce the desired matching.2 We address each

of these matters in turn.

To explain our solution in language that will resonate with officials in charge of the

system, we must give clear guidance as to the “rights” that are embodied in student priorities.

Because our primary goal is to select a Pareto efficient matching, violating the priority of

one or more students will be unavoidable whenever the student-optimal stable matching is

not Pareto efficient. Consequently, we cannot give students whose priority is violated at a

school the absolute right to take a seat at that school, since that would mean that only stable

matchings could ever be chosen. Instead, we will be guided by two natural principles.

The Right to Relief. Every student has the right to seek relief from a priority violation

by replacing the offending matching with any other matching so long as the Equal

Priority Rights principle is respected.

Equal Priority Rights. No student may gain relief from a priority violation by replacing

the offending matching with one that violates the priority of a student that it makes

worse off.

Under these principles, a student’s priority at any school protects that student in two

ways. First, it gives the student the right to seek relief when their priority is violated. Second,

it protects the student from harm when any other student seeks relief from their own priority

violation. Notice that this second layer of protection is absent when each student is given

the absolute right to take a seat at any school that violates their priority, and it is for this

reason that students will turn out to be better off under the two guiding principles here.

Say that a matching is priority-neutral if and only if it is not possible to make any student

whose priority is violated better off without violating the priority of some student who is

made worse off.

Evidently, priority-neutral matchings are precisely those matchings that conform to the

two principles above. Notice that every stable matching is priority-neutral because there are

no priority violations at all.

2See Roth and Rothblum (1999) for advice that can be given to participants in two-sided matching market

mechanisms that, in contrast to our goal here, select a stable matching.
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Of course, our goal is to select a Pareto efficient matching.3 Consequently, we seek

matchings that are both Pareto efficient and priority-neutral, and so let us call any such

matching priority-efficient. It is not at all clear whether there are many priority-efficient

matchings or whether there are none at all.

Our first main result is that there always exists precisely one priority-efficient matching.

Moreover, every student weakly prefers this matching to every priority-neutral matching and

so to every stable matching as well. In particular, this means that students are weakly better

off when our two guiding principles are used to select a Pareto efficient matching than when

every student is given the absolute right to a seat at any school that violates their priority.

To implement a priority-efficient matching in practice, we will ask students to submit

their preferences over schools and then we will choose the unique priority-efficient matching

for the submitted preferences (school priorities and quotas are assumed known). Let us call

this mechanism the priority-efficient (PE) mechanism.

Because the PE mechanism always selects a Pareto efficient matching that dominates

the student optimal stable matching, it is not strategy-proof.4 Nevertheless, without specific

knowledge of other students’ reported preferences, it is typically far from obvious how a

student can gain an advantage by submitting an untruthful report. This brings us to the

second important practical matter, namely to provide accurate advice to students that is

likely to lead many of them to submit their true preferences.

That students might try to “game the system” by reporting false preferences is a diffi-

culty that has occurred in practice with other mechanisms. Indeed, as one New York City

Department of Education official, Peter Kerr, wrote when commenting about the change

from an old system for assigning students to New York City high schools to a new system

that selects a stable matching (New York Times, November 2, 2003): “The new process is

a vast improvement.. . . students will be able to rank schools without the risk that naming a

competitive school as their first choice will adversely affect their ability to get into the school

they rank lower.”

If students submit untruthful preferences, then the matching that is ultimately selected by

the PE mechanism will be priority-efficient only for the submitted preferences, but perhaps

not for the true preferences, a situation that we wish to avoid. Our strategic analysis of

the PE mechanism permits us to give the following advice to students. Notice that the first

piece of advice addresses the gaming of the old New York City system described by Peter

Kerr.

3Pareto efficiency is a concept that is straightforward to communicate to non experts.
4See Abdulkadiroǧlu, Pathak, and Roth (2009, Theorem 1), or Kesten (2010, Theorem 4).
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Advice for students participating in the PE mechanism:

1. Always list your top choice first. Lowering your top choice can change your placement

only when leaving it first would have given you your top choice.

2. Changing your reported preferences by switching the positions of two schools so that

the one of them that you prefer is now truthfully ranked above the other makes it

more likely that you will be placed at the one you prefer and less likely that you will

be placed at the other.

3. For any  changing your reported preferences by truthfully ranking your top  schools

makes it more likely that you will be placed at a school among your top 

4. Untruthful reporting is risky because, no matter what priorities and quotas the schools

have set, for any untruthful preference that you report, either there are preferences

that other students could report that would make your placement worse than had

you reported truthfully, or, no matter what preferences other students report, your

placement will be the same as had you reported truthfully.

In addition to the above advice that is always valid, we provide natural conditions under

which truthful reporting by all students is an equilibrium of the PE mechanism. Taken

altogether, these results suggest that many, even most, students would find it in their best

interests to report their preferences truthfully in the PE mechanism.5

The remainder of the paper is organized as follows. Section 2 provides an example of a

priority-efficient matching. Section 3 contains our model and notation, as well as our results

on existence and uniqueness of priority-efficient matchings. Section 3 also introduces feasible

sequences of matchings which play an important role in all of our analysis, especially our

strategic anlaysis. Additionally, Section 3 shows that an algorithm developed by Kesten

(2010) and modified by Tang and Yu (2014) can be used to compute the unique priority-

efficient matching in any school choice problem. Section 4 contains our results for the

strategic analysis of the PE mechanism. Section 5 reviews the literature, and Section 6

contains the proofs of all of the results stated in the main text.

2 An Example

To gain some familiarity with priority-efficient matchings, consider the situation illustrated

in Figure 1 involving five students, 1  5 and five schools, 1  5 each with a quota of

5Empirical analysis may be helpful in establishing the extent to which false reporting might be advanta-

geous in practice.
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one seat. Student preferences are given by the table on the left and school priorities are

given by the table on the right. For example, the table on the left indicates that student 1

ranks school 2 highest, 1 second-highest, etc., while the table on the right indicates that

school 2 gives highest priority to student 3 second-highest priority to student 5 etc. Dots

indicate that the remaining rankings do not matter for the purposes of this example.

Figure 2 displays several matchings for the school choice problem given in Figure 1. In

each of the panels (a), (b), and (c) we have reproduced a copy of the table on the left in

Figure 1 that describes the students’ preferences. The shaded squares in Figure 2 indicate

the student-optimal stable matching, while the three other matchings in Figure 2, ̃ in panel

(a), ̂ in panel (b), and ∗ in panel (c), are Pareto efficient, and two of them, ̂ and ∗,

Pareto dominate the student-optimal stable matching.

i1 i2 i3 i4 i5
s2 s3 s3 s1 s4

s1 s1 s4 s2 s1

s3 s5 s2 s4 s3

s2

s5

Student Preferences

s1 s2 s3 s4 s5

i2 i3 i1 i4
i1 i5 i5 i3
i5 i4 i2 i5
i4 i1 i3
i3 i2 i4

... ... ... ... ...

...

School Priorities

(each school has one seat)

Figure 1

To see how priority-efficiency works to select a unique Pareto efficient matching, let us

return to the three Pareto efficient matchings, ̃, ̂, and ∗ shown in Figure 2. We will be

content to show that only the ∗ matching in panel (c) is priority-efficient. Because all three

matchings are Pareto efficient, to establish whether or not they are priority-efficient, we need

only check whether they are priority-neutral.

Consider the matching ̃ in panel (a). This matching violates student 2’s priority at

school 3 (and also at school 1) because student 2 prefers school 3 to school 5 where

she is assigned, and student 2 has priority over student 3 at school 3 where 3 is assigned.

Consider now the student-optimal stable matching indicated by the green-shaded cells in

Figure 2. Let us call this stable matching ̄ Student 2 prefers ̄ to ̃ because ̄ assigns 2 to

school 1 which he prefers to school 5 to which he is assigned under ̃ Moreover, because ̄
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is stable, it violates no student’s priority. Consequently, ̃ is not priority-neutral because the

matching ̄ makes a student, 2 whose priority is violated by ̃ better off without violating

the priority of any student at all. So ̃ is not priority-efficient.

Next, consider the matching ̂ in panel (b). This matching too violates student 2’s

priority at school 3 for exactly the same reasons as in the previous paragraph. Let us

compare the matching ̂ to the matching ∗ given in panel (c). Student 2 prefers ∗ to ̂,

and the only student who finds ∗ worse than ̂ is student 3 and student 3’s priority is

not violated by ∗ But this means that ̂ is not priority-neutral because switching to the

matching ∗ makes student 2 whose priority is violated by ̂ better off without violating

the priority of any student who is made worse off. So ̂ too is not priority-efficient.

i1 i2 i3 i4 i5
s2 s3 s3 s1 s4

s1 s1 s4 s2 s1

s3 s5 s2 s4 s3

s2

s5

Student Preferences

... ... ... ...

i1 i2 i3 i4 i5
s2 s3 s3 s1 s4

s1 s1 s4 s2 s1

s3 s5 s2 s4 s3

s2

s5

... ... ... ...

^

^

^

^

^

i1 i2 i3 i4 i5
s2 s3 s3 s1 s4

s1 s1 s4 s2 s1

s3 s5 s2 s4 s3

s2

s5

... ... ... ...

*

*

*

*

*

~ 

~ ~ ~ ~ 

- Student-optimal stable matching

* - Pareto efficient and priority-efficient
^ - Pareto efficient but not priority-efficient~ and

(a) (b) (c)

Figure 2

Finally, consider the matching ∗ We wish to show that ∗ is priority-neutral. To see

this, notice first that the only student whose priority is violated by ∗ is student 5 But

in order to make student 5 better off, one of the other students would have to be assigned

to school 5 which would make that student worse off. Moreover, it is easy to check that,

no matter which of the students 1  4 is assigned to school 5 that student’s priority

will be violated. Consequently, it is not possible to change the matching from ∗ so as

to make the only student whose priority is violated by ∗ student 5 better off without

7



violating the priority of a student who is made worse off. Hence, ∗ is priority-neutral and

therefore, being Pareto efficient, it is priority-efficient. Notice also that ∗ Pareto dominates

the student-optimal stable matching.

3 Formal Model and First Results

Let  denote the nonempty finite set of students and let  denote the nonempty finite set of

schools. Each school  ∈  has a finite number of available seats, or quota,  ∈ {1 2 }
and has a strict priority ordering  over the set of students. Each student  ∈  has a strict

preference ordering  over the set of schools, and we write  to mean  or  =  We

assume that # ≤P∈  so that the total number of students is not greater than the total

number of available seats. All of these elements are fixed throughout the analysis, unless

stated otherwise.

A matching is any mapping  :  →  such that for every  ∈  #−1() ≤  Implicit

in this definition is the assumption that each student is assigned to some school.6

For any two matchings  and  we reduce notation by writing  instead of ()()

and by writing  instead of ()()

Say that a matching  violates student ’s priority iff there is  ∈  such that ()

and, either, #−1()  
7 or,  for some  ∈ −1() We then also say that  violates

’s priority at school 

A matching  is (pairwise) stable iff  does not violate any student’s priority (at any

school).8

Say that a matching  dominates a matching  iff  for every  ∈  So by strict

preferences, a matching  Pareto dominates a matching  if and only if  dominates  and

 6= 

A matching is a student-optimal stable matching iff it is stable and it dominates every

other stable matching.

Gale and Shapley (1962) show that a student-optimal stable matching always exists and

that it is unique.

6One can accommodate the possibility of home-schooling by including in , for each student  a school,

 (the “home-school” for student ) with quota one that gives highest priority to student  where each

student ranks every other student’s home school below every non-home school and below his own home

school.
7By convention, every student has priority over every empty seat.
8As is well known, nothing changes if stability were to also require the absence of priority violations

against subsets of students if it is assumed that schools have responsive preferences since, in that case, a

school can violate the priority of a subset of students only if it violates the priority of some student in the

subset. So a matching would be stable is this more restrictive sense if and only if it is pairwise stable as

defined here.
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Say that a matching  is priority-neutral iff no matching  can make any student whose

priority is violated by  better off unless  violates the priority of some student who is made

worse off.

A matching is a student-optimal priority-neutral matching iff it is priority-neutral and it

dominates every other priority-neutral matching.

Say that a matching  is priority-efficient iff it is priority-neutral and Pareto efficient.

We can now state our first result. All proofs are in Section 6.

Theorem 3.1 There is a unique priority-efficient matching. This priority-efficient match-

ing is also the unique student-optimal priority-neutral matching. Every stable matching is

priority-neutral and therefore the unique priority-efficient matching dominates the student-

optimal stable matching.

Remark 3.2 It can be shown that the set of priority-neutral matchings is a lattice with

respect to the coordinatewise partial order defined by the students’ preferences. We do not

know whether this lattice is distributive nor do we know whether it is a sublattice of the set

of all matchings, both of which hold for the lattice of stable matchings. While the join of

any two priority-neutral matchings (i.e., the smallest priority-neutral matching that is larger

than both) is always their coordinatewise maximum, we do not know whether the meet is

always their coordinatewise minimum. Nevertheless, for any two priority-neutral matchings

there is always a largest priority-neutral matching that is smaller than both. So their meet

is always well-defined within the set of priority-neutral matchings.

We next give a convenient characterization of the unique priority-efficient matching.

Theorem 3.3 A matching  is priority-efficient if and only if no matching  can make any

student better off unless  violates the priority of some student who is made worse off.

Notice that in the statement of Theorem 3.3, the matching  can make any student

better off. In particular,  does not need to make some student whose priority is violated

by  better off, as is required in the definition of priority-neutrality. So checking that a

matching is priority-efficient is very much like checking that it is Pareto efficient, except that

a “dominating” matching can ignore the preferences of students whose priorities it does not

violate.

We next show that the unique priority-efficient matching happens to be the output of a

simple, elegant, and well-studied modification of the deferred acceptance algorithm.
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3.1 The Kesten-Tang-Yu Algorithm

Kesten (2010), in his study of Pareto-efficient matching in the school choice problem, intro-

duced an important modification of Gale and Shapley’s (1962) student-proposing deferred

acceptance algorithm (henceforth simply the DA algorithm). Kesten’s (2010) algorithm,

called EADA (efficiency adjusted deferred acceptance) has since been modified by Tang and

Yu (2014). The matching that is produced by Tang and Yu’s (2014) modification is identical

to that produced by Kesten’s (2010) algorithm (Tang and Yu 2014, Theorem 3), but the

Tang and Yu algorithm is rather more efficient and it turns out to be simpler to work with

for our purposes. Before describing Tang and Yu’s modification of Kesten’s algorithm, we

first briefly review Gale and Shapley’s DA algorithm, which proceeds in steps and works as

follows.

In the first step, all students apply to their favorite school. Then each school places

each applicant, in order of highest priority, on their waitlist until their quota is reached, and

rejects all remaining applicants. In each subsequent step, all students rejected in the previous

step apply to their favorite school among those who have not yet rejected them. Then, each

school places each of its applicants (both new and waitlisted), in order of highest priority,

on their new waitlist until their quota is reached, and rejects all remaining applicants. The

algorithm stops after any step in which no school rejects any students. Each student is then

assigned to the school at which he is currently waitlisted.

Tang and Yu’s (2014) algorithm makes use of so-called “underdemanded schools.” Say

that a school  is underdemanded at a matching  iff no student prefers  to the school to

which they are assigned by 

Gale and Shapley (1962, Theorem 2) showed that the DA algorithm always stops in

finitely many steps and always produces the student-optimal stable matching, ̂ say. Notice

that, because students apply to schools in order starting with their most preferred, they

prefer a school  to the school to which they are assigned by ̂ if and only if  rejected them

at some point during the DA algorithm. Consequently, a school is underdemanded at the

student-optimal stable matching if and only if that school did not reject any students during

the DA algorithm.

We can now describe Tang and Yu’s modification of Kesten’s algorithm. The Tang and

Yu (2014) algorithm, called sEADA* (simplified EADA) proceeds in rounds and works as

follows.9

In the first round, run the DA algorithm with the entire set of schools and with the entire

9The asterisk in sEADA* indicates that we are considering here only the special case of the Tang and Yu

algorithm in which all students “consent” to allowing their priorities to be violated. See also Kesten (2010)

where the idea of consent originated.
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set of students, yielding the student-optimal stable matching, 1 say. Each school  that is

underdemanded at 1 (i.e., each school that did not reject any students during the execution

of the DA algorithm),10 is permanently assigned its students −11 () for the remainder of the

algorithm and school  and its students are called settled. Remove all settled schools and

their students and proceed to round two.11 The second round proceeds exactly as the first

but where the DA algorithm is applied only to the “submarket” of unsettled schools and

students. This submarket’s underdemanded schools at its DA matching are permanently

assigned their students, and these students and schools become settled and are removed,

altogether resulting a second-round matching 2 (which includes the permanently assigned

students and their schools from the first round). These rounds repeat, with each round 

producing a matching  and with smaller sets of unsettled schools and students with each

successive round. The algorithm ends after the round,  say, in which all remaining schools

and students become settled, thereby defining the matching,   that is the output of the

algorithm. We will then call 1   the sEADA* output sequence.

3.2 Feasible Sequences of Matchings

Following Tang and Yu (2014), for any matching  and for any student  say that student 

is (Pareto) -improvable if and only if there is a matching that dominates  and that makes

student  strictly better off. Say that student  is -unimprovable if and only if student  is

not -improvable.

We next define a class of finite sequences of matchings that will turn out to be very

important for our analysis of priority-efficient matchings.

Say that a finite sequence of matchings 1 2   is feasible if and only if 1 is stable,

 is Pareto efficient, and, for each   1  dominates −1 and  does not violate the

priority of any −1-improvable student.

An immediate question is whether any feasible sequences of matchings exist. Tang and

Yu (2014) establish that the sEADA* algorithm is well-defined (i.e., that it always produces

a matching in finitely many rounds). They also establish a number of properties of the

sEADA* output sequence that we use to establish the following result.

Theorem 3.4 The sEADA* output sequence is well-defined and feasible.

Theorem 3.4 establishes the existence of at least one feasible sequence of matchings.

But there can be others. In fact we can typically generate many feasible sequences by

10It is well-known that at least one such school always exists. See, e.g. Gale and Sotomayor (1985) for the

case of one to one matching.
11In contrast to Tang and Yu (2014), we find it more convenient to remove underdemanded schools at the

end of each round rather than at the beginning of each round.
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adjusting the sEADA* algorithm in various ways. For example, if in any number of rounds

we remove only some, but not necessarily all underdemanded schools and their students, but

otherwise leave the algorithm unchanged, the sequence of matchings that is produced will

change, but will nevertheless remain feasible. Also in any round, in addition to removing

all underdemanded schools and their students one can remove additional schools and their

students so long as those students are unimprovable.12 In addition, one can change the

algorithm by choosing, in any round’s submarket, any stable matching instead of the student-

optimal stable matching, so long as there is at least one underdemanded school in the

submarket at the chosen stable matching. Once again the sequence of matchings will typically

change, but will remain feasible. These facts will be especially useful to us in our strategic

analysis.13

The following result sheds some light on why feasible sequences of matchings are so

relevant for our analysis.

Theorem 3.5 If 1   is feasible, then  is the unique priority-efficient matching.

Remark 3.6 Theorems 3.4 and 3.5 have two immediate implications. First, because the

sEADA* algorithm produces the same matching as Kesten’s (2010) algorithm, Kesten’s al-

gorithm (in his case when all students consent) always yields the unique priority-efficient

matching. Second, the unique priority-efficient matching can be efficiently computed by run-

ning the sEADA* algorithm, which requires at most # − 1 executions of the DA algorithm
(since at least one school is settled after each round of the sEADA* algorithm and if there

is ever just one unsettled school remaining, it is not actually necessary to execute the DA

algorithm in that last trivial round).

We next turn our attention to strategic matters.

4 Strategic Considerations

We consider here the direct mechanism in which students submit their preference lists and

the mechanism (which is assumed to have access to the true profiles of school priorities and

quotas) chooses the unique priority-efficient matching given the submitted preferences. Let

us call this mechanism the priority-efficient (PE) mechanism.

Abdulkadiroǧlu, Pathak, and Roth (2009) show that no mechanism that Pareto domi-

nates the mechanism that chooses the student-optimal stable matching is strategy-proof. In

12For example, one can remove any school and its students if that school is the top choice of all its students.
13See the proofs of Theorems 4.1 and 4.2 in Part B of Section 6.
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particular therefore, the PE mechanism is not strategy-proof.14 Nevertheless, building on

Roth and Rothblum (1999), Ehlers (2008), and Kesten (2010), we can identify plausible cir-

cumstances under which it is an equilibrium of the PE mechanism for all students to report

their preferences truthfully.

So consider a situation in which the set of schools  and the set of students  are known,

but there is incomplete information about school priorities, quotas, and student preferences.

A state specifies each school’s priority list over students, each school’s quota, and each

student’s preferences over schools. Incomplete information about the state is captured by a

prior distribution over all possible states, where these are restricted so that in every state

the total number of available seats across all schools is at least as large as the total number

of students.

Let Σ denote the set of all possible states, with typical element  where each  ∈ Σ takes

the form  = (Ψ ) where  = ()∈ is any profile of (strict) student preferences and

Ψ = (Ψ)∈ is any profile of (strict) school priority lists, and  = ()∈ is any specification

of nonnegative school quotas satisfying
P

∈  ≥ # So for any student  if  = (Ψ )
then  =  specifies ’s preferences and − specifies all other students’ preferences and all

school priorities and quotas.

For any state  ∈ Σ let () ∈ denote the priority-efficient matching when the state

is , and let () denote the school to which student  is assigned under the matching ().

The PE mechanism works as follows. After a state is chosen according to the prior,

each student observes only his own preferences and the school district observes only the

realized priorities and quotas of each school. Students are asked to submit their preferences

to the school district, and the school district is committed to selecting the priority-efficient

matching given the submitted preferences and the realized school priorities and quotas.15

The following result justifies the advice for students given in Section 1.

Theorem 4.1 Consider any student  who is participating in the PE mechanism. Fix the

preferences submitted by students other than  and fix the realized priorities and quotas of

the schools. Let  and 
0
 be two possible preferences for student  neither of which need be

’s true preference. Then we have the following.

1. Suppose that  0
 is obtained from  by lowering only the top-ranked school  according

to  If ’s assigned school changes when his submitted preference changes from  to

 0
  then he is assigned to  when he submits 

14Example 7 in Kesten (2010) shows that Kesten’s mechanism is not strategy-proof. So by Remark 3.6,

or by direct computation, the same example shows that the PE mechanism is not strategy-proof.
15So the students are the only strategic agents in this situation.
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2. Suppose that  0
 is obtained from  by switching the positions of two schools,  and 

where  If ’s assigned school is  when he submits the preference order 
0
  then it is

also  when he submits the preference order  In fact, every other student’s assigned

school remains unchanged as well.16

3. Let  be any set of  schools. Suppose that  is obtained from  0
 by raising only

the schools in  so that they become the top  schools (their relative order need not

be unchanged). If ’s assigned school is in  when he submits the preference order  0
 

then it is also in  when he submits the preference order 

4. Suppose that ’s true preference is  and that  prefers his assigned school when he

submits  0 to his assigned school when he submits  Then, keeping the realized

school priorities and quotas unchanged, there exist preferences that other students

could submit that would make  prefer his assigned school when he submits  to his

assigned school when he submits  0
 

Statements 1-3 in Theorem 4.1 each provide a sense in which truthful reporting can be

advantageous,17 while statement 4 provides a sense in which untruthful reporting can be dis-

advantageous. All four statements are valid without any conditions on the prior distribution

over states, the preferences that others might submit or the priorities and quotas submitted

by schools. We next develop conditions under which truthful reporting is an equilibrium.

Let  ∈ ∆(Σ) be the prior distribution over states, and let ̃ denote the lottery (random

variable) over states that is generated by . Not all states  ∈ Σ need receive positive

probability. If the state  has positive probability and student  observes that his true

preferences are  then we let ̃−|̃= denote the lottery over the remaining components
of the state conditional on the observation ̃ = 

Under the PE mechanism, if the true state is  and student  alone deviates from truthful

reporting and reports the preference  instead of  then the outcome of the mechanism

would be the unique priority-efficient matching ( −) and ( −) would be student

’s assigned school under this matching. Consequently, after observing that his preferences

are  if student  reports  then conditional on his information and conditional on all

other students reporting truthfully, ’s assigned school is random and is given by the lottery

( ̃−|̃=)
In order to define a concept of equilibrium here, we must specify how each student 

ranks lotteries over schools. But in fact, we will not need to rank all pairs of lotteries over

16Thus, in particular, the PE mechanism satisfies the condition that Elhers (2008) calls “positive associa-

tion,” which only requires that student ’s assignment remains unchanged.
17Let  ∗ be ’s true preference. For statement 1 suppose that  is the top choice according to  ∗  For

statement 2, suppose that  ∗  For statement 3, suppose that the schools in  are the  most-preferred

schools according to  ∗ 
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schools. It will be enough to rank only pairs of lotteries that are comparable in a first-order

stochastic dominance sense.

For any student  for any preference  for  and for any two lotteries ̃ and ̃ over

schools, following Ehlers (2008) say that ̃ stochastically -dominates ̃ iff for every school

 ∈ 

Pr(̃) ≥ Pr(̃)

It is not difficult to show that one lottery stochastically -dominates another if and only

if the one can be obtained from the other by successively shifting probability weight from a

school that is ranked lower by  to a school that is ranked higher. We can now use Elhers’

(2008) concept of an “ordinal” equilibrium.

Say that truth-telling is an ordinal equilibrium of the PE mechanism iff for every positive

probability state  ∈ Σ, for every student  and for every possible preference  for student



( ̃−|̃=) stochastically -dominates ( ̃−|̃=)

We next provide conditions on the prior  under which truth-telling is an ordinal equi-

librium of the PE mechanism.

4.1 Similarity Partitions and Student-Oriented Preferences and

Priorities

Let S be a finite partition of the set of schools . Let  be any profile of student preferences.
Say that S is a similarity partition for  iff for each pair of sets in S and for each student
 ∈   ranks every school in one of the sets above every school in the other. (Note that

different students can rank the sets in S differently.) Each of the sets in S is called a similarity
set (for  )

For any profile  of student preferences and for any profile Ψ of school priorities, say

that (Ψ) is student-oriented with respect to a similarity partition S for  iff for any two

schools  and  in different similarity sets in S, and for any two students  and  if  and

 then Ψ and Ψ In words, (Ψ) is student-oriented with respect to a similarity

partition of the schools if and only if for any two schools in distinct similarity sets, if any two

students rank the two schools differently, then each of the two students has higher priority

at the school he prefers than the other student.18

The existence of a similarity partition means that each student can order the similarity

sets in the partition from best to worst, but it allows different students to order the sets

18Reny (2020) shows that if preferences and priorities are student-oriented with respect to the school-

partition whose elements are all singletons, then there is a unique stable matching and it is Pareto efficient.
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differently. If preferences and priorities are also student-oriented, then in case two students

do order two similarity sets differently, each of those students has higher priority at each

school in the set that he prefers than the other student.

Notice that if all students order the similarity sets within a similarity partition the same

way, as Kesten (2010) assumes, then the profile of preferences and priorities is trivially

student-oriented. But preferences and priorities can be student-orientated even when stu-

dents rank similarity sets differently, which can be plausible in practice. For example, athletes

might prefer schools with strong football programs and musicians might prefer schools with

strong music programs. If “schools for the arts” form one similarity set and “schools for

athletics” form another (disjoint set), then athletes and musicians are likely to rank these

similarity sets differently but may also be likely to receive higher priority at the schools in

the similarity set they prefer. Similarly student-orientated preferences and priorities are also

plausible when public school priority rules are designed to align with student (parent) pref-

erences, as would be the case, for example, when priority is given to students with siblings

already enrolled in a school precisely because enrolling all of their children at the same school

is preferred by parents.

Following Kesten (2010) (see also Roth and Rothblum 1999, Elhers 2008, and Elhers and

Morril 2020), say that the prior  induces symmetric information on a partition S of the
set of schools  iff for any two schools  and  in the same element of the partition and for

any student , each state  that is given positive probability by  is as likely as the state

that is identical to  in every respect except that school  has the priority order and quota

of school  and vice versa, and schools  and  are switched in the preference list of every

student except student 19

Symmetric information on a similarity partition S means that any student, after ob-
serving his own preferences, views any two schools in the same similarity set symmetrically

insofar as how other students rank the two schools and what priorities and quotas they may

have. Notice that correlation between preferences and quotas is permitted, which may be

plausible if, for example, a student knows that some students prefer larger schools while

others prefer smaller schools.20 Note also that  induces symmetric information trivially

19Our definition here is identical to Kesten’s (2010) because Kesten implicitly conditions on student ’s

observation of his own preferences. Ehlers (2008) and Ehlers and Morrill (2020) make the stronger assumption

that symmetric information holds when there is a single similarity set consisting of the entire set of schools.
20But symmetric information on a similarity partition does imply independence for various marginal distri-

butions. For example, for any even number of students in the same similarity set, the marginal distribution

over profiles of their preferences must be uniform over all possible profiles of their preferences. Consequently,

if, as in Ehlers (2008) and Ehlers and Morrill (2020), there is symmetric information on the trivial partition

of  into the single similarity set  itself, then the marginal distribution over the preferences of all students

is uniform and has full support if # is even, while if # is odd, then the marginal distribution over the

preferences of any # − 1 students is uniform and has full support.
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when similarity sets are singletons.

Theorem 4.2 Suppose that S is a partition of  and that the prior  induces symmetric

information on S Furthermore, suppose that for any state  = (Ψ ) that is given positive
probability by  S is a similarity set for  and (Ψ) is student-oriented with respect to S
Then, truth-telling is an ordinal equilibrium of the PE mechanism.

Remark 4.3 (a) If the set of schools does not include the possibility of home-schooling,

then the above strategic analysis does not permit truncation strategies. But these are easily

accommodated by including in  a home-school for each student as described in footnote 6,

and letting each home-school be a singleton similarity set. Theorem 4.2 remains valid and

establishes that no deviation, including a deviation to a truncation strategy, can improve upon

truthful reporting when others report truthfully. (b) Theorem 4.2 is stated as an equilibrium

result. But playing equilibrium strategies, even truth-telling strategies, can sometimes entail

more coordination than may be plausible for the circumstances under study. But in fact, the

proof of Theorem 4.2 shows that student  can do no better than to report truthfully even if

he has a personal prior  that describes the joint distribution over his own preferences, the

reported preferences of other students, and the school priorities and quotas that will be used

to compute the priority-efficient matching, so long as  satisfies the conditions of Theorem

4.2. (c) When the conditions of Theorem 4.2 hold and all similarity sets in S are singletons,
then (see Reny 2020) in every positive probability state, the student-optimal stable matching

will be unique and Pareto efficient. Hence, the student-optimal stable matching will coincide

with the priority-efficient matching and so by Dubins and Freedman (1981), truth-telling is

an ex-post Nash equilibrium of the PE mechanism.

5 Related Literature

Balinski and Sönmez (1999) initiated the application of matching theory to the problem of

assigning students to schools by recognizing that the rules that Turkish universities use to

map multiple test scores for each student into a ranking of the students defines, for each

university, a surrogate preference relation over students. With this observation, Balinski

and Sönmez could apply results from Gale and Shapley (1962) to this school choice problem

even though schools themselves are not active participants, but are merely objects to be

allocated among students.21 Balinski and Sönmez (1999) also recognized the problem of

21We do not include in this literature review papers in which schools are active participants with preferences

over students, as for example, Ehlers (2007) and Mauleon, Vannetelbosch, and Vergote (2011), both of which

introduce interesting set-valued solutions that are based upon the concept of von Neumann-Morgenstern

stable sets (von Neumann and Morgenstern, 1944).
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Pareto inefficiency, noting that no matching mechanism can always produce a matching that

is stable and Pareto efficient for students (see their Lemma 3).

Abdulkadiroǧlu and Sönmez (2003) focus more directly on the conflict between stability

and Pareto efficiency in school choice, and, building upon Balinski and Sönmez (1999),

they even more explicitly open up the line of research that applies matching theory to

the problem of school choice. They compare two mechanisms, one of which (the student-

optimal stable matching (SOSM) mechanism) always produces a stable matching and the

other of which (a novel Gale-inspired top trading cycles (TTC) mechanism) always produces

a Pareto efficient matching. Both mechanisms are strategy-proof and so both mechanisms

can sometimes produce matchings that fail to be priority-efficient. Abdulkadiroǧlu and

Sönmez (2003) describe how both the SOSM and TTC mechanisms can be adapted so as

to satisfy additional constraints that arise in actual school-choice problems in various U.S.

cities, and they establish several properties of these adapted mechanisms.

Pápai (2000) characterizes the class of matching mechanisms that are Pareto efficient,

group strategy-proof, and reallocation-proof. This class contains, for example, Gales top

trading cycles algorithm but contains other related mechanisms as well. Since the PE mech-

anism is not strategy-proof (let alone group strategy-proof), every mechanism in the class

characterized by Pápai will, for some profile of submitted preferences, fail to select the unique

priority-efficient matching.

Roth and Rothblum (1999) were the first to investigate whether, in a mechanism that

always selects the firm-optimal stable matching, workers have an incentive to misrepresent

their preferences when they have little information about the preferences of other workers

and of firms. They show that workers can restrict their untruthful preference reports to

truncated lists that truthfully rank firms in order from best to worst, but perhaps stopping

before the first unacceptable firm. Ehlers (2008) generalizes these results to a large class of

mechanisms.

Erdil and Ergin (2008) are concerned with the constrained efficiency problem that seeks

a stable matching that is undominated among all stable matchings in the presence of priority

rules with ties, and they develop a novel algorithm for finding such matchings. Abdulka-

diroǧlu, Pathak, and Roth (2009) are also concerned with this constrained efficiency problem.

They establish the theoretical result (see their Theorem 1) that, for any priority tie-breaking

rule, there is no strategy-proof mechanism that always produces a matching that dominates

the student-optimal stable matching for that tie-breaking rule. Most relevant for our pur-

poses is their empirical analysis of the unconstrained efficiency losses that arise from choosing

a stable matching rather than a Pareto efficient matching. As we have already remarked

in Section 1, in a New York City school district in 2006-2007, Abdulkadiroǧlu, Pathak, and
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Roth (2009) find that over 4,000 grade 8 students could have been made better off by being

reassigned to a school different than their match in the student-optimal stable matching,

without hurting any other students. More precisely, given the preferences submitted by the

roughly 80,000 grade 8 students participating in the match that year and given the priori-

ties and quotas of the NYC high-schools, on average 4,000 students could be made better

off over 250 random and uniform draws for breaking ties in priority rules. So a significant

number of students are likely to benefit if instead a priority-efficient matching were chosen,

assuming that students and schools would submit similar preferences, priorities and quotas.

Our strategic analysis, in which only students are considered strategic actors, suggests that

many students would find it in their best interest to submit their true preferences and so we

might indeed expect a significant improvement in the efficiency of the match.

Kesten (2010) modifies the DA algorithm so as to produce a Pareto efficient matching

in the school choice problem when all students consent in advance to allow their priorities

to be violated if necessary. Kesten’s modification eliminates the effect of students who are

eventually rejected by a school to which they apply and who preclude some other student

from attending that school as a result of their initial application. Kesten’s (2010) algorithm

exhibits important incentive properties when viewed as a direct mechanism that maps sub-

mitted preferences into a matching and when students have enough imperfect information

about other students’ preferences and about school priorities and quotas. In particular, no

student’s assignment depends on whether he consents or not, and so consenting cannot ever

be harmful. As we have seen in Section 3.1, Tang and Yu’s (2014) modification of Kesten’s

algorithm yields the same matching as Kesten’s algorithm and the matching that is produced

by both of these algorithms is always the unique priority-efficient matching when all students

consent.

Alcalde and Romero-Medina (2017) show that any Pareto efficient matching that dom-

inates the student optimal stable matching is characterized by the property that it is im-

mune to what they call “admissible objections.” Consequently, by Theorem 3.1, the unique

priority-efficient matching is immune to their admissible objections.

Dur et. al. (2019) analyze a generalized school choice problem in which school priorities

can be partitioned into two groups, “hard priorities” that can never be violated and “soft

priorities” that can be violated. When the collection of soft priority violations satisfies a

natural “connectedness” condition, Dur et. al. provide a family of algorithms that always

produce a matching that is Pareto efficient among the set of matchings that do not violate

any hard priorities. Algorithms of this nature are especially helpful when the set of soft

priorities are known in advance. See Dur et. al. (2019) for examples. In contrast, whether a

priority-efficient matching will violate a student’s priority at some school generally depends
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upon the preferences of other students. So it is not possible, in general, to know in advance

which priorities would need to be designated as soft when implementing the mechanism that

selects the unique priority-efficient matching. Kesten (2010) makes the same point in the

context of his EADA mechanism, which is why, in his mechanism, students are asked to

give consent to have their priorities violated in advance, i.e., at the same time at which they

submit their preferences.

Troyan et. al. (2020) define a matching to be “essentially stable” if reassigning any

student  to a school  at which his priority is violated always causes a reassignment chain

(i.e., a sequence of students starting with  who are successively reassigned to their favorite

school at which there is a student — the next student in the sequence — with lower priority)

that eventually displaces student  from school  Clearly, every stable matching is essentially

stable. Troyan et. al. show that there is always at least one, and sometimes more than one,

essentially stable matching that is Pareto efficient. So essential stability is not always able

to select a unique matching among those that are Pareto efficient. They also show that the

outcome of Kesten’s (2010) EADA algorithm is essentially stable and so, by Theorems 3.4

and 3.5, the unique priority-efficient matching is essentially stable.

Ehlers and Morrill (2020) define a set of matchings to be legal if and only if that set

satisfies certain “internal” and “external” consistency properties. They show that there

is exactly one legal set of matchings and that among this set there is a matching that

dominates all the others. Thus, there is a unique student-optimal legal matching. Ehlers

and Morrill (2020) do not assume that school preferences are responsive, but instead assume

that schools have substitute preferences as in Blair (1988) and so their setting is more

general than the setting we consider here. However, when their schools are assumed to have

responsive preferences, it can be shown that their student-optimal legal matching is the

unique priority-efficient matching.

6 Proofs.

This section is broken into two parts, A and B. In part A, student preferences,  and school

priorities and quotas, (Ψ ) are fixed, but can be any that satisfy the conditions in Section

3. That is, (Ψ ) is any state in Σ where Σ is as defined in Section 4. Since (Ψ ) is

fixed throughout Part A, it is omitted from our notation there.

In contrast, the proofs in Part B sometimes require the consideration of multiple states

 0 00 ∈ Σ and so in Part B we will be explicit about the state when necessary.
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6.1 Part A.

Throughout this section, we let denote the set of all matchings. For any pair of matchings

  ∈ , define the functions ∨ and ∧ (the “join” and “meet” of  and  respectively),
each mapping  into  as follows. For each  ∈  [ ∨ ]() is the one school, () or ()
that student  weakly prefers to the other, and [ ∧ ]() is the one school, () or ()

that student  prefers weakly less than the other. Note that these functions are well-defined

because student preferences are strict and so indifference between () or () can occur only

if () = ()

Our first lemma provides a modest but useful generalization of the standard lattice prop-

erty of stable matchings that is basic to much of matching theory. Ehlers and Morrill (2020,

Lemmas 4 and 5) prove a similar result, but restrict attention to pairs of matchings that are

individually rational. In contrast, we do not impose this, albeit typically harmless, restriction

here.

Lemma 6.1 Let  and  be any two matchings and suppose that for every student   does

not violate ’s priority at () and  does not violate ’s priority at () Then both  ∨ 

and ∧  are matchings. Moreover, for each school, the number of students assigned to that
school is the same under    ∨  and  ∧ 

Proof. Let  := { ∈  : } be the set of students in  who strictly prefer the matching

 to the matching  Suppose that the matching switches from  to  Then every student

in  changes schools. Let  be any student in  Student ’s new school () must be at

its quota under  and every student assigned by  to () must have higher priority at

school () than student  since otherwise ’s priority would be violated by  at school ()

(because ) violating one of our assumptions. Consequently, if we imagine that all seats

are numbered, then in the move from  to  each student  ∈  can point to a unique other

student, () say, whose seat  takes (i.e., () = (())), who switches schools (since ’s

new school () was at its quota under ), and who has higher priority than  at ’s new

school () The mapping  :  →  so defined satisfies () = (()) for every  ∈  and

is one to one since no student is pointed to by more than one student. We next show that

 is a bijection on  Since we already know that  is one to one, we need only show that

the image of  is contained in 

Let  be any student in  and let  = () be the student that  points to. We must

show that  is in  To see this, note first that () = () 6= (), because  takes ’s seat

and  changes schools Since () 6= () and preferences are strict, either  or  If

we suppose that the latter holds, then  violates ’s priority at school () = () because
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 has priority over  at school () violating one of our assumptions. Hence, we must have

 and so  ∈  as desired. Hence  is a bijection on .

It remains only to show that ∨ and ∧  are matchings. For every  ∈  [∨]() =
() Therefore, since () = (()) for  ∈  we have that [ ∨ ]() = (()) for  ∈ 

and [∨]() = () for  ∈ \ This says that ∨ can be obtained from  by having each

student  ∈  take the seat of student () ∈  leaving the school assignments of students

outside  unchanged. Since  :  →  is a bijection, this seating change is feasible, and so

changing the matching from  to ∨ does not change the number of students attending any
school. Similarly, [ ∧ ]() = (−1()) for  ∈  and [ ∧ ]() = () for  ∈ \ and so
∧ is a matching because it can be obtained from  by having each student  ∈  take the

seat of student −1() ∈  leaving the school assignments of students outside  unchanged.

So changing the matching from  to ∧ does not change the number of students attending
any school.

Switching the roles of  and  throughout the argument establishes that changing the

matching from  to ∨ or from  to ∧ does not change the number of students attending
any school. Hence, for any school, the number of students attending that school is the same

under    ∨  and  ∧ 

We can now give an alternative characterization of priority-efficient matchings. The next

lemma is essentially the same as Theorem 3.3, but without the uniqueness claim. The proof

of Theorem 3.3 follows once uniqueness is established (see below).

Lemma 6.2 A matching  is priority-efficient if and only if no matching  can make any

student better off unless  violates the priority of some student that it makes worse off.

Proof. We begin with the “if” direction. So suppose that no matching  can make any

student better off unless  violates the priority of some student that it makes worse off.

Then, clearly, no matching  can make any student better off without making some student

worse off, and so  is Pareto efficient. It remains to show that  is priority-neutral. But this

follows immediately because if  makes some student whose priority is violated  better off,

then by hypothesis  violates the priority of some student that it makes worse off.

For the “only if” direction, suppose that  is priority-efficient and that some student

prefers  to  We must show that  violates the priority of some student who prefers  to



Let  = { ∈  : } and let  = { ∈  : } Since  is the set of students who

prefer  to  we know that  is nonempty. Since  is the set of students who prefer  to

 we must show that  violates the priority of some student in 
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If there is a student  ∈  whose priority is violated by  then because  is priority-

neutral,  must violate the priority of some student who prefers  to  and we are done. So

we may henceforth suppose that there is no student in  whose priority is violated by  In

particular, we may suppose that for every student  ∈   does not violate ’s priority at

()

We must show that  violates the priority of some student in  Suppose, by way of

contradiction, that there is no student in  whose priority is violated by  In particular

then, for every student  ∈   does not violate ’s priority at ()

So for every student  ∈   does not violate ’s priority at () and  does not violate

’s priority at () Hence, by Lemma 6.1,  ∨  is a matching. Since  is priority-efficient,
it is Pareto efficient. Therefore, because  ∨  dominates  we must have  ∨  =  and so

 for every student  contradicting the nonemptiness of 

We remind the reader of our convention to settle students and schools at the end of each

round of the sEADA* algorithm, not at the beginning of each round as in Tang and Yu

(2014). See Section 3.1.

Lemma 6.3 Suppose that 1   is the output sequence of the sEADA* algorithm and

that student  is settled in round  Then student  is -unimprovable.

Proof. Throughout the proof, by “round one,” “round two,” etc., we will always mean the

corresponding round of the sEADA* algorithm.

Let   and 1   be as given in the statement of the lemma and let  dominate 

We must show that () = ()

Let  and  be the sets of students and schools, respectively, that are unsettled at the

start of round  (so 1 =  and 1 = ) Then  ∈ 

Let  be any student in  and let  be any school outside . Hence, there is    such

that  is settled in round . Therefore, school  is underdemanded at the student-optimal

stable matching for round ’s submarket of unsettled students and schools. Hence, ()

since student  is included in that submarket (student  ∈  is not settled until round   

or later) and since () is ’s school in that submarket’s student-optimal stable matching.

Hence, () since  ∈  implies that  (by Lemma 2 of Tang and Yu, 2014).

Consequently, the only schools that student  prefers to () are schools that are unsettled

at the start of round  i.e., schools in 

Since  dominates  we have that for any  ∈  either, ()() in which case

() ∈  by the conclusion of the previous paragraph, or, () = () in which case

() ∈  because, by definition, the round  matching  assigns every student in  to

a school in  Hence,  assigns every student in  to a school in , which means that
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the restriction of  to  is a matching for the submarket ( ) consisting of students in

 and schools in  By definition, the restriction of  to  is the student-optimal stable

matching for the submarket ( ) Since, by hypothesis, student  is settled in round 

’s assigned school () is underdemanded at this student-optimal stable matching in this

submarket. Also, since  dominates  the restriction of  to  dominates the restriction

of  to  Hence, we may apply Lemma 1 of Tang and Yu (2014) to the submarket ( )

to conclude that () = () as desired.

Proof of Theorem 3.4. By Tang and Yu (2014) Proposition 1, the sEADA* algorithm is

well defined and ends in finitely many rounds,  say. Therefore it produces a finite sequence

of matchings, 1 2    where  is the matching produced in the -th round. We must

show that this sequence is feasible. Henceforth, by “first round,” “second round,” etc., we

mean the corresponding round of the sEADA* algorithm.

Observe first that the matching 1 that is produced in the first round is the student-

optimal stable matching. In particular, 1 is stable. Second,  is Pareto efficient by Tang

and Yu (2014) Theorem 1. Third, for each   1 −1() = () for any student  that

is settled before round  and −1 for any student  who is unsettled at the start of

round  by Tang and Yu (2014) Lemma 2. Hence,  dominates −1 So it remains only to

show that for each   1  does not violate the priority of any −1-improvable student.

Suppose that student  is −1-improvable. Then for every  ≤  − 1 student  is
-improvable because −1 dominates . Hence, by Lemma 6.3, student  is not settled

before round  Therefore student  is included in the submarket consisting of students and

schools that are unsettled at the start of round  Since, by definition, the restriction of 

to students in that submarket is the student-optimal stable matching for that submarket,

student ’s priority is not violated by  at any school that is unsettled at the start of round

 For any other school, i.e., any school  that is settled in some round    school  is

underdemanded at  restricted to round ’s submarket of unsettled students and schools.

Hence, () since student  is included in that submarket, and so () since 

dominates  Therefore,  does not violate ’s priority at any school, whether that school

is unsettled at the start of round  or not. Since  was arbitrary, we may conclude that 

does not violate the priority of any −1-improvable student. Q.E.D.

Lemma 6.4 Let Π∗ be the set of priority-neutral matchings and let 1   be any feasible

sequence. Then,

Π∗ ⊆ { ∈ : if  violates ’s priority, then } (6.1)

Proof. Let ̄ be a priority-neutral matching. We must show that ̄ for every student
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 whose priority is violated by ̄

We begin by showing that for every  ∈ {1  }
(1) if  violates any student ’s priority, then ̄ and

(2) if ̄ violates any student ’s priority, then ̄.

We proceed by induction starting with  = 1

So suppose that  = 1 Then (1) holds trivially since 1 is stable. To see (2), suppose

that ̄ violates student ’s priority. Then ̄1 since otherwise, 1 would make  better off

without violating the priority of any other student (1 is stable), which would contradict the

priority-neutrality of ̄ Hence, (2) holds.

Assume as an induction hypothesis that (1) and (2) hold for  We must show that (1)

and (2) hold for + 1

To see that (1) holds, suppose that +1 violates ’s priority. We must show that +1̄

By the induction hypothesis,  and ̄ satisfy the hypotheses of Lemma 6.1. Consequently,

̄ ∨  is a matching that dominates  Also, by feasibility +1 dominates  Since +1
violates ’s priority, feasibility implies that student  is -unimprovable. Hence, [̄∨]() =
() and +1() = () (since ̄ ∨  and +1 dominate ) from which we obtain

+1() = ()̄() and so (1) holds for + 1 It remains to show that (2) also holds for

+ 1

Suppose, by way of contradiction, that (2) fails for +1 That is, suppose that ̄ violates

’s priority and that +1̄ Since +1() makes  better off than ̄ and since ̄ is priority-

neutral, there must be a student  whose priority is violated by +1 such that ̄+1 But

then (1) would fail for +1 which is a contradiction and completes the induction argument.

Since (2) holds for each  = 1   we have ̄ for every  such that ̄ violates ’s

priority, as desired.

Lemma 6.5 Let 1   be any feasible sequence. Then

{ ∈ : if  violates ’s priority, then } ⊆ { ∈ :  for every  ∈ }
(6.2)

Proof. Let ∗ denote the set on the left-hand side of (6.2). We first show that,

 ∨  is a matching for every  ∈ {1  } and for every  ∈ ∗ (6.3)

We will establish (6.3) by induction on  starting with  = 1

Let  be any matching in ∗We must show that ∨1 is a matching. It suffices to show
that  and 1 satisfy the hypotheses of Lemma 6.1. For any student   cannot violate ’s

priority at 1() Otherwise, 1  where the weak preference follows because  ∈ ∗
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But then 1 contradicting the fact that, by feasibility,  dominates 1 Hence,  does

not violate the priority of any student  at 1() Therefore, since 1 is stable,  and 1

satisfy the hypotheses of Lemma 6.1 and so  ∨ 1 is a matching.
Next, assume as an induction hypothesis that (6.3) holds for We must show that (6.3)

holds for + 1

So suppose that  ∈ ∗We must show that ∨ +1 is a matching, and so it suffices to
show that  and +1 satisfy the hypotheses of Lemma 6.1.

For any student   cannot violate ’s priority at +1()Otherwise, +1  where

the weak preference follows because  ∈ ∗ But then +1 contradicting the fact that,

by feasibility,  dominates +1 Hence,  does not violate the priority of any student  at

+1()

Suppose next that +1 violates ’s priority. Then, by feasibility,  is -unimprovable.

Since ∨  is a matching (induction hypothesis), ∨  dominates  Also, by feasibility,
+1 dominates  Therefore, since  is -unimprovable, [∨ ]() = () = +1() and

so +1() = [∨]()() So +1 does not violate ’s priority at () Hence,  and +1

satisfy the hypotheses of Lemma 6.1 and so we may conclude that  ∨ +1 is a matching.
This completes the induction and establishes (6.3).

Setting  =  in (6.3) we may conclude that  ∨  is a matching for every  ∈ ∗

Consequently, because, by definition,  ∨  dominates   and because, by feasibility, 
is Pareto efficient, we must have ∨ =  for every  ∈ ∗ But this means that 

for every  ∈  and for every  ∈ ∗ as desired.

We can now prove Theorems 3.1 and 3.5 by combining them into a single theorem.

Theorem 6.6 There is a unique priority-efficient matching and it dominates every priority-

neutral matching and every stable matching. If 1   is any feasible sequence then  is

the unique priority-efficient matching.

Proof. Let 1   be any feasible sequence. Such a sequence exists by Theorem 3.4. We

begin by showing that  is priority-efficient. Since feasibility implies that  is Pareto

efficient, we need only show that  is priority-neutral. So suppose that student ’s priority

is violated by  and that there is a matching  such that  We must show that there

is a student  whose priority is violated by  such that  Observe that  is not in the

set on the right-hand side of (6.2) because   Consequently, by Lemma 6.5,  is not in

the set on left-hand side of (6.2). But this means that there is a student  whose priority is

violated by  such that  as desired. Hence,  is priority-efficient. In particular, a

priority-efficient matching always exists.
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Next, observe that Lemmas 6.4 and 6.5 together imply that  dominates every priority-

neutral matching. Since every stable matching is priority-neutral,  dominates every stable

matching. It remains only to show that no matching other than  is priority-efficient.

Let  be any priority-efficient matching. Then, in particular,  is priority-neutral and

so  dominates  Since  is Pareto efficient (because  is priority-efficient), we must then

have  =   as desired.

Proof of Theorem 3.3. The proof of Theorem 3.3 follows from Lemma 6.2 and the

uniqueness part of Theorem 3.1. Q.E.D.

Lemma 6.7 Let ∗ be the unique priority-efficient matching and let  be any matching such

that 
∗ for every student  whose priority is violated by  Then ∗ dominates 

Proof. Let 1   be any feasible sequence. Such a sequence exists by Theorem 3.4, and

 = ∗ by Theorem 3.5. The result now follows from Lemma 6.5.

6.2 Part B.

The notation below is as in Section 4.

For any state  = (Ψ ) ∈ Σ say that a matching  is -stable iff  is stable when the

state is (Ψ ) and say that  -dominates  iff  dominates  when the profile of student

preferences is  Recall that () is the unique priority-efficient matching in state 

Lemma 6.8 Let  = (Ψ ) ∈ Σ be any state and let 1   be the sEADA* output

sequence for state  For any student  let  0
 be any preference order for  that is obtained

without lowering any school () in the preference order  (i.e., () ⇒ ()
0
 for

every  and for every school ) Then the priority-efficient matching is the same in states 

and 0 = ( 0
  −Ψ )

Proof. Because ()⇒ ()
0
 for every  and for every school  it is straightforward

to check that for any  (a) if  does not violate a student’s priority in state  then 

does not violate that students priority in state 0 (b) if a matching  dominates  in state

0 then  dominates  in state  (c) if  dominates a matching  in state  then 

dominates  in state 0 and (d) if a student is -improvable in state 
0 then that student

is -improvable in state  Using (a)-(d) it is straightforward to establish that because

1   is a feasible sequence in state  (by Theorem 3.4), it also a feasible sequence in

state 0 Hence, by Theorem 3.5,  is the priority-efficient matching in states  and 0
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Lemma 6.9 Consider any student  ∈  and any two states  = (Ψ ) and 0 =

( 0
  −Ψ ) that differ only in students ’s preference order. Suppose that (0)()

and that 1   is any feasible sequence of matchings in state  Then there exists  ∈
{1  } such that  violates ’s priority in state 0 but  does not violate ’s priority in
state 

Proof. By Theorem 3.5, () =   Hence, (
0)() =   Therefore, since  for

every  (by the sequential dominance property of the state- feasible sequence 1  )

we may conclude by transitivity that (0) for every 

Since only student ’s preferences change between states  and 0 it will be convenient to

define  0
 =  for every student  6=  which allows us to denote any student ’s preferences

in state 0 by  0


We claim that  must violate the priority of some student  such that (
0) 0

  For

suppose to the contrary that 
0
(

0) for every student  whose priority is violated by

  Then, by Lemma 6.7, (
0) 0-dominates   Since 

0
 =  for every  6=  we may

conclude that (0) for every  6=  Since (0) (because (
0) for every )

(0) Pareto dominates  in state  But this contradicts the feasibility of 1   in

state  (which requires that  is Pareto efficient in state ) and establishes the claim.

By the claim just established, we may let ̄ be the smallest  ∈ {1  } such that, in
state 0  violates the priority of some student who strictly prefers (

0) to  Hence, we

may choose  ∈  so that ̄ violates ’s priority in state 
0 and so that (0) 0̄

We next claim that, if ̄  1 then students  and  (it is possible that  = ) are ̄−1-

improvable in state  To see why this claim is true, note first that, by the definition of ̄

if ̄−1 violates any student ’s priority in state  then ̄−1
0
(

0) Therefore, by Lemma

6.7, (0) 0-dominates ̄−1 Hence, since each student  6=  has the same preferences in

states  and 0 (0)̄−1 holds for every  6=  Furthermore, we have already established

that (0) for every  and so, in particular, (0)̄−1 from which we may conclude

that student  is ̄−1-improvable in state  So if  =  the claim is established. It therefore

remains only to show that, if  6=  then (0)̄−1 So suppose that  6=  We know that

(0) 0
̄ by our choice of ̄ and  Since  6=  we have  0

 =  and so (
0)̄̄−1

where the weak preference follows from the sequential dominance property of the state-

feasible sequence 1    This establishes the claim.

We next claim that  =  To establish this claim, suppose first that ̄ = 1 By the

feasibility of 1   in state  1 is stable in state  and so, in particular, 1 does not

violate the priority of any student  6=  Since  0
 =  for every  6=  1 does not violate

the priority of any student  6=  in state 0 Since 1 = ̄ violates the priority of student

 in state 0 we may conclude that  =  Suppose next that ̄  1 and suppose, contrary
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to the claim, that  6=  Then, because ̄ violates ’s priority in state 
0 (by our choice

of ̄ and ) and because ’s preferences do not change between states  and 0 (because

 6= ) ̄ violates ’s priority also in state  Then, by the feasibility of 1   in state 

student  is ̄−1-unimprovable in state  which contradicts the conclusion in the previous

paragraph and establishes the claim that  = 

So we have so far established that ̄ violates ’s priority in state 
0 (since  = ) and that

if ̄  1 then student  is ̄−1-unimprovable in state  Hence, whether ̄ = 1 or whether

̄  1 ̄ does not violate ’s priority in state  because, by the feasibility of 1  

in state  1 is stable in state  and, if ̄  1 ̄ does not violate the priority of any

̄−1-improvable student in state  and so in particular ̄ does not violate ’s priority in

state 

Therefore, the matching ̄ violates ’s priority in state 
0 but does not violate ’s priority

in state 

Proof of Theorem 4.1. Let  and 
0
 be any two preferences that student  is considering

submitting. For each student  6=  let  be any preference submitted by  and for each

school  ∈  let  be any priority list and let  be any nonnegative quota satisfying only

the restriction that
P

∈  ≥ # Let  = (Ψ ) and let 0 = ( 0
  −Ψ ) So  and 

0

are arbitrary states that differ only in student ’s preference order.

Given the preferences  submitted by other students and given the school priorities and

quotas (Ψ ), () is the priority-efficient matching that is chosen when student  submits

the preference  and in that case ’s assigned school is () and (0) is the priority-

efficient matching that is chosen when student  submits the preference  0
  and in that case

’s assigned school is (
0)

To prove statement (1), let  0 be obtained from  by lowering only the top-ranked school

 in  If () =  6=  then none of ’s assigned schools in the sEADA* output sequence in

state  are  because the schools for  in this sequence successively (weakly) increase in his

preference  until reaching  Hence,  and 
0
 satisfy the hypotheses of Lemma 6.8 and so

(
0) is also  This proves (1).

To prove statement (2), notice that we may suppose that (
0) =  and that  is

obtained from  0
 by switching the positions of schools  and  where  0

 We must show

that () = (0) So let  be a matching such that for some student  (
0) and (0)

violates ’s priority in state  We must show that there is a student  whose priority is

violated by  in state  such that (0)

Suppose first that  =  Then ()(
0) =  and (0) violates ’s priority in state

 and so () 0
(

0) and (0) violates ’s priority in state 0 (because  ⇒  0
 for

every school ) Therefore, because (0) is priority-efficient in state 0 there is a student
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 6=  whose priority is violated by  in state 0 and who prefers (0) to  in state 0 But

then  violates ’s priority in state  and  prefers (0) to  in state  because only ’s

preferences change between states  and 0 So we have found the requisite student  when

 = 

Suppose next that  6=  Then, because only ’s preferences change between states 

and 0 student  prefers  to (0) in state 0 and (0) violates ’s priority in state 0

Therefore, because (0) is priority-efficient in state 0 there is a student  whose priority

is violated by  in state 0 and who prefers (0) to  in state 0 If  6=  then because only

’s preferences change between states  and 0 ’s priority is violated by  in state 0 and 

prefers (0) to  in state 0 So if  6=  we have found the requisite student  If  =  then

(
0) =  0() because  =  prefers (0) to  in state 0 Therefore,  0

() ⇒ ()

for every school  Consequently, ’s priority is violated by  in state  because ’s priority is

violated by  in state 0 and () because 
0
() Hence student  =  is the requisite

student, which completes the proof of statement (2).

For statement (3), notice that if () is not in then each school in the state- sEADA*

output sequence of schools for  1()  () say, is ranked below every school in 

according to  Therefore 
0
 is obtained from  without lowering the schools () in 

By Lemma 6.8 we may conclude that (
0) is also outside the set  which proves (3). It

remains only to prove statement (4).

Since student  is arbitrary, and  = (Ψ ) and 0 = ( 0
  −Ψ ) are arbitrary states

that differ only in student ’s preference, we can establish (4) by supposing that untruthfully

reporting  0
 is better for  in state  i.e., by supposing that,

(
0
  −Ψ )( −Ψ ) (6.4)

and showing that this untruthful report can be worse for some preferences of the other

students, i.e., and showing that there exist preferences  00
 for every other student  6= 

such that,

( 
00
− )(

0
  

00
− ) (6.5)

By Theorem 3.1, for any given state, any stable matching is dominated by the unique

priority-efficient matching, and any matching that is stable and Pareto efficient is the unique

priority-efficient matching. So it suffices to find matchings  and  and preferences  00
 for

all  6=  such that  is stable in state ( 
00
−Ψ )  is Pareto efficient and stable in state

( 0
  

00
−Ψ ) and,

 (6.6)

because, as just pointed out, this will imply that ( 
00
−Ψ ) = (

0
  

00
−Ψ )
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and so (6.4) will hold.

By Theorem 3.4, feasible sequences of matchings exist in any state, and so we may let

1   be a feasible sequence of matchings in state  = (Ψ ) Since 
0 = ( 0

  −Ψ )

and since (6.4) says that (0)(), by Lemma 6.9 we may chooses  ∈ {1  } such
that  violates ’s priority in state 

0 but  does not violate ’s priority in state 

Let  be the  0
 -most-preferred school among those at which ’s priority is violated by 

in state 0 Hence, in particular,  0
() Moreover, because  does not violate ’s priority

in state  and because school priorities are the same in states  and 0 we must have

()

There are two cases to consider. Either school  is at its quota under  or it is not. We

consider each case in turn starting with the first.

Suppose that school  is at its quota under  Since ’s priority is violated at school  by

 in state 
0 student  has higher priority at  than the student,  say, with lowest priority

assigned to  under . Define 
00
 to be any preference order for student  that ranks school

() =  first and school () second. For any student  distinct from  and  define  00


to be any preference order for  that ranks school () first.

Let 00 = ( 0
  

00
−Ψ ) We claim that the matching,  say, that assigns  to  = ()

and  to () and that assigns every other student  to () is stable and Pareto efficient

in state 00. Notice that  is obtained from  by having only students  and  switch schools

and so school  remains at its quota under 

To see that  is stable in state 00 note first that for every student  distinct from  and 

 is assigned to his  00
 -most-preferred school and so  does not violate ’s priority. Consider

next student  The only school that student  prefers to () = () according to  00
 is

school  = () By our choice of student  student  has lower priority at  than student

 (() = ) and lower priority at  than every other student assigned to  by  since these

other students are also assigned to  by . Hence, ’s priority is not violated by  in state

00

Lastly, we must show that  does not violate ’s priority in state 00 If  is any school

that student  prefers to () in state 00 then  0
() =  Hence,  0


0
() Therefore,

by our choice of  ’s priority is not violated at school  by  in state 
0 Since  is distinct

from  = () and () the students assigned to  under  are precisely the students

who are assigned to  under  Hence, ’s priority is not violated at school  by  in state 0

Since ’s preferences,  0
  as well all school priorities and quotas are unchanged between the

states 0 and 00 ’s priority is not violated at school  by  in state 00 Since school  was

arbitrary,  does not violate ’s priority in state 00 and so  is stable in state 00

To see that  is Pareto efficient in state 00 = ( 0  
00
−Ψ ) let  = \{ } Since
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each student in  is assigned to his  00 -most-preferred school under  no student in  can

change schools in any Pareto improvement (over  in state 00). Any school that student 

 0
 -prefers to () is at its quota under  (because  is 

00-stable) and is distinct from ()

because () =  0
() = () Hence, any school that student   0

 -prefers to () is filled

with students in under  and so must remain filled with those same students in any Pareto

improvement. Therefore student  cannot change schools in any Pareto improvement. So

only student  can possibly change schools in any Pareto improvement. However, since the

only school that student   00
 -prefers to () = () is school  = () and since we have

already observed that school  is at its quota under  student  cannot change schools in any

Pareto improvement. Therefore, in state 00 no student can change schools in any Pareto

improvement over  and so  is Pareto efficient in state 00

Next, we claim that  is stable in state ( 
00
−Ψ ) Indeed, because ’s priority is

not violated by  in state  = (Ψ ) student ’s priority is not violated by  in state

( 
00
−Ψ ) Also, every student  6=  is assigned his  00

 -most-preferred school by  and

so no such student’s priority is violated by  in state ( 
00
−Ψ ) establishing the claim.

Since () = () defining  =  establishes (6.6) and establishes (4) when  is at its

quota under 

It remains to consider the (simpler) case in which  is not at its quota under  In this

case, starting from the matching  transfer only student  from () to  and let  denote

the matching that results. For every  6=  let  00 be any matching such that () is

student ’s most preferred school. Then, the same arguments used above, but now ignoring

those parts that refer to student  establish that  is stable and Pareto efficient in state 00

and that  is stable in state  Since () = () defining  =  establishes (6.6) and

completes the proof of (4). Q.E.D.

Lemma 6.10 Let  = ()∈∪ be any profile of student preferences and school priorities,

let S be a similarity partition for  and suppose that  is student-oriented with respect to

S Let  be any student, let  0
 be any preference over schools for student  and let 

0 be the

state 0 = ( 0
  − ) Let 

0 be any matching that, in state 0 does not violate the priority

of any 0-improvable student, and let  be any matching that 0-dominates 0 Then, either

0 or the schools () and 
0() are in the same similarity set in S.

Proof. Suppose, by way of contradiction, that () and 0() are in distinct similarity sets

(hence () 6= 0()) and that 
0 (they cannot be indifferent because preferences are strict).

We can draw two conclusions from the fact that  dominates 0 in the state ( 0
  − ) First,

 0

0 and second,  dominates 0 in the state ( ) because 

0 We use both of these

conclusions next.
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We claim that there is a finite sequence of students 1 2    such that  = , the

schools 0(1) and 0() are in distinct similarity sets, and for each  = 1  

0(+1)
0() (+1 := 1) (6.7)

To see why this claim is true, consider switching from the matching 0 to the matching

. Since 0() 6= () and preferences are strict, student  changes schools, from 0() to ()

and is made strictly better off under both  and  0
  In particular, because 

0

0, student

 is 0-improvable in state 0 = ( 0
  − ) and so 0 does not violate ’s priority in state

0 Hence, school () must be at its quota under 0 Therefore, when the matching switches

from 0 to  some student 1 assigned to () under 0 (i.e., such that 0(1) = ()
0())

must be displaced by  and so, because  0-dominates 0 1 moves to a 1-preferred school

(1) Evidently then, 1 is 
0-improvable in state 0 Hence, by hypothesis, 0 does not violate

1’s priority in state 
0 and so (1) must be at its quota under 0 Student 1 must therefore

displace a student 2 from school (1) = 0(2) who similarly displaces a student 3 etc. So

if we imagine that all seats are numbered, each student  6=  who is made -better off

when the matching switches from 0 to  can point to the unique student +1 whose seat

he takes (and so 0(+1) = ()
0()) and who moves to a new school. Since there are

finitely many students, and no student is pointed to by more than one student (because each

seat can be occupied by only one student), this improvement chain, of length  say, consists

of distinct students and must eventually lead back to student  So we have a sequence of

distinct students 1    such that  =  0(1) = () and 0() = 0() are in distinct

similarity sets, and (6.7) holds for each . This establishes the claim.

Without loss of generality, we will assume that for every   1 0(1) and 0() are

in distinct similarity sets. Otherwise, there is a largest   1 such that 0(1) is in the

same similarity set as 0() in which case the shorter sequence    will do. (Note that

   here since 0(1) and 0() are in distinct similarity sets.) To see that the shorter

sequence will do, one needs to verify only that 0()
0() Since 0(1)

0() and

since 0(1) and 0() are in the same similarity set,  say, and 0() is in another, 0 say,

the desired conclusion, i.e., that 0()
0() follows because  and 0 are similarity

sets for 

We claim next that 0()
0(1) for every   1 Otherwise, choose the smallest   1

such that 0(1)
0() Then, because 0() 6= 0(1) (they are in distinct similarity sets),

strict preferences imply that 0(1)
0() If  = 2 then 0()−1

0(1) follows from (6.7),

and if   2 then 0()−1
0(1) follows by transitivity since 0()−1

0(−1) by (6.7)

and 0(−1)−1
0(1) by the choice of  Consequently, 0()−1

0(1) and so, given their

preferences in  students  and −1 disagree about the ranking of two colleges, 0(1) and
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0() that are in distinct similarity sets in S. Therefore, because  is student-oriented with
respect to S student −1 is ranked higher by school 0() than student  But then, since
−1 6=  =  0 violates student −1’s priority at school 0() in state 0 = ( 0

  − )

contradicting our hypotheses since, like all students in the cycle, student −1 is 0-improvable

in state 0. This establishes the claim.

By the claim just established, 0()
0(1) But this contradicts (6.7) when  = 

and completes the proof.

Corollary 6.11 Let  = ()∈∪ be any profile of student preferences and school priori-

ties, let S be a similarity partition for  and suppose that  is student-oriented with respect

to S Let  be any student, let  0
 be any preference over schools for student  and let 

0 be

the state 0 = ( 0
  − ) If 1   is feasible in state 0 then for every    either

() and () are in the same similarity set, or 

Proof. Fix any    We claim that, in state 0  does not violate the priority of

any -improvable student. If  = 1 this follows because 1 is 
0-stable by feasibility. If

  1 then in state 0,  does not violate the priority of any −1-improvable student

by feasibility. Since in state 0  dominates −1 (by feasibility), every -improvable

student is −1-improvable, from which the claim follows. Since  0-dominates  by

feasibility, the result now follows from Lemma 6.10.

Proof of Theorem 4.2. For any student  ∈  and for any preferences  
0
  and 

00
 for 

say that  00
 stochastically -dominates  0

 iff (
00
  ̃−|̃=) stochastically -dominates

(
0
  ̃−|̃=) (see Section 4). That is,  00

 stochastically -dominates  0 if and only if

reporting the preference  00
 to the PE mechanism yields a lottery over student ’s assigned

school that stochastically -dominates the lottery that would result if student  instead

reported the preference  0
  when all other students always report their preferences truthfully.

So to complete the proof we must show that for every student  ∈  and for pair of

preferences  and  0
 for student  if  occurs with positive probability under  then

 stochastically -dominates 
0
  (6.8)

For any student  ∈ , if  is student ’s true preference order, then for any two schools

 and  and for any preference order  0
 for  say that  0

 truthfully ranks  and  iff

[ 0
 ⇔ ] holds, and say that 

0
 falsely ranks  and  otherwise.

We claim that the PE mechanism satisfies two conditions introduced by Elhers’ (2008),

namely anonymity (permuting the names of schools permutes the outcome accordingly) and

positive association (changing one’s submitted preference list by interchanging in that list the
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school to you which you would otherwise have been matched with a school that is ranked

higher in that list, does not change the school to which you are matched). That the PE

mechanism satisfies anonymity is obvious. That the PE mechanism satisfies positive associ-

ation is also straightforward to verify.22 Consequently, because our -symmetry assumption

implies that student  has symmetric information (in the sense of Ehlers 2008) about any

pair of schools in the same similarity set in S, we may apply Elhers (2008, Theorem A.1),

to conclude that for any student  and for any true preference  for  that occurs with

positive probability under  any preference order  0
 that falsely ranks any two schools in

the same similarity set is stochastically -dominated by the preference order that is derived

from  0
 by switching the positions of (only) those two schools in the preference order 

0
 

Consequently, since the stochastic -domination relation is transitive, starting from  0
 and

successively switching the positions of pairs of schools in the same similarity set that are

falsely ranked, we will, after finitely many position switches, arrive at a preference order

that truthfully ranks every pair of schools that are in the same similarity set and that sto-

chastically -dominates 
0
  Therefore, it suffices to show that  stochastically -dominates

every ̄ that truthfully ranks every pair of schools that are in the same similarity set in S
Fix any student  ∈  and fix any state  = ( ) that is given positive probability by

 So in this state, student ’s true preference order is 

By hypothesis, S is a similarity set for  and  is student-oriented with respect to S
Let ̄ be any preference order for student  that truthfully ranks any two schools that are in

the same similarity set in S Note that ̄ need not occur with positive probability under 

The proof will be complete if we can establish that ’s assigned school when he submits 

cannot be worse for him (according to his true preference order ) than his assigned school

if he submits ̄ So it suffices to show that,

( −)(̄ −) (6.9)

Let ̄ = (̄ − ) and let ̄1  ̄  be the output-sequence of the sEADA* algorithm

when computed using the state ̄ i.e., in state ̄ Hence, (̄ −) = ̄ by Theorems 3.4

and 3.5 (notice that, ̄− = − since  = ( ))

Let ̂ be the student-optimal stable matching for the state  = ( ) By the definition

of the sEADA* algorithm, ̄1 is the student-optimal stable matching for the state ̄ =

(̄ − ) Consequently, because the mechanism that selects the student-optimal stable

22Indeed, the priority-efficient matching,  say, before switching the two schools in student ’s preference

order remains priority-efficient after the the switch because, after the switch, no additional students’ priorities

are violated by  and any matching  that makes any of those students better off without violating the priority

of any student that  makes worse off, would have had exactly these properties before the switch, and so

there can be no such  because  is priority-efficient before the switch.
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matching is strategy-proof for students (Dubins and Freedman 1981), we may conclude that

̂̄1 By Theorem 3.1, for any state, and in particular for the state  = ( ) the priority-

efficient matching -dominates the student-optimal stable matching, and so ( −)̂

Hence, by transitivity,

( −)̄1 (6.10)

We now break the proof of (6.9) into two cases.

Case I. Not all of the schools ( −) ̄1() ̄2()  ̄() = (̄ −) are in the same

similarity set in S

Case II. All of the schools ( −) ̄1() ̄2()  ̄() = (̄ −) are in the same

similarity set in S

Let us begin with Case I.

Proof of (6.9) in Case I. In this case, not all of the schools ( −) ̄1() ̄2()  ̄()

are in the same similarity set in S
Suppose first that not all of the schools ̄1() ̄2()  ̄() are in the same similarity

set in SWe claim that ̄1̄  To see this, suppose to the contrary that ̄̄1 Then, by

Corollary 6.11, ̄1() and ̄() are in the same similarity set in S Since not all of the schools
̄1() ̄2()  ̄() are in the same similarity set, there must be ̄ such that ̄() is not

in the same similarity set as ̄1() and ̄() Then, applying Corollary 6.11 first to ̄1() and

̄() gives ̄1̄ and second to ̄() and ̄() gives ̄̄ But then transitivity gives

̄1̄  which is a contradiction and establishes the claim. Hence, ̄1̄ = (̄ −) and

so transitivity and (6.10) yield (6.9).

Suppose next that all of the schools ̄1() ̄2()  ̄() are in the same similarity set

in S but that ( −) is not in that same similarity set. Then in particular, ( −) 6=
̄1() and so strict preferences and (6.10) imply that ( −)̄1 Since S is a similarity
partition for  student  -prefers ( −) to every school in the same similarity set as

̄() In particular, ( −)() = (̄ −) and so (6.9) holds, which completes the

proof for Case I.

Proof of (6.9) in Case II. In this case, all of the schools ( −) ̄1() ̄2() 

̄() = (̄ −) are in the same similarity set in S
Since (6.9) clearly holds when ̄ =  we may assume that ̄ 6=  Let  be the lowest-

ranked school according to ̄ such that  and ̄ agree when restricted to the set of schools

that ̄ ranks weakly above  (i.e., such that if 
0̄ and 

00̄ then [
0̄

00 ⇔ 0
00]) Let 

be the school that ̄ ranks just below  (i.e., such that ̄ and there is no school  satisfying
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̄̄; such a school  must exist since  6= ̄) Call ( ) the ̄-first -disagreement

pair (of schools). Notice that, since ̄ we must have  by the definition of  and so

 disagrees with ̄ about the ranking of schools  and  Notice also that  and  are in

distinct similarity sets in S because  and ̄ agree on the ranking of schools within each

similarity set.

For the ̄-first -disagreement pair ( ), because  and  are in different similarity sets,

changing ̄ by switching (only) the positions of schools  and  does not change the ranking

of any two schools in the same similarity set and it reduces the number of pairs of schools

on which ̄ disagrees with  Therefore, we can obtain  from ̄ through a finite sequence

̄ =  1
 =  = 

 =  of preference orders for  such that 
+1
 is derived from  



by switching (only) the positions of the  
 -first -disagreement pair of schools. So if we

can establish that each such position switch improves or leaves unchanged student ’s match

under the PE mechanism, the proof of (6.9) in Case II (and hence the entire proof) will be

complete.

Let ( ) the ̄-first -disagreement pair. Let ̄
↔
 be the preference ordering that

is obtained from ̄ by switching (only) the positions of schools  and  So ̄ ↔
  and

[̄ ↔
  ⇔ ̄] for all sets of schools { } 6= { } The proof of (6.9) in Case II will be

complete if we can show that

(̄
↔
  −)(̄ −) (6.11)

Let ̄↔ = (̄ ↔
  −) and let ̄↔

1   ̄↔
 be the output-sequence of the sEADA* al-

gorithm in state ̄↔ By Theorems 3.4 and 3.5, ̄↔
 is the unique priority-efficient matching

in state ̄↔ i.e., (̄
↔
  −) = ̄↔

 

Suppose we could show that the sEADA* output-sequence ̄1  ̄ in state ̄ is feasible

in state ̄↔ Then, by Theorem 3.5, ̄ is the unique priority-efficient matching in state

̄↔ i.e., ̄ = (̄
↔
  −) and so (̄ −) = ̄ = (̄

↔
  −) Hence, (6.9) would

hold. Similarly, (6.9) would hold if the sEADA* output-sequence ̄↔
1   ̄↔

 in state ̄↔

were feasible in state ̄

So to establish (6.9), it suffices to show that, either,

̄1  ̄ is feasible in state ̄
↔ (6.12)

or,

̄↔
1   ̄↔

 is feasible in state ̄ (6.13)

The remainder of the proof establishes that one of (6.12) and (6.13) must hold.23 We consider

23Here we make use of the flexibility inherent in the class feasible sequences of matchings. It is generally
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two subcases,

Case II.a. There is no  such that ̄() = 

Case II.b. There is  such that ̄() = 

Proof of (6.12) in Case II.a. In this case there is no  such that ̄() =  We will

show that, in this case, (6.12) holds.

Since ̄1() 6=  we have that for any school  ∈ 

̄ ↔
 ̄1()⇒ ̄̄1() (6.14)

The relation (6.14) has several consequences. First, because ̄1 is ̄-stable and ̄1() 6=  ̄1

is ̄↔-stable. Second, because ̄ ̄-dominates ̄−1 for each   1 and no ̄() is equal

to  ̄ ̄↔-dominates ̄−1 for each   1 Third„ because ̄ is Pareto-efficient in state

̄ and ̄() 6=  ̄ is Pareto efficient in state ̄↔ Finally, if for any student  and for

any   1 student  is ̄−1-improvable in state ̄
↔ then (6.14) implies that student  is

̄−1-improvable in state ̄ Consequently, by feasibility in state ̄ ̄ does not violate ’s

priority in state ̄ Hence, by (6.14), ̄ does not violate ’s priority in state ̄
↔ Hence,

̄1  ̄ is feasible in state ̄
↔ and so (6.12) holds in Case II.a.

Proof of (6.13) in Case II.b. In this case there is ̄ such that ̄̄() = We will show

that, in this case, (6.13) holds.

By replacing ̄ with ̄
↔
 in the argument that established (6.10), we have ( −)̄

↔
1 

For any  we claim that, either ( −) and ̄↔
 () are in the same similarity set or

( −)̄
↔
 

To establish the claim, suppose that ( −) and ̄↔
 () are in distinct similarity sets.

We must show that ( −)̄
↔
  There are two cases. First, suppose that ̄↔

 () and

̄↔
1 () are in the same similarity set. Then ( −) and ̄↔

1 () are distinct because

they are in distinct similarity sets. Hence, ( −)̄
↔
1 and strict preferences imply

( −)̄
↔
1  But then also ( −)̄

↔
 because S is a similarity partition for 

which takes care of this first case. Alternatively, suppose that ̄↔
 () and ̄↔

1 () are in

distinct similarity sets. Then Corollary 6.11 implies that ̄↔
1 ̄

↔
  Since ( −)̄

↔
1 

transitivity implies ( −)̄
↔
  establishing the claim.

Because we are in Case II, all of the schools ( −) ̄1() ̄2()  ̄() = (̄ −)

are in the same similarity set in S Therefore, because ̄̄() =  (since we are in Case II.B),

( −) is in the same similarity set as  Since  and  are in distinct similarity sets

in the similarity partition S for  and since  every school in the same similarity set

as  is preferred according to  to every school in same similarity set as  In particular,

false, for example, that the output-sequence of the sEADA* algorithm in state ̄ is also the output-sequence

of the sEADA* algorithm in state ̄↔
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( −).

As already established, either ( −) and ̄↔
 () are in the same similarity set,

or ( −)̄
↔
  In the former case, ̄↔

 () is in the same similarity set as  and so

̄
↔
 () (since, as already established, every school in the same similarity set as  is -

preferred to every school in same similarity set as ) In the latter case, ( −) and

transitivity yield ̄
↔
 () So ̄

↔
 () holds in either case. In particular, ̄↔

 () 6= 

Since  was arbitrary, we have established that there is no  such that ̄↔
 () =  which

is Case II.a but with the roles of  and  reversed. So reversing the roles of  and  in the

proof for Case II.a shows that ̄↔
1   ̄↔

 is feasible in state ̄ which establishes (6.13) in

Case II.b. Q.E.D.
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