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1 Introduction

Prospect Theory (PT), as formulated by Kahneman and Tversky (1979), provides a flexible

account of decision making under uncertainty that accommodates a wide variety of departures

from the Expected Utility (EU) paradigm. As a result, it has been enormously influential

throughout the social sciences. In contrast to the EU formulations of von Neumann and Mor-

genstern (1944), Savage (1954), and Samuelson (1952), a central premise of PT holds that

attitudes toward objective probabilities display non-linearities, with highly unlikely events re-

ceiving greater proportionate weight than nearly certain ones. This feature reconciles PT with

important behavioral puzzles such as the famous Allais (1953) paradoxes, as well as the simulta-

neous purchase of lottery tickets and insurance, as in Friedman and Savage (1948). Probability

weighting is also well-supported by simple and widely-replicated laboratory experiments.1

Unfortunately, the formulation of probability weighting embedded in PT leads to conceptual

difficulties because it implies violations of first-order stochastic dominance even in relatively

simple settings. This is a serious flaw given the broad consensus that this property renders a

model of decisionmaking unappealing on both positive and normative grounds.2 To understand

the problem, consider a lottery that pays X with probability p; for our current purpose, we

will leave other events and payoffs unspecified. Now imagine a second lottery, identical to the

first, except that it splits the aforementioned event, paying X and X − ε each with probability

p/2.3 Given the S-shape of the probability weighting function, we can choose p so that the
1For example, when graphing the empirical certainty equivalent, C, for a lottery that pays X with probability

p and 0 with probability 1−p, one typically finds an inverse S-shaped pattern, with pX exceeding C for moderate-
to-large values of p (as risk aversion would imply), but with the opposite relation for small p (see, e.g., Tversky
and Kahneman, 1992; Tversky and Fox, 1995).

2As noted by Quiggin (1982), “Transitivity and dominance rules command virtually unanimous assent...
even from those who sometimes violate them in practice... If a theory of decision under uncertainty is to be
consistent with any of the large body of economic theory which has already been developed... it must satisfy
these rules." (p. 325).

3Kahneman and Tversky (1979) described their theory as being concerned with lotteries that have at most
two non-zero outcomes. Hence, to apply Prospect Theory strictly in accordance with their original intent, one
would have to assume that this lottery pays zero with probability 1−p. Kahneman and Tversky (1979) (p. 288)
note that the model extends naturally to more than two non-zero outcomes, and extensions which correspond to
our three outcome formulation are provided by, for example, Camerer and Ho (1994) and Fennema and Wakker
(1997). Kahneman and Tversky (1979) actually provided two formulations of Prospect Theory; we assume their
Equation 1 for ‘regular prospects.’ They implicitly invoke the same assumption when examining the Allais
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total weight assigned to two events occurring with probability p/2 discretely exceeds the weight

assigned to a single event occurring with probability p. Consequently, if X is large and/or ε

is small, the first lottery will yield lower PT utility than the second even though it is clearly

preferrable based on first-order stochastic dominance.4

Ultimately, “rank-dependent” probability weighting was offered as a solution to the stochas-

tic dominance problem (Quiggin, 1982), and was incorporated into a new version of PT known

as Cumulative Prospect Theory, henceforth CPT (Tversky and Kahneman, 1992). To under-

stand intuitively how CPT resolves the issue, consider a lottery L with three possible payoffs,

X > Y > Z, occurring with probabilities p, q, and 1 − p − q. Another description of the

same lottery involves cumulative probabilities: it pays Z with probability 1, adds Y − Z with

probability p+ q, and then incrementally adds X − Y with probability p. Accordingly, within

the EU framework, one could write its expected utility as follows:

Expected Utility = u(Z) + (p+ q)(u(Y )− u(Z)) + p(u(X)− u(Y )).

CPT involves an analogous calculation, except that a reference-dependent utility function,

u(·|r) (where r is the reference point), is applied to the payoffs, while a weighting function,

π(·), is applied to the cumulative probabilities:5

U(L) = π(1)u(Z|r) + π(p+ q)[u(Y |r)− u(Z|r)] + π(p)[u(X|r)− u(Y |r)].

common consequence paradox (p. 282).
4 Kahneman and Tversky appreciated this problematic implication of PT and attempted to address it through

an “editing” assumption: “Direct violations of dominance are prevented, in the present theory, by the assumption
that dominated alternatives are detected and eliminated prior to the evaluation of prospects" (p. 284). Most
economists have found this ad hoc “fix” conceptually unsatisfactory, and it is rarely invoked in applications.
Kahneman and Tversky also provided a formulation for two-outcome lotteries with either all positive or all
negative outcomes that does indeed respect dominance (see e.g., Equation 2 of Kahneman and Tversky, 1979).
One can see in that formulation the roots of Cumulative Prospect Theory.

5For simplicity, we assume here that the reference point, r, is below the other payoffs.
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Normally this expression is rewritten in a form that attaches a weight to each outcome:

U(L) = π(p)u(X|r) + [π(p+ q)− π(p)]u(Y |r) + [π(1)− π(p+ q)]u(Z|r). (1)

Now imagine, as before, a second lottery, identical to the first, except that it splits the event

yielding the payoff X into two events paying X and X − ε, each with probability p/2. In that

case, the term π(p/2)u(X|r) + [π(p)−π(p/2)]u(X− ε|r) replaces the term π(p)u(X|r). Notice

that the total weight assigned to the two events is still π(p), the same as for the original lottery.

Consequently, the stochastic dominance problem noted above does not arise (Quiggin, 1982;

Tversky and Kahneman, 1992). CPT nevertheless accommodates the same assortment of EU

violations as PT. For these reasons, CPT has replaced PT as the leading behavioral model of

decisionmaking under uncertainty.

To understand the sense in which CPT involves rank-dependent probability weighting, con-

sider the weight applied to the event that generates the payoff Y as we change the value of X.

Initially X exceeds Y , and the weight on Y is π(p+q)−π(p). As we reduce the value of X, this

weight remains unchanged until X passes below Y , at which point it changes discontinuously

to π(q). Thus, the weight assigned to the event depends not only on probabilities, but also on

the ranking of the event according to the size of the payoff.

The current paper devises and implements a simple and direct approach to measuring the

change in probability weights resulting from a change in payoff ranks. Our method is entirely

non-parametric in the sense that it requires no maintained assumptions concerning functional

forms, either for utility and risk aversion, or for probability weighting. An essential feature of

our method is that it involves lotteries with three outcomes. To understand why the presence

of a third outcome facilitates a sharp and powerful test of the premise, consider equation (1).

For any small increase (m) in the value of Y , there is a small equalizing reduction (k) in the

value of Z that leaves the decisionmaker indifferent. This equalizing reduction measures the

marginal rate of substitution between Y and Z, capturing relative probability weights.

Both EU theory and PT imply that the magnitude of the equalizing reduction is entirely

3



independent of the value of X, regardless of functional forms. The same is true for CPT,

providedX remains within two ranges that we empirically examine, X > Y +m and Y > X > Z

(as well as within the range Z > X). The reason is that, under CPT, the marginal rate of

substitution between Y and Z, written MRSY Z , depends only on the values, probabilities, and

ranks of Y and Z, none of which change. However, as the value of X crosses from one of these

ranges into the other, the ranking of Y changes, which causes the probability weight on Y to

change, while the other factors that determine MRSY Z (the probabilities and values of Y and

Z, and the rank of Z) remain fixed. As a result, MRSY Z changes discontinuously, producing a

discontinuous change in the equalizing reduction. Critically, we show (for small changes) that

the percentage change in the equalizing reduction when X passes through Y precisely measures

the percentage change in the probability weight applied to Y resulting from the change in Y ’s

rank. Thus our strategy is to quantify the extent of rank dependence in probability weights by

eliciting equalizing reductions for X > Y +m and X ∈ (Z, Y ).

Subjects in our experiment perform decision tasks that reveal their equalizing reductions

for three-outcome lotteries of the type described above. We find no evidence that probability

weights are even modestly sensitive to the ranking of outcomes. The actual percentage change

in the equalizing reductions, and hence probability weights, ranges from +3% to -3%, and in

no case can we reject the hypothesis of rank-independence. Our estimates rule out changes in

probability weights larger than 7% as ranks change with 95% confidence.

It follows from these results either that probability weighting is not rank-dependent, in

which case CPT is predicated on a false assumption, or that (contrary to other estimates) the

weighting function is nearly linear, in which case CPT does not differ from PT. To distinguish

between these possibilities, we devise and implement a non-parametric test of the hypothesis

that the probability weighting function is linear. The test exploits responses in the same tasks

to variations in probabilities, holding ranks fixed. Using this alternative source of variation, we

find evidence of substantial non-linearities. For example, responses to changes in probabilities

(with fixed ranks) imply that the average slope of the probability weighting function is roughly
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19% lower on the subinterval of probabilities [0.4, 0.7] than on the subinterval [0.7, 0.9], despite

the fact that – under the maintained hypothesis of rank dependence – the absence of responses to

change in ranks (with fixed probabilities) implies a constant slope for the probability weighting

function over the subinterval [0.4, 0.9]. Adopting standard functional assumptions, we then

show that the estimated degree of curvature differs sharply depending on whether one draws

inferences from responses to variations in payoff ranks or variations in probabilities. Using

parametric models estimated based on responses to variations in probabilities with fixed ranks,

we predict the degree to which equalizing reductions should change in response to rank changes

under the assumption of rank dependence. We also perform these calculations using data

from conventional CPT elicitation tasks. In all cases, the predicted changes are an order of

magnitude greater than the observed changes, and the confidence intervals are non-overlapping.

For example, the conventional CPT calibration implies that increases in X that change the

rankings ofX and Y in our experiment should change the equalizing reductions by -22% to -46%,

even though the actual change is negligible. Thus, the degree of curvature in the probability

weighting function implied by responses to variations in probabilities is highly inconsistent with

the constancy of equalizing reductions except under the hypothesis that probability weights are

rank-independent. Indeed, parametric estimates show that the PT formulation of probability

weighting accounts for the data on equalizing reductions more successfully than the CPT or

EU (linear) formulations.

Similar patterns are also apparent at the individual level, with a preponderance of subjects

exhibiting virtually no rank dependence for their probability weights, despite responding to

changes in probabilities in ways that imply substantial curvature of their probability weighting

functions, and hence substantial rank dependence within the CPT framework. The results are

robust with respect to a variety of alternative analytic procedures, such as using only between-

subject variation and eliminating potentially confused subjects. We also demonstrate that

our methods are robust with respect to alternative assumptions about reference points. En-

dogenizing reference points (as in Bell, 1985; Loomes and Sugden, 1986) changes nothing of
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substance. Significantly, even with linear probability weighting, models with reference distri-

butions (Koszegi and Rabin, 2006, 2007) have similar predictions for equalizing reductions, and

hence we falsify them as well.

Our experimental design elicits equalizing reductions through choices over lotteries with

a single common outcome, X. A pair of early papers in this area raised the possibility that

subjects may employ a heuristic that involves the cancellation of common outcomes (Wu,

1994; Weber and Kirsner, 1997).6 Under that ancillary hypothesis, our method would produce

spurious evidence of rank independence. We address this possibility by examining a similar

decision setting in which no cancellation is possible: we add m to X instead of to Y , and

reduce both Y and Z by k. CPT rank dependence predicts discontinuities in k of opposite signs

as X passes from X > Y > Z to Y > X ′ > Z to Y > Z > X ′′.7 For this modified decision task,

we again find no evidence of CPT rank dependence, clearly refuting the cancellation hypothesis

as a rationale for our results.

It is worth emphasizing that the stunning failure of CPT to account for our data is not

a mere technical shortcoming. Our test focuses on a first-order implication of the theory –

indeed, it isolates the critical feature that distinguishes CPT from PT. To put the matter

starkly, if equalizing reductions in three-outcome lotteries are not rank-dependent, then neither

are probability weights, and the CPT agenda is potentially on the wrong track.

What type of model should behavioral economists consider in place of CPT? One possibil-

ity is that PT is correct, and that people actually exhibit the implied violations of first-order

stochastic dominance. We test this possibility with a third experiment eliciting certainty equiv-

alents for three-outcome lotteries that pay X + ε with probability p/2, X − ε with probability

p/2, and Y with probability 1−p. We include the case of ε = 0, which reduces to a two-outcome
6Weber and Kirsner (1997) provide evidence from certainty equivalent tasks where no cancellation is possible.

They find more support for models of rank dependence when comparing certainty equivalents for lotteries than
when comparing choices between the lotteries themselves. We thank an anonymous referee for drawing our
attention to this work and inspiring this modification. Our ‘split-event’ experiments discussed in section 5 also
explore the forces of rank dependence without the potential confound of cancellation.

7We did not design the main portion of our investigation around these types of decision tasks because EU,
PT, and CPT all imply that the associated value of k should vary with X even when ranks do not change. This
variation complicates the task of reliably measuring the change in k when ranks do change.
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lottery. We choose the parameters so that standard formulations of PT predict a sizable and

discontinuous drop in the certainty equivalent at ε = 0. In contrast, CPT implies continuity.

Contrary to both predictions, we find a discontinuous increase in the certainty equivalent at

ε = 0. This behavior implies violations of dominance, but not the type PT predicts.

A good theory of choice under uncertainty would therefore have to account for three patterns:

(1) robust evidence of probability weighting based on behavioral responses to variations in

probabilities, (2) the absence of rank dependence in equalizing reductions, and (3) the sharp

drop in certainty equivalents that results from splitting an event. EU is inconsistent with (1)

and (3). In light of (1), CPT is inconsistent with (2) and (3), and PT is inconsistent with (3).

We hypothesize that the observed behavior results from a combination of standard PT and a

form of complexity aversion: people may prefer lotteries with fewer outcomes because they are

easier to understand. One can think of the well-known certainty effect as a special case of this

more general phenomenon.

Readers sympathetic to the hypothesis of rank dependence may wonder whether an en-

hanced CPT model with additional degrees of freedom might account for our data. Our analysis

rules out the possibility of achieving that objective through alternative assumptions concerning

the location of reference points, or by invoking the heuristic cancellation of common outcomes.

However, other novel hypotheses may bear investigation.

The current paper is most closely related to a handful of studies that aim to test the

axiomatic foundations of rank-dependent models (Wu, 1994; Wakker, Erev and Weber, 1994;

Fennema and Wakker, 1996; Weber and Kirsner, 1997; Birnbaum, 2008). Unlike our approach,

the methods used in these papers do not yield estimates of the degree to which probability

weights depend on payoff ranks (non-parametric or otherwise), and the conclusions the authors

draw from them do not necessarily follow in settings with noisy choices; see Section 2.3 and

Online Appendix B for details.8

8An alternate strand of literature in psychology tests other CPT implications apart from rank dependence,
such as adherence to stochastic dominance, consistency of behavior across different ranges of probabilities,
separate weighting of gains and losses, and invariance to lottery description, also showing deviations (for a
broad review of these exercises see Birnbaum, 2008).
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Aside from the aforementioned studies, the assumption of rank-dependent probability

weighting has been the subject of surprisingly little formal scrutiny given its central role in

the leading behavioral theory of decisionmaking under uncertainty, as well as in recent appli-

cations of the theory.9 The literature has focused instead on identifying the shapes of CPT

functions and associated parameter values based on choices involving binary lotteries (Tversky

and Kahneman, 1992; Tversky and Fox, 1995; Wu and Gonzalez, 1996; Gonzalez and Wu, 1999;

Abdellaoui, 2000; Bleichrodt and Pinto, 2000; Booij and van de Kuilen, 2009; Booij, van Praag

and van de Kuilen, 2010; Tanaka, Camerer and Nguyen, 2010). In cases where the experimental

tasks encompass an appropriate range of binary lotteries, one can devise and implement tests

of rank dependence, conditional on maintained assumptions about functional forms. Unfortu-

nately, an incorrect functional specification can manifest as spurious rank dependence. To our

knowledge, in cases where such data are available, no formal test of rank dependence has been

performed.10 Defenses of rank dependence, such as the discussion in Diecidue and Wakker

(2001), are instead typically based on intuitive arguments and/or point to findings concerning

the psychology of decisionmaking that arguably resonate with the premise (Lopes, 1984; Lopes

and Oden, 1999; Weber, 1994).
9 Barseghyan, Molinari, O’Donoghue and Teitelbaum (2015) investigate choices involving a range of insurance

products. They demonstrate that the bracketing of risks – for example, whether people consider home and
automobile insurance together or separately – affects the implications of probability weighting because it changes
the ranking of outcomes. Epper and Fehr-Duda (2015) examine the data from Andreoni and Sprenger (2012) on
intertemporal decisionmaking under various risk conditions, which exhibits deviations from discounted expected
utility. They argue that CPT can rationalize an apparent choice anomaly if one frames two independent binary
intertemporal lotteries as a single lottery with four possible outcomes. This alternative framing delivers the
desired prediction because it alters the rankings of the four outcomes. Barberis, Mukherjee and Wang (2016)
examine historical monthly returns at the stock level for a five year window and link the CPT value of the stock’s
history to future returns, demonstrating a significant negative correlation. The interpretation for the negative
relation is that investors overvalue positively skewed, lottery-like stocks. Given 60 equi-probabable monthly
return events, PT would equally overweight all outcomes, giving no disproportionate value for skewness. CPT,
on the other hand, allows the highest ranked outcomes to receive higher proportionate weight. Barberis et
al. (2016) show that CPT substantially outperforms EU in predicting future returns. Given that that the PT
formulation (ignoring the reference point) would be collinear with the EU formulation, rank dependence would
seem critical for delivering this result.

10As we explain in Online Appendix A, the data in Tversky and Kahneman (1992) lend themselves to such
tests. We show that the data from Tversky and Kahneman (1992) could be interpreted as consistent with rank
dependence. However, as noted in the Online Appendix, that finding hinges on the validity of their functional
form assumptions. We show that depending on the assumptions for the shape of utility, probability weighting
for a given chance of receiving an outcome can either appear to be rank-dependent or not.
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The paper proceeds as follows. Section 2 outlines the pertinent implications of CPT and

related theories. Section 3 describes our experimental design, while section 4 presents our main

results, and section 5 describes various robustness checks. Section 6 discusses implications,

including alternative theories and tests thereof. Section 7 concludes.

2 Theoretical Considerations

Let L = ({p, q, 1− p− q} , {X, Y, Z}) represent a lottery with three potential outcomes, X, Y ,

and Z, played with corresponding probabilities p, q, and 1−p−q, with p, q ≥ 0 and 1−p−q ≤ 1.

EU, PT, and CPT all assume that preferences over such lotteries have the following separable

form:

U(L) = wXu(X) + wY u(Y ) + wZu(Z),

where wi represents the decision weight for outcome i.11 Under EU and PT, wi is a fixed

number that depends only on the probability of event i, and not on the ranks of X, Y , or Z.

Under CPT, wi depends on the probabilities of the three events and the ranks of the payoffs.

For PT and CPT, our notation suppresses the dependence of u(·) on the reference point, which

for simplicity we take as fixed and assume for the moment to be less than X, Y , and Z. We

address alternative assumptions about reference dependence in section 2.2.

Our analysis employs the concept of an equalizing reduction, defined as the value

of k that delivers indifference between the lottery L and a modified lottery Le =

({p, q, 1− p− q} , {X, Y +m,Z − k}), where m is a (small) fixed number. Intuitively, the

equalizing reduction approximates the marginal rate of substitution between the payoffs Y and

Z (MRSY Z). EU and PT imply that wY and wZ , and therefore MRSY Z for fixed values of Y

and Z, are completely independent of X. CPT shares this implication as long as variations in

X do not change the payoff ranks. However, as X crosses Y , the rank of Y changes, while all
11Our application of PT to these three-outcome lotteries corresponds to the extension of PT provided by, for

example, Camerer and Ho (1994) and Fennema and Wakker (1997).
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the other factors that determine wY and wZ under CPT (the probabilities of Y and Z, and

the rank of Z) remain fixed. To the extent rank dependence is quantitatively important, CPT

therefore implies that MRSY Z changes discontinuously at X = Y .

The preceding intuition suggests an empirical strategy for evaluating the importance of rank

dependence. Assuming m and k are small, so that the payoff ranks are the same for L and Le,

then under all three theories we have

wY u(Y ) + wZu(Z) = wY u(Y +m) + wZu(Z − k) (2)

or alternatively

k = Z − u−1
[
u(Z) +

wY

WZ

(u(Y )− U(Y +m))

]
. (3)

Suppose we assess k for various values of X. Under EU and PT, wY
WZ

is a fixed number (as are

Z, Y , and m), so a graph of k against X should be a flat line. Under CPT, wY
WZ

is fixed as long

as the payoff ranking is preserved, but it changes discontinously when the value of X passes

through the value of Y or Z. Therefore, a graph of k against X should exhibit three flat line

segments with discontinuities at X = Y and X = Z.12

The strength of our approach is that it yields more than a qualitative way to gauge the

importance of rank dependence – it also provides a quantitative, nonparametric estimate of the

change in relative decision weights that results from a change in payoff ranks. Say we obtain

k using the value X, and k using the value X. Defining ∆ log(a) = log(a) − log(a) (for the

generic variable a), we have:13

Proposition 1 : Suppose the reference point is fixed, that decision weights are fixed for a

given payoff ranking, and that u is continuously differentiable at Y and Z.14 Consider any X

and X distinct from Y and Z. Then
12Technically, the discontinuities occur at Y and Z in the limit as m goes to zero.
13As noted by one of our referees, it is relatively straightforward to dispense with the assumption that u is

differentiable. Continuity and monotonicity of u(·) are sufficient for the existence of positive right-derivatives,
which cancel out in the limit.

14The continuous differentiability requirement rules out cases in which Y or Z coincides with the reference
point. The proof extends to these cases but requires attention to some additional technical details.
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lim
m→0

∆ log(k) = ∆ log

(
wY
wZ

)
Proof : See Appendix.

Proposition 1 tells us that the percentage change in k (from k to k) provides a quantitative

estimate of the percentage change in the relative decision weights, wY
wZ

(from wY
wZ

to wY
wZ

) resulting

from the change in X (from X to X).

To drive the implications of this point home, suppose in particular that we choose X and X

such that X > Y +m > Z and Y > X > Z. Then, under CPT, we have wY = π(p+ q)− π(p)

and wZ = 1− π(p+ q), while wY = π(q) and wZ = 1− π(p+ q). It follows that

∆log(k) ≈ log (π(p+ q)− π(p))− log (π(q))

Thus, for the maintained hypothesis of CPT, in this special case the percentage change in k

provides a quantitative estimate of the percentage change in the probability weight assigned to

payoff Y when the value of X passes from above Y to below Y .15

Accordingly, the first step in our analysis is to measure changes in the relative decision

weights, ωY
ωZ

, associated with reversals in the ranks of X and Y . If we find that these changes

15 It is natural to wonder whether our central insight would apply to models in which probability weighting
functions include linear segments, so that log (π(p+ q)− π(p)) − log (π(q)) = 0 over a given range. One
prominent example is the neo-additive model of Chateauneuf, Eichberger and Grant (2007). Under the neo-
additive model with objective probabilities, decision weights for cumulative probabilities away from 0 and 1
are linear as in expected utility, but extra weight is given to the best and worst outcome in a lottery. For
Z < X < Y , the neo-additive utility is

U = γu(Z) + (1− γ − λ) [pu(X) + qu(Y ) + (1− p− q)u(Z)] + λu(Y ),

where γ and λ represent the additional weight on the worst and best outcomes, respectively. In contrast, for
Z < Y < X,

U = γu(Z) + (1− γ − λ)
[
pu(X) + qu(Y ) + (1− p− q)u(Z)

]
+ λu(X).

Because outcome Y is no longer the best outcome, its weight changes discontinuously. It is straightforward to
show that

∆log(k) ≈ log
(

(1− γ − λ)q

λ+ (1− γ − λ)q

)
,

so a discontinuity in equalizing reductions is predicted, and the log change in equalizing reduction again closely
approximates the change in decision weight applied to outcome Y .
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are robustly close to zero, we can conclude that either the weights are not rank-dependent,

in which case CPT is predicated on a false assumption, or the probability weighting function

exhibits no meaningful non-linearities, in which case CPT does not differ from PT.

To be precise, suppose that for specified values of the payoffs, Y and Z, and of the proba-

bilities, p, q, and 1 − p − q, we find 4log(k) ≈ 0. Treating rank dependence as a maintained

hypothesis, we have 4ωZ = 0 by construction, so if we find no change in k, we must also

have 4ωY = [π(p+ q)− π(p)]− π(q) = 0. Using this equation along with the assumption that

π(0) = 0 (impossible events are ignored), we obtain

π(p+ q)− π(p)

q
=
π(q)− π(0)

q
. (4)

In other words, 4log(k) = 0 implies that the average slope of π(·) is the same over the intervals

[0, q] and [p, p+ q]. Taking q small, we see that, if this condition holds for all p ∈ [0, 1− q], then

π(·) must be linear. In our experiment, we focus on values of p and q that allow us to target the

portions of the unit interval for which previous analyses of probability weighting have found

pronounced non-linearities. Using our methods, one could obviously consider additional values

of p and q, effectively blanketing the interval with these tests, thereby ruling out non-linearities

more comprehensively under the maintained hypothesis of rank dependence.16

Upon determining that 4log(k) is in fact robustly close to zero, we proceed to the second

step of our analysis, asking whether this result follows from the absence of rank dependence, or

from the absence of meaningful non-linearities in the probability weighting function. Our strat-

egy is to draw inferences about the shape of the probability weighting function from responses

in the same tasks to variations in probabilities, holding ranks fixed. We reject rank-dependent

probability weighting, and hence CPT, if Steps 1 and 2 yield inconsistent conclusions concerning

the shape of π(·). For example, if we rule out meaningful non-linearities in Step 1 (conditional
16A possible objection is that, in three-outcome lotteries, it is always the case that p < 1− q, which means we

cannot rule out discontinuities at π(1) using equalizing reductions for X > Y > Z and Y > X > Z. However,
we can easily solve that problem by also evaluating the change in k when X falls below Z. Although we do not
perform such tests as part of our main analyses, we include them along with other robustness checks in Section
5.3.
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on maintaining rank dependence) but find them in Step 2, then CPT cannot account for the

pattern of equalizing reductions. However, the same pattern is consistent with PT, because the

hypothesized finding for Step 1 rules out non-linearities only if one assumes rank dependence.

For Step 2, we proceed as follows. Using the measured equalizing reductions for the same

tasks, we can compute the following quantities for multiple values of p and/or q:

φ(p, q) ≡
(

q

1− p− q

)
m

k
and φ(p, q) ≡

(
q

1− p− q

)
m

k

Noting that k
m
≈
(
ωY
ωZ

)(
u′(Y )
u′(Z)

)
, we have

φ(p, q) ≈
[(

ωZ
1− p− q

)(
q

ωY

)]
C and φ(p, q) ≈

[(
ωZ

1− p− q

)(
q

ωY

)]
C,

where C = u′(Z)
u′(Y )

is a constant in our experiment because we hold Y and Z fixed. If the decision

weights are proportional to the probabilities, then the bracketed terms are identically unity.

Thus, if φ(p, q) or φ(p, q) varies with p or q, the probability weighting function cannot be linear.

More specifically, under CPT, we can rewrite these approximations as follows:

φ(p, q) ≈
(
π(1)− π(p+ q)

1− p− q

)(
q

π(p+ q)− π(p)

)
C and φ(p, q) ≈

(
π(1)− π(p+ q)

1− p− q

)(
q

π(q)

)
C.

Suppose we observe two values of p, call them p′ > p′′, for which φ(p′, q) 6= φ(p′′, q). Then we

can conclude that that π(·) is not linear throughout the interval [1− p′ − q, 1]. Alternatively,

suppose we observe φ(p′, q) 6= φ(p′′, q). Then we can conclude that π(·) is not linear throughout

the interval [min {1− p′ − q, p′′} , 1]. Analogous statements hold for the probability q.

2.1 Simulated Equalizing Reductions under CPT Decisionmaking

In this section, we examine the particular lotteries studied in our experiment and show that

changes in payoff ranks yield large changes in probability weights under standard parameter-

izations of CPT. We also demonstrate that the percentage change in the equalizing reduction

13



approximates the percentage change in the probability weights to a high degree of accuracy

even when m represents a discrete payoff increment of non-trivial magnitude.

We focus on the parametric specification used in the original formulation of CPT (Tversky

and Kahneman, 1992),17 which posited a probability weighting function, π(p) = pγ/(pγ + (1−

p)γ)1/γ, a reference point of r = 0, and a utility function u(x) = xα for x > r = 0. The

parameters identified by Tversky and Kahneman (1992) were γ = 0.61 and α = 0.88.

Consider the lottery, L, with {X,Y, Z} = {$30, $24, $18} and {p, q, 1 − p − q} =

{0.4, 0.3, 0.3}. Increase Y by m = $5, from $24 to $29. For the parameters γ = 0.61

and α = 0.88, the equalizing reduction is k = 1.67.18 Now consider the lottery L′ with

{X, Y, Z} = {$23, $24, $18} and {p, q, 1 − p − q} = {0.4, 0.3, 0.3}. For the same CPT pa-

rameters as above, the equalizing reduction for m = 5 is k = $3.22.19 Thus, a standard

parameterization of CPT implies a sharp discontinuity in equalizing reductions: moving from

X < Y to X > Y + m cuts the equalizing reduction roughly in half. The log difference in

equalizing reductions, ∆log(k) = −0.66, closely approximates the change in probability weight

associated with the outcome Y , as log(π(0.7) − π(0.3)) − log(π(0.3)) = −0.66 as well. In-

deed, the approximation remains quite close even when the utility function has much greater

curvature. For example, with α = 0.5, ∆log(k) = −0.65, and for α = 0.25, ∆log(k) = −0.64.

In Table 1, we provide additional simulations with the same values of X, Y, Z, and m as

above, but using three different values of γ, 0.4, 0.61, 0.8, as well as three different probability

vectors, {p, q, 1 − p − q} = {0.6, 0.3, 0.1}, {0.4, 0.3, 0.3}, and {0.1, 0.3, 0.6}.20 For the CPT

parameter values of Tversky and Kahneman (1992), the probability weight on payoff Y changes

by 29 to 66 percent as X passes through Y . Even with more modest curvature of the probability

weighting function (γ = 0.8), the change in probability weight remains sizable. Critically, in all
17Tversky and Fox (1995) and Gonzalez and Wu (1999) employ a similar two-parameter π(·) function. See

Prelec (1998) for alternative S -shaped specifications.
18Note that Y and Z are received with equal probability, so an expected-value decisionmaker would exhibit

an equalizing reduction of k = $5.
19Once again, note that an expected-value decisionmaker would exhibit an equalizing reduction of k = $5.
20To demonstrate the dependence of discontinuities in equalizing reduction on the extent of probability weight-

ing, we hold α fixed at 0.88 throughout.
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cases, the percentage change in the equalizing reduction approximates the percentage change

in the probability weight associated with payoff Y to a high degree of accuracy.

Table 1: Cumulative Prospect Theory Simulated Equalizing Reductions

γ = 0.4 γ = 0.61 γ = 0.8

{p, q, 1− p− q} k k ∆log(k) k k ∆log(k) k k ∆log(k)

∆log
(
wY
wZ

)
= log(π(p+q)−π(p)

π(q)
) ∆log

(
wY
wZ

)
= log(π(p+q)−π(p)

π(q)
) ∆log

(
wY
wZ

)
= log(π(p+q)−π(p)

π(q)
)

{0.6, 0.3, 0.1} 1.97 1.33 -0.39 5.17 3.88 -0.29 9.21 7.84 -0.16
-0.39 -0.29 -0.17

{0.4, 0.3, 0.3} 1.61 0.53 -1.12 3.22 1.67 -0.66 4.29 3.13 -0.31
-1.12 -0.66 -0.32

{0.1, 0.3, 0.6} 1.45 0.40 -1.30 2.39 1.39 -0.55 2.60 2.08 -0.22
-1.30 -0.55 -0.22

Notes: Dollar values for equalizing reductions in Z for increase in Y to Y +m. k calculated with {X,Y, Z} =
{$30, $24, $18}, m = $5. k calculated with {X,Y, Z} = {$23, $24, $18}, m = $5. CPT calculations with
u(x) = xα, α = 0.88; and π(p) = pγ/(pγ + (1− p)γ)1/γ with γ varying by column.

2.2 Reference Point Formulation and Alternative Models of Refer-

ence Dependence

Throughout the previous discussion, we assumed that the reference point is fixed and below all

potential payoffs. While this assumption is a reasonable starting point, one naturally wonders

whether our conclusions are robust with respect to other possibilities.

First consider the possibility that the reference point is exogenous but falls either (i) above

all payoffs, or (ii) between the lottery’s payoffs, which it segregates into gains and losses. Case

(ii) may seem particularly concerning because CPT applies probability weighting to gains and

losses separately. Notice, however, that Proposition 1 subsumes these possibilities because it

is proved for a specification with general decision weights. Because CPT still implies that the

weights change when the value of X passes through Y , precisely the same implications follow.21

Notably, additional discontinuities in equalizing reductions emerge (for similar reasons) at the
21An additional complication arises for non-infinitessimal values of m, in that an increase from Y to Y + m

could cross the reference point, or cause Z − k to cross the reference point. As shown in Online Appendix C.1,
the implications of rank dependence are, nevertheless, unchanged.
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point where the outcomes Z and Y pass the reference point (see Online Appendix C.1). Thus

the equalizing reduction approach offers not only a novel test of rank dependence, but could

also be used to test the hypothesis that gains and losses relative to an exogenous reference

point are weighted differently.

Next consider the possibility that the reference point depends on the lottery’s payoffs, as in

Bell (1985), Loomes and Sugden (1986), and others. We will use r to denote a generic reference

point and R(X, Y, Z) to denote the reference point for a lottery that yields payoffs {X, Y, Z}

with probabilities {p, q, 1−p−q}. (The reference point may also depend on the probabilities, but

we hold them constant, and consequently suppress those arguments for notational simplicity.)

Here we will focus on cases in which the reference point r coincides with neither Y nor Z.22

Proposition 2 : Suppose decision weights are fixed for a given payoff ranking, that u(x, r) is

continuously differentiable in neighborhoods of (Y,R(Y, Y, Z)) and (Z,R(Y, Y, Z)), and that R

is continuously differentiable in a neighborhood of (Y, Y, Z). Consider any sequence (X
n
, Xn)→

(Y, Y ) such that Xn
> Y > Xn > Z. Then

lim
n→∞

lim
m→0

∆ log(k) = ∆ log

(
wY
wZ

)
Proof : See Appendix.

22As the literature has emphasized, there are multiple ways to endogenize the reference point. The proof
of Proposition 2 assumes that reference points are “choice-acclimating” (Koszegi and Rabin, 2006, 2007), in
the sense that the decision maker evaluates each option according to the reference point she would have if
she selected that option. For example, according to the theory of Disappointment Aversion as articulated by
Bell (1985) and Loomes and Sugden (1986), the individual chooses {X,Y, Z} over {X,Y + m,Z − k} when
U(X,Y, Z|R(X,Y, Z)) > U(X,Y +m,Z−k|R(X,Y +m,Z−k)). An alternative approach is to assume that the
reference point resolves based on “first focus” (Koszegi and Rabin, 2006), in the sense that the decision maker
evaluates all the options in a task according to a single reference point that depends on the task’s parameters. In
our setting, a natural implementation of this approach would allow the reference point to depend on the static
task elements, X,Y, Z, and m, but would treat it as fixed within each equalizing reduction elicitation task. In
that case, the individual chooses {X,Y, Z} over {X,Y +m,Z − k} when U(X,Y, Z|R(X,Y, Z,m)) > U(X,Y +
m,Z−k|R(X,Y, Z,m)). Proposition 2 also holds for this first-focus approach. Yet another approach involves the
analysis of “personal equilibria” (Koszegi and Rabin, 2006, 2007), in which the individual evaluates all options
relative to the reference point associated with a potential selection: there is a personal equilibrium of selecting
{X,Y, Z} over {X,Y +m,Z−k} when U(X,Y, Z|R(X,Y, Z)) ≥ U(X,Y +m,Z−k|R(X,Y, Z)), and of selecting
(X,Y +m,Z−k) over (X,Y, Z) when U(X,Y, Z|R(X,Y +m,Z−k)) ≤ U(X,Y +m,Z−k|R(X,Y +m,Z−k)).
This approach can give rise to multiple personal equilibria, and hence indeterminacy, absent some refinement
(such as “preferred personal equilibria,” as in Koszegi and Rabin, 2006).
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Thus, even with an endogenous reference point, the discontinuity in the X-k schedule at

X = Y still measures the percentage change in the relative decision weights on Y and Z. That

said, if the reference point depends on the payoff X, then the X-k schedule may no longer

be flat within intervals with fixed decision weights, a possibility that could in principle make

the size of any discontinuity more difficult to measure. However, as we will see, there is no

indication that this potential issue materializes in practice. On the contrary, the flatness of

the empirical X-k schedule eliminates any complications arising from the potential endogeneity

of the reference point. An additional discontinuity in the equalizing reduction should emerge

where X crosses an endogenous reference point, even in the absence of probability weighting

(see Online Appendix C.2). Intuitively, with a “choice-acclimating” (Koszegi and Rabin, 2006,

2007) reference point (as in Disappointment Aversion), variations in m and k affect the utility

derived from X by changing its distance from the reference point. The size of this effect differs

discretely according to whether X is above the reference point (and hence a gain), or below

the reference point (and hence a loss).23 Thus our approach offers a novel test of theories, such

as Disappointment Aversion, for which X < (resp. >) Y and Z implies that X is below (resp.

above) the reference point.

A final possibility worth considering is that subjects have reference point distributions, as

in Koszegi and Rabin (2006, 2007). We show in Online Appendix C.3 that this preference

formulation also yields discontinuities in the equalizing reduction as X passes through Y and

Z, even without probability weighting.24 Furthermore, when we apply a calibrated model to

our experimental tasks, we find that the implied discontinuities are substantial, and that their

signs are opposite those implied by the CPT calibrations. Thus our approach also offers a novel
23Note that as the reference point becomes decreasingly sensitive to the payoffs, the size of this discontinuity

shrinks (to zero in the case of a fixed reference point). The additional discontinuity is also eliminated in cases
where the reference point is sensitive to variation in payoffs across tasks, but is fixed within a task, as in the
“first focus” approach discussed above.

24Masatlioglu and Raymond (2016); Barseghyan et al. (2015) note a tight connection between rank-dependent
theories with specific functional forms associated with pessimism and the Koszegi and Rabin (2006, 2007) model.
This work anticipates the results outlined in Online Appendix C.3.
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and discerning test of the Koszegi and Rabin (2006, 2007) framework.

2.3 Relation to Existing Evidence on Rank Dependence

As mentioned in the introduction, our work is most closely related to a handful of studies

that aim to test the axiomatic foundations of rank-dependent models (Wu, 1994; Wakker et

al., 1994; Fennema and Wakker, 1996; Weber and Kirsner, 1997; Birnbaum, 2008). A defining

feature of those models is that they assume the independence axiom holds on a limited domain.

In particular, we say that two lotteries are comonotonic if they induce the same payoff ranking

over states of nature. Under EU and CPT, if two comonotonic lotteries yield the same payoff,

xj, in some state j, then a change in xj that leaves the ranking intact should have no effect

on preferences between the lotteries. This property reflects an axiom known as Comonotonic

Independence (CI) (Schmeidler, 1989), which EU and CPT both satisfy. Naturally, one can

also ask whether preferences between the lotteries are invariant with respect to changes in

xj that alter the payoff ranking. This type of invariance follows from a property known as

Non-Comonotonic Independence (NCI), which EU satistfies but CPT does not. Thus, evidence

validating both CI and NCI would point to EU, and evidence favoring CI while challenging NCI

would point to CPT. The experimental tests of CI and NCI conducted generally implement

changes to a common state payoff either preserving or altering the ranking of outcomes as

described above.25

When interpreting laboratory evidence concerning conformance with choice axioms, it is

important to allow for the possibility that observed choices are somewhat noisy. As a result,

even if a theory captures the essence of decisionmaking, one would expect to observe violations

of the axioms that characterize it. What then can one conclude from the frequency of violations?

Existing tests of rank dependence involve comparisons between the prevalence of violations for

different axioms. For instance, Wakker et al. (1994) attribute the differential between the

frequency of NCI violations and CI violations to rank dependence. Because they find little
25Note that because both PT and EU feature rank-independent treatment of probabilities their predictions

in these specific CI and NCI tests coincide.
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difference in these frequencies, they conclude that rank dependence is not supported.

These types of frequency comparisons raise two difficulties, both stemming from the fact

that the results are difficult to interpret without a parametric model of noisy choice. First, the

premise of the approach – that violation frequencies are necessarily higher for invalid axioms

– is flawed. For reasonable models of noisy choice, noise-induced violations of choice axioms

are more likely to occur when the parameters of the tasks place the decisionmaker closer to

the point of indifference. Existing approaches provide no way to ensure that the “distance to

indifference” is held constant when comparing CI and NCI violations. It is therefore easy to

construct examples in which a “noisy” CPT decisionmaker violates CI just as frequently, or even

more frequently, than NCI. Second, even if one could control for “distance to indifference,” this

approach offers no basis for judging whether a given discrepancy between the frequencies of CI

and NCI violations is large or small relative to the implications of a reasonably parameterized

CPT model. For any given degree of rank dependence, one can construct simple examples

(with constant “distance to indifference”) in which the differential between violation frequen-

cies falls anywhere between zero and unity. See Online Appendix B for a description of the

aforementioned examples.

Because rank dependence is characterized by the restriction of the independence axiom to

comonotonic lotteries (Wakker et al., 1994), any valid test of the hypothesis is necessarily related

to the existing studies, and ours is no exception. However, our use of equalizing reductions

has no counterpart in the existing literature. Instead of counting violatons of CI and NCI,

we measure equalizing reductions separately for each lottery, and then compare them across

lotteries. Certainly, the constancy of the equalizing reduction over values of X that preserve

the payoff ordering is an implication of CI, and the discontinuity in the equalizing reduction at

the point where X = Y or X = Z reflects a failure of NCI. However, because the essence of our

approach is to measure characteristics of indifference curves (MRSs), all potential confounds

associated with unintended variations in “distance to indifference” are eliminated. Critically,

in addition, magnitudes are interpretable in our framework: as we have shown, the percentage

19



change in the equalizing reduction resulting from a rank-changing variation inX provides a non-

parametric estimate of the percentage change in decision weights. Finally, the interpretation

of the change in the equalizing reduction remains the same regardless of whether choices are

noisy; only the precision of the estimates is affected.

3 Design of the Main Experiment

Our experimental design follows closely the theoretical discussion of section 2. Conditional on

various probability vectors, {p, q, 1 − p − q}, we test for differences in equalizing reductions

between lotteries with ranks X > Y > Z and those with ranks Y > X > Z, and examine

changes in equalizing reductions associated with variations in the probability p. Subjects also

complete a battery of certainty equivalent tasks involving binary lotteries; these tasks are

commonly used to derive risk-preference parameters within the CPT framework. This strategy

allows us to verify that our subjects exhibit the choice patterns commonly associated with CPT

preferences. We divide our discussion of design into three subsections. First we describe the

elicitation of equalizing reductions; second we detail the conventional elicitation of certainty

equivalents; third, we discuss other design details including task orders and payment procedures.

3.1 Elicitation of Equalizing Reductions

We elicited equalizing reductions using the method of price lists. In each task, subjects made a

series of decisions between ‘Option A’ and ‘Option B’, both three outcome lotteries. Option A

was fixed throughout the task as either a lottery with X > Y > Z or a lottery with Y > X > Z.

Option B was constructed by adding $5 to Y and reducing Z by $k. The value of k varied

throughout the task. The point at which an individual switched from choosing Option A to

choosing Option B places tight bounds on the equalizing reduction, either k or k. Panels A

and B of Figure 1 provide two tasks eliciting k and k. An Online Appendix provides the full

instructions given to subjects along with all tasks.
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As in the simulations of section 2, our design fixes Y = $24, Z = $18, and m = $5. We use

three values of X > Y +m , {$34, $32, $30}, and three values of X < Y , {$23, $21, $19}. Our

objective in using multiple values of X on either side of Y is to allow for the possibility that

the change in the equalizing reduction might be gradual in a neighborhood of the change-in-

ranks threshold rather than sudden, perhaps because payoff rankings are non-salient for nearby

outcomes. Additionally, as explained in Section 2.2, we can also examine the sensitivity of

equalizing reductions to the value of X within the two regimes to draw inferences about the

endogeneity of reference points. We use one additional value, X = $25, to check robustness;

see the discussion in Online Appendix F.26 This set of values allows us to investigate both rank

dependence and the prediction that equalizing reductions are constant within ranks.

As in the simulations of section 2, we examine three probability vectors, {p, q, 1− p− q} =

{0.6, 0.3, 0.1}, {0.4, 0.3, 0.3}, and {0.1, 0.3, 0.6}. The cumulative probability of receiving at

least Y ranges from 0.3 to 0.6 + 0.3 = 0.9, which provides broad scope for detecting the

predicted discontinuities. Note that the design varies the relative probabilities of Y and Z from

0.3/0.1 = 3 to 0.3/0.6 = 1/2, generating a wide range of equalizing reductions.27

With seven values of X and three probability vectors, we have 21 equalizing reduction tasks

in total. We organize these tasks into seven blocks, each of which presents the three probability

vectors for a single value of X. Hence, the tasks within each block are differentiated by the

probability vector, {p, q, 1− p− q}. We distributed task blocks to subjects one at a time, and

collected responses before moving on to the next block. This feature of our design was intended

to limit any tendency to respond mechanically with the same answer as X varies, a possibility

that could artificially obscure discontinuities. As we will see, subjects responded strongly to

variations in probability within each block before moving on to the next value of X.
26Note that for X = $25, adding $5 to Y induces a change of ranks. These tasks allow us to investigate the

possibility that explicit rank changes influence choice. See Online Appendix F for further detail.
27For example, an expected-value decisionmaker would exhibit values of k, k between $2.50 and $15 across

these tasks.
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3.2 Prospect Theory Elicitation Tasks

We also elicit our subjects’ risk preference parameters using the same experimental tech-

niques employed by Tversky and Kahneman (1992). The approach employs seven tasks, each

of which elicits the certainty equivalents for a two-outcome lottery, (p, $25; 1 − p, 0), p ∈

{0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. We grouped these tasks in a single block. Figure 2 illus-

trates one of these tasks, and an Online Appendix describes the full set. Although these tasks

provide no information concerning rank dependence in probability weighting, they allow us to

determine whether our sample exhibits representative risk preferences.

3.3 Design Details

One hundred fifty three subjects were recruited from the Stanford Economics Research Labo-

ratory subject pool in September, October, and November of 2014. A total of 20 sessions were

conducted with the number of subjects varying between two and sixteen. We varied the order

of the six main equalizing reduction blocks systematically across sessions. Subjects completed

three equalizing reduction blocks, then the CPT elicitation block, then three more equalizing

reduction blocks. The X = $25 equalizing reduction tasks were always presented last. Table 2

lists all sessions, dates, numbers of subjects and block orders.

To induce truthful revelation of equalizing reductions and certainty equivalents, we incen-

tivized subjects by paying them based on one randomly selected question in one randomly

selected task. On average, subjects earned $26.87. This random-lottery incentive mechanism

is widely used in experimental economics, but note that it transforms the experiment into a

single compound lottery. The literature on choice under risk, dating to Holt (1986) and Karni

and Safra (1987), suggests that random mechanisms need not be incentive compatible in such

contexts if either the Independence or Reduction of Compound Lotteries axioms are violated.

As CPT violates independence, this limitation is a potential concern. Importantly, however,

Starmer and Sugden (1991) and Cubitt, Starmer and Sugden (1998) demonstrate that this

mechanism can be used even when subjects deviate from expected utility because, in practice,
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Figure 2: Prospect Theory Elicitation Task

TASK 22
On this page you will make a series of decisions between two options. Option A will be a 50 in 100

chance of receiving $25 and a 50 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
50 in 100 Chance 50 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2

they narrowly frame each lottery, making each decision in isolation. Whether their findings ap-

ply to our setting is of course an empirical question. Our Prospect Theory elicitation tasks are

especially important in this regard because they allow us to assess the validity of the method

we use. If isolation fails in this context, then our subjects would not exhibit standard patterns

of probability weighting in binary tasks. Conversely, if our subjects do exhibit standard prob-

ability weighting patterns in binary tasks, then one cannot reasonably attribute the absence of

24



Table 2: Experimental Sessions
Number Date Order # Obs

1 09/24/14 {34, 32, 30, CE, 23, 21, 19, 25} 16
2 09/24/14 {34, 21, 30, CE, 23, 32, 19, 25} 11
3 09/30/14 {23, 32, 19, CE, 34, 21, 30, 25} 9
4 09/30/14 {19, 32, 23, CE, 30, 21, 34, 25} 12
5 10/01/14 {30, 21, 34, CE, 19, 32, 23, 25} 12
6 10/02/14 {21, 30, 34, CE, 32, 19, 23, 25} 14
7 10/07/14 {32, 19, 23, CE, 21, 30, 34, 25} 10
8 10/07/14 {23, 19, 32, CE, 34, 30, 21, 25} 5
9 10/08/14 {34, 30, 21, CE, 23, 19, 32, 25} 13
10 10/09/14 {30, 34, 21, CE, 19, 23, 32, 25} 5
11 10/14/14 {19, 23, 32, CE, 30, 34, 21, 25} 4
12 10/16/14 {32, 23, 19, CE, 21, 34, 30, 25} 6
13 10/26/14 {21, 34, 30, CE, 32, 23, 19, 25} 7
14 10/28/14 {21, 34, 30, CE, 32, 23, 19, 25} 3
15 10/29/14 {32, 23, 19, CE, 21, 34, 30, 25} 2
16 11/05/14 {23, 19, 32, CE, 34, 30, 21, 25} 2
17 11/07/14 {19, 23, 32, CE, 30, 34, 21, 25} 6
18 11/10/14 {23, 19, 32, CE, 34, 30, 21, 25} 6
19 11/14/14 {30, 34, 21, CE, 19, 23, 32, 25} 6
20 11/18/14 {32, 23, 19, CE, 21, 34, 30, 25} 4

Total 153

Notes: Session number, date, order and number of observations. Order of tasks refers to the value of X/X in
each task block. CE corresponds to the block of tasks with certainty equivalent questions.

implied discontinuities in the equalizing reduction tasks to a failure of isolation.

Ten of 153 (6.5%) subjects exhibited at least one instance of multiple switching within a

single experimental task. This figure compares favorably to other experiments employing price

lists.28 Because multiple switch points are difficult to rationalize and may indicate subject

confusion, researchers often exclude such observations or mechanically enforce single switch

points.29 We begin by excluding all subjects exhibiting multiple switch points in any task,

leaving a sample of 143 subjects. In Online Appendix F we include the ten subjects with

multiple switch points, taking each subject’s first switch point as their relevant choice, and

demonstrate that the results are qualitatively unchanged.
28Around 10 percent of subjects feature multiple switch points in similar price-list experiments (Holt and

Laury, 2002; Meier and Sprenger, 2010), and as many as 50 percent in some cases (Jacobson and Petrie, 2009).
29See Harrison, Lau, Rutstrom and Williams (2005) for discussion.
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4 Main Results

In presenting our main results, we begin with the conventional Prospect Theory elicitation

tasks, demonstrating that our subjects exhibit the classic manifestations of probability weight-

ing found in previous studies. Then we explore equalizing reductions. As a first step, we

show that there is no relationship between payoff ranks and equalizing reductions. Our non-

parametric estimates of the change in the relative probability weights resulting from a change

in ranks cluster around zero, and in all cases we can reject even modest changes with 95% con-

fidence. It follows either that probability weighting is not rank-dependent, or that π(·) is nearly

linear. As a second step, we examine responses in the same tasks to variations in probabilities,

holding ranks fixed. A non-parametric analysis of these responses reveals that π(·) is highly

non-linear over a probability range for which the absence of responses to changes in ranks rules

out meaningful non-linearities under the maintained hypothesis of rank dependence. Adopting

standard functional assumptions, we then show that the estimated degree of curvature differs

sharply depending on whether one draws inferences from responses to variations in payoff ranks

or variations in probabilities. Using models estimated based on responses to variations in prob-

abilities with fixed ranks, we predict the degree to which equalizing reductions should change

in response to rank reversals under the assumption of rank dependence. We also perform these

calculations using data from conventional CPT elicitation tasks. In all cases, the predicted

changes are an order of magnitude greater than the observed changes, and the confidence inter-

vals are non-overlapping. The assumption of non-linear rank-independent probability weighting

reconciles the otherwise conflicting results from our first and second steps. Indeed, paramet-

ric estimates show that the PT formulation of probability weighting accounts for the data on

equalizing reductions more successfully than the CPT or EU (linear) formulations.

4.1 Certainty Equivalents of Binary Lotteries

As in the original experiments of Tversky and Kahneman (1992), we administered seven cer-

tainty equivalent tasks involving lotteries over payoffs of $25 and $0, with the governing prob-
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ability p ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95}. Panel A of Figure 3 summarizes these data.

To capture average behavior, we first estimated an interval regression (Stewart, 1983) describ-

ing the certainty equivalent, C, as a function of indicators for the experimental probabilities,

p.30 Panel A thus presents the estimated mean certainty equivalent for each value of p along

with its 95% confidence interval.31 Following Tversky and Kahneman (1992), we present the

data in Panel A relative to a benchmark of risk neutrality so that the curve would directly

reveal the probability weighting function, π(·), if the utility function were linear.

Tversky and Kahneman (1992) and Tversky and Fox (1995) obtain probability weighting pa-

rameters from certainty equivalents by parameterizing both the utility and probability weighting

functions and assuming each observation satisfies the indifference condition u(C) = π(p) ·u(25).

We follow Tversky and Kahneman (1992) by assuming power utility, u(x) = xα, and a weighting

function π(p) = pγ/(pγ + (1−p)γ)1/γ. We then estimate the parameters γ and α by minimizing

the sum of squared residuals for the non-linear regression equation

C = [pγ/(pγ + (1− p)γ)1/γ × 25α]
1
α + ε. (5)

where C is the midpoint of the certainty equivalent interval defined by experimental choice.

When conducting this analysis for our aggregate data with standard errors clustered on the

subject level, we obtain α = 0.941 (s.e. = 0.019) and γ = 0.715 (0.015). The benchmark model

of linear weighting, γ = 1, is rejected at all conventional confidence levels (F1,142 = 341.2, p <

0.01). The value of the probability weighting parameter is reasonably close to the estimate of

Tversky and Kahneman (1992) (γ = 0.61), and coincides with the findings of Wu and Gonzalez

(1996), who estimate γ = 0.71. The dashed line in Figure 3, Panel A, shows the in-sample

model fit, which closely matches actual behavior.32

30Virtually identical results are obtained when using OLS and the midpoint of the interval.
31Standard errors are estimated clustered at the individual level. Online Appendix Table A2, column (1)

provides corresponding estimates. Column (2) provides estimates of risk premia, demonstrating statistically
significant risk tolerance at low probabilities and statistically significant risk aversion at high probabilities.

32The correlation coefficient for predicted and actual certainty equivalents is 0.93, and a regression of the
true certainty equivalent on the model’s prediction yields a slope coefficient of 0.998 (clustered s.e. = 0.020), a
constant of 0.102 (0.214), and an R-squared value of 0.86. The null hypothesis that the constant is 0 and the
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Figure 3: Certainty Equivalents and Equalizing Reductions
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Notes: Panel A: Mean behavior for C estimated from interval regression (Stewart, 1983) of experimental response
on indicators for probability vectors. Standard errors clustered at individual level to provide 95% confidence
interval. Online Appendix Table A2, column (1) provides corresponding estimates. Dashed line corresponds
to predicted CPT behavior with α = 0.941 (s.e. = 0.019) and γ = 0.715 (0.015); standard errors clustered
at individual level. Panel B: Mean behavior for k estimated from interval regression of experimental response
on indicators for probability vectors interacted with indicators for value of X. Standard errors clustered at
individual level to provide 95% confidence interval. Online Appendix Table A4 provides corresponding esti-
mates. Dashed line corresponds to predicted values of equation (3) for CPT decisionmaker with risk preference
parameters α = 0.941 (s.e. = 0.019) and γ = 0.715 (0.015). Standard errors clustered at individual level and
calculated using the delta method to provide 95% confidence interval.

The main take-away from this analysis is that our subjects exhibit typical risk preferences,

and do so within the context of the experiment’s overall structure. Accordingly, there is no

reason to suspect that we have an unrepresentative subject pool, or that our subjects fail to

treat each task as an isolated decision problem.

4.2 Average Equalizing Reductions

Panel B of Figure 3 presents equalizing reductions, k and k, for each value of X and X. We

exhibit separate results for each of the three probability vectors. To determine average behavior,

predicted value’s true coefficient is 1 is not rejected (F2,142 = 0.17, p = 0.84).
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we performed an interval regression describing the equalizing reduction, k or k, as a function of

indicators for the probability vectors interacted with indicators for the value of X or X.33 The

figure exhibits the estimated mean equalizing reductions along with 95% confidence intervals.34

Vertical lines at Y = $24 and Y +m = $29 partition the figure into three regions, one showing

k, another showing k, and a transitional region. Corresponding statistics appear in Table 3,

Panel A.

As explained in Section 2, our analysis involves two steps. In the first step, we use the

equalizing reductions to measure changes in the relative decision weights, ωY
ωZ

, associated with

reversals in the ranks of X and Y . Our main finding is apparent in Figure 3, Panel B, and

Table 3, Panel A. For each of our three probability vectors, our estimates of k and k are

virtually identical, indicating either that probability weighting is not rank-dependent, or that

π(·) is nearly linear. Upon reaching this conclusion, we turn to the second step, in which we

draw inferences about the shape of the probability weighting function from responses in the

same tasks to variations in probabilities, holding ranks fixed. Once again, our main finding

is apparent in Table 3, Panel A: both φ and φ vary substantially across the three probability

vectors, which indicates that π(·) is highly non-linear. Thus, to rationalize the pattern of

equalizing reductions, one must posit rank-independent probability weighting.

4.2.1 The Effect of Payoff Rank on Decision Weight (Step 1)

The equalizing reductions, k and k, are strikingly similar for each fixed probability vector. For

{p, q, 1 − p − q} = {0.6, 0.3, 0.1}, the mean value of k is 9.02 (clustered s.e. = 0.39), while

the mean value of k is 9.28 (0.38). The difference, k − k = 0.26 (0.17), is not statistically

different from zero χ2(1) = 2.31, p = 0.13. In the last column of Panel A, we compute the

change ∆log(k) resulting from the change in ranks, and present it as an estimate of the change

in the log of the relative probability weights,
̂

∆log
(
wY
wZ

)
. For the first probability vector, the

33Virtually identical results are obtained when using OLS and the midpoint of the interval.
34Standard errors are estimated clustered at the individual level. Online Appendix Table A4 provides corre-

sponding estimates.
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Table 3: Equalizing Reductions
Panel A: Mean Behavior and Estimated Rank Dependence Panel B: CPT Estimates and Predicted Rank Dependence

Equalizing Reductions Equalizing Reductions Certainty Equivalents
Y > X > Z X > Y > Z

γ = 0.784 (0.020) γ = 0.830 (0.021) γ = 0.715 (0.015)

{p, q, 1− p− q} k k
̂

∆log
(
wY
wZ

) ̂
∆log

(
wY
wZ

) ̂
∆log

(
wY
wZ

) ̂
∆log

(
wY
wZ

)
φ ≡ m

k
q

1−p−q φ ≡ m
k

q
1−p−q [95% Conf.] [95% Conf.] [95% Conf.] [95% Conf.]

{0.6, 0.3, 0.1} 9.02 (0.39) 9.28 (0.38) 0.03 (0.02) -0.18 (0.01) -0.14 (0.02) -0.23 (0.01)
1.66 (0.07) 1.62 (0.07) [-0.01,0.07] [-0.21,-0.15] [-0.18,-0.11] [-0.25,-0.21]

{0.4, 0.3, 0.3} 4.31 (0.12) 4.34 (0.12) 0.01 (0.02) -0.35 (0.03) -0.27 (0.04) -0.47 (0.03)
1.16 (0.03) 1.15 (0.03) [-0.03,0.05] [-0.41,-0.28] [-0.34,-0.20] [-0.52,-0.41]

{0.1, 0.3, 0.6} 2.63 (0.08) 2.56 (0.07) -0.03 (0.02) -0.22 (0.02) -0.18 (0.03) -0.35 (0.03)
0.95 (0.03) 0.98 (0.03) [-0.07,0.01] [-0.30,-0.19] [-0.24,-0.13] [-0.40,-0.30]

Notes: Panel A: Mean behavior for k and k estimated from interval regression (Stewart, 1983) of experimen-
tal response on indicators for probability vector interacted with indicator for whether X > Y . Calculated
values of φ ≡ m

k
q

1−p−q and φ ≡ m
k

q
1−p−q . Estimated change in relative decision weights, ̂∆log (wY /wZ),

calculated as ∆log(k). Standard errors clustered at individual level and calculated using the delta method,
in parentheses. See Online Appendix Table A3, column (1) and Online Appendix Table A4 for detail. Panel
B: Predicted change in probability weight for CPT decisionmaker with probability weighting estimated from
equalizing reductions with Y > X > Z, from equalizing reductions with X > Y > Z, or from certainty
equivalents. Estimated probability weighting parameter noted for each prediction. Change in relative deci-
sion weights, ̂∆log (wY /wZ), calculated as log(π(p+q)−π(p))− log(π(q)) for estimated weighting function.
Standard errors clustered at individual level and calculated using the delta method, in parentheses.

point estimate is +0.03 (0.02). Consequently, our non-parametric estimates of the equalizing

reduction rule out a decline in wY /wZ greater than 1%. We obtain similar results for the other

probability vectors.35

In the context of the CPT model, the log changes in equalizing reductions reported in Table

3, Panel A should closely approximate the change in probability weight assigned to outcome Y

as ranks change. Viewed in this light, the equalizing reductions reported in Table 3 reflect a

striking absence of rank dependence. Based on our non-parametric estimates, we can rule out
35 For {p, q, 1 − p − q} = {0.4, 0.3, 0.3}, the mean value of k is 4.31 (0.12), while the mean value of k is

4.34 (0.12). The difference, k − k = 0.04 (0.09), is not statistically different from zero χ2(1) = 0.18, p = 0.67.

The 95% confidence interval for
̂

∆log
(
wY

wZ

)
is [−0.03, 0.05], indicating that we can reject a decline in the ratio

wY /wZ more extreme than 3%. For {p, q, 1− p− q} = {0.1, 0.3, 0.6}, the mean value of k is 2.63 (0.08), while
the mean value of k is 2.56 (0.07). The difference, k − k = −0.07(0.06), is not statistically different from zero

χ2(1) = 1.70, p = 0.19. The 95% confidence interval for
̂

∆log
(
wY

wZ

)
is [−0.07, 0.01], indicating that we can

reject a decline in the ratio wY /wZ more extreme than 7%. While these statistics do not account for multiple
hypotheses, the joint test for equality of equalizing reductions across ranks is also not statistically distinguishable
from zero, χ2(1) = 4.50, p = 0.21. In Online Appendix Tables A3 and A5, we reproduce these analyses with
individual fixed effects and robust standard errors, and reach identical conclusions.
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any change in probability weight for outcome Y in excess of 1% for the first probability vector,

3% for the second, and 7% for the third.

Another way to gauge the magnitudes of the observed changes in the equalizing reductions

is to parametrize the probability weighting function and determine the amount of curvature

needed to rationalize these changes under the maintained hypothesis of CPT. We adopt Tversky

and Kahneman’s 1992 specification and focus on the curvature parameter (γ). The estimates of

∆ log
(
wY
wZ

)
in the third column of Table 3, Panel A, imply the following: for {p, q, 1− p− q} =

{0.6, 0.3, 0.1}, γ = 1.040 (clustered s.e. = 0.027 ); for {p, q, 1 − p − q} = {0.4, 0.3, 0.3},

γ = 1.006 (0.014); for {p, q, 1 − p − q} = {0.1, 0.3, 0.6}, γ = 0.971 (0.022).36 With so little

curvature in the probability weighting function, decision weights cannot be meaningfully rank-

dependent.

Because we have conducted our analysis for a small number of probability vectors, we

cannot claim to have ruled out non-linearities in probability weighting comprehensively (under

the maintained hypothesis of rank dependence). Technically, recalling equation (4), what we

have shown is that π(·) has the same average slope on the intervals [0, 0.3], [0.1, 0.4], [0.4, 0.7],

and [0.6, 0.9]. This finding does not rule out fortuitous “wiggles” on [0, 0.9], nor systematic non-

linearities within the interval [0.9, 1], such as a discontinuity at unity. Addressing the latter

possibility is straightforward: one simply elicits equalizing reductions for values of X below Z.

We implement that strategy as part of an extension in Section 5.3.
36 Under the maintained hypothesis of CPT, for the case of X > Y > Z,

k = Z − u−1
(
u(Z)−

[
π(p+ q)− π(p)

1− π(p+ q)

]
[u(Y +m)− u(Y )]

)
,

while for Y > X > Z

k = Z − u−1
(
u(Z)−

[
π(q)

1− π(p+ q)

]
[u(Y +m)− u(Y )]

)
.

We assume these equalities are satisfied up to an additive error term for the midpoint of k defined by experimental
choice, and use the functional forms of Tversky and Kahneman (1992): u(x) = xα, π(p) = pγ/(pγ +(1−p)γ)1/γ .
We then estimate the parameters γ and α by minimizing the sum of squared residuals for the corresponding
non-linear combined regression equation for k or k for each probability vector separately (combining values of
X > Y > Z and Y > X > Z). The estimates for the parameter α are: for {p, q, 1 − p − q} = {0.6, 0.3, 0.1},
α = 0.211 (clustered s.e. = 0.100); for {p, q, 1− p− q} = {0.4, 0.3, 0.3}, α = 0.711 (0.055); for {p, q, 1− p− q} =
{0.1, 0.3, 0.6}, α = 1.063 (0.055).
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Before moving on to the next step in our analysis, we highlight one additional implication of

our findings: even under PT, the flatness of the X − k schedule within the regimes X > Y and

X < Y implies either that the reference point is invariant with respect to X (contrary to the

theories of Bell, 1985; Loomes and Sugden, 1986), or that the function u(·) is approximately

linear. As we show below, other features of our data are inconsistent with the second possibility.

4.2.2 The Effect of Probability on Decision Weight (Step 2)

We now turn our attention to Step 2, in which we draw inferences about the shape of the

probability weighting function from responses (in the same tasks) to variations in probabilities

holding ranks fixed. If the probability weighting function is indeed linear (as the first step of

our analysis implies under the maintained hypothesis of rank dependence), then we should find

that φ and φ are insensitive to these variations. And yet, as shown in Table 3, Panel A, the

mean value of φ ranges from 1.66 (0.07) when p = 0.6, to 1.16 (0.03) when p = 0.4, to 0.95

(0.03) when p = 0.1. Similarly, the mean value of φ ranges from 1.62 (0.07) when p = 0.6, to

1.15 (0.03) when p = 0.4, to 0.98 (0.03) when p = 0.1. In both cases, we reject the hypothesis

of equality across values of p (χ2(1) = 110.7, p-value < 0.01) for φ, and (χ2(2) = 103.6, p-value

< 0.01) for φ.

How should we interpret the magnitudes of these differences in φ and φ across distinct values

of p? Focusing on the regime in which Y > X, we have:

4 log
(
φ
)
≈ 4 log

(
π(1)− π(p+ q)

1− p− q

)

In other words, the percentage change in φ across values of p roughly equals the percent-

age change in the average slope of π(·) on [p+ q, 1]. When we decrease p + q from 0.9 to

0.7, we have 4 log
(
φ
)

= −0.36 (0.03). When we decrease p + q from 0.7 to 0.4, we have

4 log
(
φ
)

= −0.20 (0.03). The values of 4 log
(
φ
)
indicate the average slope of π(·) declines

by approximately 30% (i.e., exp(−0.36)− 1) between the regions [0.9, 1] and [0.7, 1], and 18%

(i.e., exp(−0.20)− 1) between the regions [0.7, 1] and [0.4, 1].
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Using the estimates of φ in Table 3, we can determine how the average slope of π(·) varies

across the adjacent subintervals [0.4, 0.7], [0.7, 0.9], and [0.9, 1], thereby narrowing down the

location of the non-linearities.37 Specifically, we obtain log
(
π(0.9)−π(0.7)

0.2

)
− log

(
π(1)−π(0.9)

0.1

)
=

−0.60 (0.06) and log
(
π(0.7)−π(0.4)

0.3

)
−log

(
π(0.9)−π(0.7)

0.2

)
= −0.21 (0.06). These calculations imply

a reduction in the average slope of π(·) of approximately 45% (i.e., exp(−0.60)−1) between the

regions [0.9, 1] and [0.7, 0.9], and a further reduction of approximately 19% (i.e., exp(−0.21)−1)

between the regions [0.7, 0.9] and [0.4, 0.7]. In both cases, we reject the null hypothesis of

constant average slope over the relevant region: for [0.9, 1] to [0.7, 0.9], χ2(1) = 106.4 (p-value

< 0.01); and for [0.7, 0.9] to [0.4, 0.7], χ2(1) = 10.1 (p-value < 0.01). Thus, the responses to

variations in probabilities (with fixed ranks) imply that π(·) is highly non-linear on the interval

[0.4, 1]. Notably, this non-linearity is not confined to a small neighborhood around 1. On the

contrary, the implied slope of π(·) varies considerably within the interval [0.4, 0.9].

Another way to gauge the magnitudes of the observed changes in equalizing reductions across

values of p is to parametrize the probability weighting function and determine the amount of

curvature needed to rationalize these changes. Once again we adopt Tversky and Kahneman’s

1992 specification and focus on the curvature parameter (γ). For choices with Y > X > Z, we

estimate γ = 0.830 (0.022), while for choices with X > Y > Z, we estimate γ = 0.784 (0.020).38

Significantly, these magnitudes align much more closely with our estimate from the certainty
37 Note that

log

(
π(0.9)−π(0.7)

0.2
π(1)−π(0.9)

0.1

)
= log

(
3

2

(
π(1)−π(0.7)

0.3
π(1)−π(0.9)

0.1

)
− 1

2

)
,

and

log

(
π(0.7)−π(0.4)

0.3
π(0.9)−π(0.7)

0.2

)
= log

(
2

(
π(1)−π(0.4)

0.6
π(1)−π(0.9)

0.1

π(1)−π(0.9)
0.1

π(0.9)−π(0.7)
0.2

)
− 1

3

(
π(1)−π(0.9)

0.1
π(0.9)−π(0.7)

0.2

)
− 2

3

)
.

38 Following the procedure in footnote 36, we again assume the the formulas for k and k are satisfied up to
an additive error term for the midpoint of k defined by experimental choice, and use the functional forms of
Tversky and Kahneman (1992): u(x) = xα, π(p) = pγ/(pγ + (1− p)γ)1/γ . We then estimate the parameters γ
and α by minimizing the sum of squared residuals for the corresponding non-linear regression equations for k
and k using data from the regimes X > Y > Z and Y > X > Z separately (combining probability vectors).
For X > Y > Z, we estimate α = 1.024 (clustered s.e. = 0.082) and γ = 0.830 (0.022). For Y > X > Z, we
estimate α = 0.911 (0.063), and γ = 0.784 (0.020).
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equivalent tasks (γ = 0.715) than with those based on cross-regime changes in k (γ ≈ 1).

Moreover, the estimates of γ reported in the preceding paragraph imply that, under the

maintained hypothesis of rank dependence, we ought to have observed substantial differences

between k and k for each fixed probability vector in the first step of our analysis. These pre-

dictions appear in the first and second columns of Table 3, Panel B. As is clear from the table,

with either γ = 0.830 or γ = 0.784 (along with the associated estimates of α), the implied per-

centage reductions in the relative decision weight on outcome Y resulting from a reversal of X

and Y far exceed the observed percentage declines in the measured equalizing reductions. For

example, when γ = 0.830 and {p, q, 1− p− q} = {0.6, 0.3, 0.1}, the implied value of4 log
(
ωY
ωZ

)
is −0.14 (0.02), which translates into a 13% decline in ωY

ωZ
as ranks change. Predictions for the

other probability vectors, and for γ = 0.784, are even more extreme. Regardless of whether we

use γ = 0.830 or γ = 0.784, and for every probability vector we consider, the 95% confidence

interval for the predicted value of 4 log
(
ωY
ωZ

)
(under the maintained hypothesis of rank depen-

dence) does not overlap with the corresponding interval for the observed difference, which is

always concentrated near zero.39

We also performed analogous calculations using the estimated value of the curvature param-

eter obtained from the certainty equivalent tasks, γ = 0.715, along with the associated estimate

of α. These calculations are of interest because economists routinely adopt these types of CPT

calibrations for the purpose of studying applied problems; prominent examples using the proba-
39With mean estimates and standard errors for predicted ∆log(wY /wZ) and actual ∆log(k) and assumptions

of normality for both, hypothesis tests for equality between predicted and actual rank dependence are easily
implemented via calculation of the following test statistic:

z =
̂∆log(wY /wZ)−∆log(k)√

s.e.( ̂∆log(wY /wZ))2 + s.e.(∆log(k))2
.

Under the null hypothesis of equality, the distribution of z is standard normal. For calibrations based on our
certainty equivalent tasks, we find z = 12.0, (p < 0.01), z = 13.9, (p < 0.01), and z = 9.7, (p < 0.01)
for {p, q, 1 − p − q} = {0.6, 0.3, 0.1}, {0.4, 0.3, 0.3}, and {0.1, 0.3, 0.6}, respectively. For calibrations based on
our equalizing reduction tasks with X > Y , these statistics are z = 6.9, (p < 0.01), z = 6.8, (p < 0.01),
and z = 4.5, (p < 0.01); and for calibrations based on our equalizing reduction tasks with X < Y , they are
z = 8.8, (p < 0.01), z = 9.0, (p < 0.01), and z = 6.2, (p < 0.01). Applying a Bonferroni correction for multiple
hypotheses for these n = 9 tests requires a p-value below 0.01/9 = 0.001 or a z-score above 3.26 to retain the
interpretation of 1% statistical signifcance. As all test statistics lie above this value, they are clearly robust to
a multiple hypothesis correction.
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bility weighting parameters derived from the binary lotteries in Tversky and Kahneman (1992)

include Benartzi and Thaler (1995), Barberis and Huang (2008), and Barberis et al. (2016).

Such work proceeds from the assumption that valuations of binary lotteries reveal the values of

“deep” CPT preference parameters that are stable across a wide range of contexts. We use the

certainty equivalent calibration to predict the effect of rank reversals on equalizing reductions;

results appear in the third column of Figure 3, Panel B. Once again, the predicted changes are

an order of magnitude greater than the observed changes. Figure 3, Panel B superimposes the

predicted values of k and k over the measured values. It shows the predicted values along with

95% confidence intervals, which appear as dashed lines.40 Substantial discontinuities are readily

apparent.41 Importantly, the figure shows that – according to the calibrated CPT model – a

rank-altering change in X should have roughly the same effect on the equalizing reduction as

moving 30% of the probability mass from the high too low outcome under the fixed ranking

Y > X > Z. Subjects respond strongly (and as predicted) to the latter change, but not at all

to the former.

One can of course object to comparisons between preference parameters estimated from

certainty equivalent tasks, and from equalizing reduction tasks, on the grounds that subjects

might use different probability weighting functions for different classes of tasks. However, this

hypothesized failure of “procedural invariance” Starmer (2000) does not apply to our compar-

isons involving responses of equalizing reductions to, respectively, changes in probabilities and

changes in ranks within the same tasks.

In summary, Step 1 uses variation in outcome ranks (with fixed probabilities) to establish the

absence of meaningful non-linearities in the probability weighting function on the subinterval

[0, 0.9] under the maintained hypothesis of rank dependence, while Step 2 uses variation in

probabilities (with fixed ranks) to establish the presence of substantial non-linearities on the

subinterval [0.4, 1], and, critically, within [0.4, 0.9]. The most natural explanation for the direct

40We obtain closed-form solutions for k and k based on equation (3), and derive standard errors using the
delta method.

41Online Appendix Figure A.4 exhibits similar predictions using the values of γ and α implied by the responses
of equalizing reductions to variations in probabilities holding ranks fixed.

35



conflict between our findings in Step 1 and Step 2 is that probability weighting is indeed non-

linear but rank-independent, as envisioned in PT.

Technically, one could potentially reconcile our main findings with CPT by positing a prob-

ability weighting function with fortuitously located “wiggles”. For example, if the slope of π(·)

increased by 23% (i.e., exp(0.21) − 1) between [0.1, 0.4] and [0.4, 0.6], decreased by 57% (i.e.,

exp(−0.84)− 1) between [0.4, 0.6] and [0.6, 0.7], and increased by 132% (i.e., exp(0.84)− 1) be-

tween [0.6, 0.7] and [0.7, 0.9], then the average slopes on [0.1, 0.4], [0.4, 0.7], and [0.6, 0.9] would

be identical (as we found in Step 1 under the maintained hypothesis of rank dependence), and

the average slope on [0.4, 0.7] would be 19% lower than the average slope on [0.7, 0.9] (as we

found in Step 2).42 As far as we know, nothing in the literature suggests that the probability

weighting function exhibits this distinctively peculiar wiggle. In any case, we speculate that one

could rule it out using our methods by eliciting equalizing reductions for additional probability

vectors.

Our main results also leave open the possibility that a rank-dependent probability weighting

function with the requisite wiggle could exhibit non-linearities on [0.9, 1], such as a discontinu-

ity at unity. We examine and reject that possibility in Section 5.3 by extending our analysis

to lotteries with payoff ranks Y > Z > X. This rejection should come as no surprise in

light of several considerations. First, with these limited non-linearities, CPT loses its power to

explain some of the puzzles that account for its popularity, such as the common ratio effect.

42 Note that if π(0.4)−π(0.1)0.3 = π(0.7)−π(0.4)
0.3 = π(0.9)−π(0.6)

0.3 ,

log

(
π(0.7)−π(0.6)

0.1
π(0.9)−π(0.7)

0.2

)
= log

(
3

(
π(0.7)−π(0.4)

0.3
π(0.9)−π(0.7)

0.2

)
− 2

3

)
= log(3 (exp(−0.21))− 2

3
) = −0.84,

log

(
π(0.9)−π(0.7)

0.2
π(0.6)−π(0.4)

0.2

)
= 0,

and

log

(
π(0.4)−π(0.1)

0.3
π(0.6)−π(0.4)

0.2

)
= log

(
1

3

(
π(0.7)−π(0.6)

0.1
π(0.6)−π(0.4)

0.2

)
+

2

3

)
= log(

1

3
(exp(−0.84)) +

2

3
) = −0.21.
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Second, as is apparent in Figure 3, Panel A, choices in the certainty equivalent tasks imply a

completely different pattern of non-linearities. While it is certainly conceivable that the degree

of probability weighting might vary with the nature of the elicitation task due to a failure of

procedural invariance, it is less plausible that the qualitative nature of probability weighting

would fundamentally change from task to task – and if it does, then there is certainly no justi-

fication for using conventionally parameterized CPT models to describe real-world phenomena,

such as portfolio choices (as in Barberis, 2018). Moreover, with the sole exception of implying

rank dependence where none exists, the CPT model calibrated with certainty equivalent tasks

predicts choices in the equalizing reduction tasks with reasonable accuracy. For example, as

long as payoffs respect the ranking Y > X > Z, the predictions track behavior reasonably well,

matching differences in levels of equalizing reductions across probability vectors.43

4.2.3 Which Model Best Explains the Data on Equalizing Reductions?

To underscore the fact that the CPT model cannot simultaneously account for the responses

to probabilities and the absence of responses to ranks in the equalizing reduction tasks, we use

the data for the equalizing reduction tasks (and only that data) to estimate a model of the

form

k = δkC(α, γ) + (1− δ)kP (α, γ) + ε, (6)

where k is the midpoint of the equalizing reduction interval defined by experimental choice,

kC(α, γ) is the equalizing reduction implied by a CPT model with parameters (α, γ), kP is

the value implied by an otherwise identical PT model (without rank dependence), and ε is

a disturbance term.44 We interpret this model as depicting a population consisting of CPT

and PT decision makers in the proportions δ and 1 − δ respectively. If kC and kP represent
43Given that the calibrated CPT model is nearly linear in payoffs, the difference between its predictions and

those of a risk-neutral objective function are primarily attributable to probability weighting.
44The formulation of kC and kC are noted in footnote 36, and

kP = kP = Z − u−1
(
u(Z)−

[
π(q)

π(1− p− q)

]
[u(Y +m)− u(Y )]

)
.

Note that this formulation features rank-independent treatment of the probabilities of receiving Y and Z.
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the average equalizing reductions for the CPT and PT decision makers, respectively, then the

expected equalizing reduction for a randomly selected member of the population is δkC + (1−

δ)kP , precisely as the model claims.

Estimating this equation with non-linear least squares (and clustering errors at the subject

level), we obtain: α = 0.684 (0.059), γ = 0.794 (0.019), and δ = −0.105 (0.094). Notice that

the probability weighting function exhibits substantial curvature. As a result, δ must be close

to zero to account for the absence of noticeable differences between k and k. Indeed, the point

estimate of the weight on the CPT model is negative, and we can reject the hypothesis that

it is greater than 8 percent (0.08) with 95 percent confidence. Reestimating the model with

the constraint that δ ∈ [0, 1], we find δ = 0. Thus, PT accounts for subjects’ choices in the

equalizing reduction tasks better than any other mixture of PT and CPT.

The preceding finding suggests that the PT formulation of probability weighting does a

better job fitting the data than either the CPT or EU formulations. Each of these models is

nested in equation (5), with δ = 0, δ = 1, and γ = 1 corresponding to the PT, CPT, and

EU formulations (respectively). Assuming the error, ε, is distributed N(0, σ2), we estimate

these restricted models via maximum likelihood to provide standard fit comparisons.45 The

PT formulation of δ = 0 provides the highest likelihood and its improved fit over both CPT

and the more parsimonious EU formulation is validated by both the Akaike and Bayes Infor-

mation Criteria. Thus we find that the PT formulation of probability weighting fits the data

substantially better than the other two models.

5 Robustness Checks

In the following subsections, we examine various potential explanations for our results other

than rank independence, including the possibilities that our findings may reflect unrepresen-
45The maximum likelihood estimates are as follows: for δ = 0 (PT), α = 0.724 (clustered s.e. = 0.049),

γ = 0.789 (0.019), LL = −6520.2, AIC = 13046.5, BIC = 13064.0; for δ = 1 (CPT), α = 0.593 (0.051),
γ = 0.915 (0.015), LL = −6557.4, AIC = 13120.7, BIC = 13138.3; for γ = 1 (EU), α = 0.366 (0.065),
LL = −6567.3, AIC = 13138.6, BIC = 13150.3.
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tative subjects (section 5.1), order effects (section 5.2), “cancellation" of common outcomes

(section 5.3), and inattention to the parameters of the decision tasks (section 5.4). We present

additional evidence that rules out each of these possibilities. In Online Appendix F, we pro-

vide supplemental analyses that examine alternative formulations for CPT using the functional

forms of Prelec (1998), explore behavior in tasks where X = $25 (which implies that adding

m = $5 to Y = $24 changes the ranking), and include potentially confused subjects who switch

more than once in a given task. These exercises all yield the same conclusion: decision weights

are rank-independent (or nearly so), and CPT is soundly rejected.

5.1 Subject-level Analysis

First, we address the possibility that our findings might reflect the behavior of unrepresen-

tative subjects or other forms of heterogeneity. Each subject in our experiment provides us

with data on equalizing reductions and certainty equivalents. Accordingly, we can replicate

our analysis at the subject level. For each subject and each probability vector, we calcu-

late the average k and k for values of X < Y and X > Y + m, respectively, and com-

pute the actual change, ∆log(k).46 Additionally, we use each subject’s certainty equivalent

data to estimate their CPT risk preference parameters based on equation (5), and then use

the curvature parameter, γ, to predict the change in the log of relative decision weights —

∆log(wY /wZ) = log (π(p+ q)− π(p)) − log (π(q)) — and, hence, in equalizing reductions, for

each probability vector.

Panel A of Figure 4 presents the distributions of the predicted values of ∆log(wY /wZ) and

the actual values of ∆log(k) for each of the three probability vectors, along with their rela-

tionship for our 143 subjects. For {p, q, 1 − p − q} = {0.6, 0.3, 0.1}, the median actual value

for ∆log(k) is 0 and the interquartile range is [−0.05, 0.12]. Results for the other probability

vectors are similar.47 Thus, the changes in equalizing reductions for our subjects, and hence
46This calculation is based on the midpoints of the intervals for k or k implied by each subject’s switch point.
47For {p, q, 1 − p − q} = {0.4, 0.3, 0.3}, the median actual value for ∆log(k) is 0 and the interquartile range

is [−0.10, 0.10] while for {p, q, 1 − p − q} = {0.1, 0.3, 0.6}, the median actual value for ∆log(k) is 0 and the
interquartile range is [−0.11, 0.10].
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Figure 4: Individual Results
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the changes in their relative decision weights, are concentrated within a small band around

zero. Though the equalizing reductions exhibit almost no rank dependence, substantial rank

dependence is predicted according to the estimated subject-level CPT models; see also Fig-

ure 4, Panel A.48 Panel B shows the subject-level relationship between predicted and actual

rank dependence. For every probability vector, the correlation between the predicted value,

∆log(wY /wZ), and the actual value, ∆log(k), is indistinguishable from zero.49 We obtain sim-
48For {p, q, 1− p− q} = {0.6, 0.3, 0.1}, the median predicted value for ∆log(wY /wZ) is -0.17, for {p, q, 1− p−

q} = {0.4, 0.3, 0.3}, it is -0.33, and for {p, q, 1 − p − q} = {0.1, 0.3, 0.6}, it is -0.23. Wilcoxon signed rank tests
for equivalent distributions across predicted and actual rank dependence yield the following test statistics: z =
7.00, (p < 0.01), z = 8.77, (p < 0.01), and z = 7.54, (p < 0.01) for {p, q, 1−p−q} = {0.6, 0.3, 0.1}, {0.4, 0.3, 0.3},
and {0.1, 0.3, 0.6}, respectively.

49 Correlations between predicted and actual values are ρ = 0.01, (p = 0.86), ρ = 0.06, (p = 0.46), and
ρ = −0.03, (p = 0.69) for {p, q, 1− p− q} = {0.6, 0.3, 0.1}, {0.4, 0.3, 0.3}, and {0.1, 0.3, 0.6}, respectively.
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ilar results when we use subject-level estimates of the curvature parameter for the probability

weighting function based on responses to variations in probabilities for the equalizing reduction

tasks rather than for the certainty equivalent tasks.50 Thus, our conclusions do not rely on an

assumption of procedural invariance.

Our subject-level results provide striking evidence of rank-independent probability weight-

ing. The majority of subjects exhibit no evidence of quantitatively consequential rank depen-

dence as ranks change from X > Y to X < Y . Further, the individualized CPT models predict

sizable percentage changes in relative weights for many subjects, and those predictions bear no

relation to the actual magnitudes. Plainly, our main findings are not driven by unrepresentative

subjects or other forms of heterogeneity.

5.2 Order Effects

Our main findings exploit within-subject variation in payoff rank. If a subject’s early responses

in the tasks used to elicit equalizing reductions somehow anchor their later responses, that

approach could obscure rank dependence. We note, however, that responses often change

considerably at the individual level from one block of tasks to the next. For example, between

the first and second block of tasks, 59% of individual responses differ and 37% of responses differ

by more than 25 percent.51 Order effects certainly do not appear to dampen within-subject
50Unlike our certainty equivalent estimates, where predictions for rank dependence can be made for every

subject, estimates from equalizing reductions do not reliably converge within 200 iterations for every subject.
For X < Y , predictions for rank dependence can be made for 133 of 143 subjects, while for X > Y , predictions
can be made for 137 subjects. Predictions of ∆log(wY /wZ) can be made for all three methodologies for 130
subjects. For one of these subjects we predict ∆log(wY /wZ) > 10. For the remaining 129 subjects, the cross-
subject correlations between the measured ∆log(k) and predicted ∆log(wY /wZ) are 0.02 when inferring γ from
certainty equivalent tasks, 0.13 when inferring from equalizing reduction tasks with X < Y and 0.04 when
inferring from equalizing reduction tasks with X > Y . The cross-subject correlations between predicted values
of ∆log(wY /wZ) based on certainty equivalent tasks, and based on equalizing reduction tasks with X < Y is
0.46; for equalizing reduction tasks with X > Y , the correlation is 0.42. The cross-subject correlation between
predicted values of ∆log(wY /wZ) based on equalizing reduction tasks with X < Y and those with X > Y is
0.49.

51The 143 subjects make three decisions in each task block yielding 429 potential differences across the first
and second task blocks. Of these, 175 responses (41%) exhibit no change, 100 responses (23%) increase, and 154
(36%) decrease. The order of the first two task blocks has no measurable relationship with changes. Forty-four
subjects began with X < Y first and then proceeded to X > Y , giving 132 potential differences. Of these, 57
responses (43%) exhibit no change, 34 responses (26%) increase, and 41 (31%) decrease. Forty-one subjects
began with X > Y first and then proceeded to X < Y , giving 123 potential differences. Of these, 50 responses
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responses to changes in the probability vector, hence it is hard to see why they should do so

for rank-order effects.

To address any residual concerns about anchoring, we replicate our analysis using only

the first task block for each subject. Recall that payoff rank is fixed within each block. It

follows that, with this alternative approach, we identify possible rank dependence entirely from

between-subject variation using responses that are untainted by anchoring. For such between-

subjects analysis, we rely only on the variation in the ordering of tasks across sessions. To

account for selection on observable characteristics, we additionally include measures of gender,

age, and cognitive ability from a post-study questionnaire and each subject’s average certainty

equivalent in their binary lottery tasks to control for the level of risk aversion.52

Table 4 presents between-subjects results based on the first task blocks with and without the

controls noted above.53 We see a hint of rank dependence, particularly for {p, q, 1 − p − q} =

{0.6, 0.3, 0.1}, without controls in Panel A. With controls in Panel B we find essentially no

differences between k and k. In all cases, the degree of observed rank dependence falls far short

of the various CPT benchmark predictions from Table 3, Panel B.

Can one construe the small differences between k and k without controls as limited evidence

of rank-dependent probability weighting and CPT? In our view, any such inference would be

unwarranted. With 143 subjects in total, the subsamples that first faced X < Y and X > Y

are of modest size, and consequently not perfectly matched. Indeed, we find some hints of

selection across these subsamples in observable characteristics such as gender, cognitive ability,

and average risk aversion, all of which correlate highly with equalizing reductions (see Online

(41%) exhibit no change, 33 responses (27%) increase, and 40 (33%) decrease. Under the estimated CPT model,
one would expect more frequent decreases for subjects with X < Y first and more frequent increases for subjects
with X > Y first. The differences in response across the first two blocks does not seem localized to a limited
number of subjects, with only 28 of 143 subjects (20%) exhibiting no change across any of the three decisions,
and 45 (31%) exhibiting a change in all three.

52Cognitive ability is measured with the three question Cognitive Reflection Test introduced and validated in
Frederick (2005).

53 See Online Appendix Table A3, columns (3) and (5) for further detail on these regressions. Of the 143
subjects in the primary sample, 21 had the X = 19 block first, 23 had the X = 21 block first, 21 had the X = 23
block first, 22 had the X = 30 block first, 19 had the X = 32 block first, and 37 had the X = 34 block first.
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Appendix Table A3, Columns (5) and (6) for detail).54 Absent controls for this potential

selection, the differences in characteristics inflate k relative to k, spuriously producing the

appearance of modest rank dependence.55

Table 4: Equalizing Reductions Between Subjects
Panel A: First Task Block (without Controls) Panel B: First Task Block (with Controls)

{p, q, 1− p− q} k k
̂

∆log
(
wY
wZ

)
k k

̂
∆log

(
wY
wZ

)
[95% Conf.] [95% Conf.]

{0.6, 0.3, 0.1} 9.81 (0.65) 8.71 (0.56) -0.12 (0.09) 9.77 (0.60) 9.13 (0.56) -0.07 (0.09)
[-0.30,0.06] [-0.24,0.10]

{0.4, 0.3, 0.3} 4.78 (0.19) 4.41 (0.19) -0.08 (0.06) 4.65 (0.22) 4.61 (0.21) -0.01 (0.07)
[-0.20,0.04] [-0.14,0.12]

{0.1, 0.3, 0.6} 3.16 (0.16) 2.88 (0.12) -0.09 (0.07) 3.01 (0.20) 3.07 (0.16) 0.02 (0.09)
[-0.22,0.04] [-0.15,0.19]

Notes: Mean behavior for k and k estimated from interval regression (Stewart, 1983) of experimental
response on indicators for probability vector interacted with indicator for whether X > Y . Estimated
change in relative decision weights, ̂∆log (wY /wZ), calculated as ∆log(k). Standard errors clustered at
individual level and calculated using the delta method, in parentheses. See Online Appendix Tables A3,
columns (3) and (5) and Table A8 for detail. Panel A: No controls; 143 total subjects. Panel B: controls
include age, gender, Cognitive Reflection Task score, and mean certainty equivalent from seven certainty
equivalents tasks; 135 total subjects.

5.3 Rank Dependence and Cancellation

Our experiment could also obscure rank dependence if decisionmakers adopt the heuristic prac-

tice of “canceling” common elements across available lotteries before evaluating them (see Wu,

1994; Weber and Kirsner, 1997). Specifically, subjects may cancel the probability p chance of

54Subjects who first faced X < Y (X > Y ) are 51% (45%) male, with Cognitive Reflection Test scores of 2.28
(2.02), and average certainty equivalents of 11.96 (11.35). Of these comparisons, the difference in risk aversion
has a two-sided t-test p-value of 0.05 and the difference in cognitive ability has a two-sided p-value of 0.15. An
omnibus test of selection from the regression of assignment to X < Y first on the controls of Table 4, Panel B
yields F (5, 134) = 1.60, p = 0.17), suggestive of the potential for selection on observables. These differences
are of no consequence for the main portion of our analysis, which relies on within-subject variation, but could
be influencing the results of Table 4, Panel A.

55In Online Appendix Table A6, we also present a specification that includes controls for gender, age and
cognitive ability, but omits our risk aversion proxy. The latter specification addresses any concerns that the
average certainty equivalent in binary lottery tasks might be sensitive to the types of three-outcome lottery
tasks (X < Y versus X > Y ) the subject encounters first, a possibility we regard as remote. Results for that
specification are similar to those reported in Table 4, Panel B.
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winning X common to both L and Le when determining their equalizing reduction. In that

case, they would ignore the changes in payoff ranks that occur when the value of X passes

through either Y or Z.

To determine whether our results are attributable to cancellation, we designed a modified

equalizing reduction task. In this task, we add m to X while reducing Y and Z by k. That

is, the modified equalizing reduction identifies the value of k that makes a subject indifferent

between the lottery L = ({p, q, 1−p−q}, {X, Y, Z}) and the lottery Le = ({p, q, 1−p−q}, {X+

m,Y − k, Z − k}). Note that L and Le share no common outcome with identical probabilities

and payoffs, so there is nothing for the decisionmaker to cancel.

We can use these modified equalizing reductions as the basis for an alternative test of CPT

probability weighting. Suppose in particular that we measure one equalizing reduction, k, for

a lottery with X > Y > Z, another, k′, for a lottery with Y − k′ > X ′ + m > X ′ > Z, and a

third, k′′, for a lottery with Z − k′′ > X ′′ +m. In that case, CPT implies:

m

k
≈ π(p+ q)− π(p)

π(p)

du/dY

du/dX
+

1− π(p+ q)

π(p)

du/dZ

du/dX
, (7)

m

k′
≈ π(q)

π(p+ q)− π(q)

du/dY

du/dX ′
+

1− π(p+ q)

π(p+ q)− π(q)

du/dZ

du/dX ′
, (8)

and
m

k′′
≈ π(q)

1− π(1− p)
du/dY

du/dX ′′
+
π(1− p)− π(q)

1− π(1− p)
du/dZ

du/dX ′′
. (9)

The differences between k, k′, and k′′ will depend on rank-dependent probability weights for

X,X ′, X ′′ and Y along with marginal utilities for X,X ′, X ′′, Y and Z. To build intuition, we

will start with the case where utility is linear (so that marginal utility is fixed), while probability

weights potentially vary. For small m, CPT predicts a discontinuous change in the equalizing

reduction as the value of X passes through Y :

log(k)− log(k′) ≈ log

(
1− (π(p+ q)− π(q))

π(p+ q)− π(q)

)
− log

(
1− π(p)

π(p)

)
.
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As long as p is not too large (so that π(p) > p), the concavity of the probability weighting curve

for low probabilities implies that π(p) > π(p+q)−π(q). It then follows that log(k)−log(k′) > 0,

which means that the equalizing reduction decreases discontinuously as X passes below Y .

Likewise, for small m, CPT also implies a discontinuous change in the equalizing reduction as

the value of X passes through Z:

log(k′)− log(k′′) ≈ log

(
π(1− p)

1− π(1− p)

)
− log

(
1− (π(p+ q)− π(q))

π(p+ q)− π(q)

)
.

As long as p is not too large (so that π(1 − p) < 1 − p), the convexity of the probability

weighting curve for large probabilities implies 1 − π(1 − p) > π(p + q) − π(q). It then follows

that log(k′)− log(k′′) < 0, which means that the equalizing reduction increases discontinuously

as X passes below Z.

The key implication of the preceding analysis is that, under CPT, variations in X should

produce discontinuities in the modified equalizing reduction of opposite signs depending on

whether the value of X passes through Y (the high payoff) or Z (the low payoff). Our strategy

is to test this distinctive implication. The following calculations provide an illustration using

the parameterized probability weighting function of Tversky and Kahneman (1992). For p =

0.4, q = 0.3, we have π(0.4) = 0.37, π(0.7) − π(0.3) = 0.22 and 1 − π(1 − 0.4) = 0.53,

which implies opposing discontinuities: log(k)− log(k′) = 0.76, and log(k′)− log(k′′) = −1.40.

Similarly for p = 0.6, q = 0.2, we have π(0.6) = 0.47, π(0.8) − π(0.2) = 0.35 and 1 − π(1 −

0.6) = 0.63, which likewise implies opposing discontinuities: log(k) − log(k′) = 0.53, and

log(k′)− log(k′′) = −1.17.

The preceding discussion assumes utility is linear. In the Appendix, we generalize our

analysis to the case of concave utility, proving that the X—k schedule continues to exhibit two

discontinuities of opposite signs (see Proposition 3). In addition, variations in X that leave

ranks unaffected can change the modified equalizing reduction. From equations (6) through

(8), it is apparent that k, k′, and k′′ are proportional to, respectively, du/dX, du/dX ′, and

du/dX ′′. Assuming concavity, these marginal utilities decline as the payoff rises, which imparts
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a downward slope to the X—k schedule within each of the three regimes (the "curvature

effect"). For instance, with the standard parametrization of utility, u(X) = Xα, we have

log(k) = K − (1 − α)log(X) (for some constant K), along with similar expressions for k′ and

k′′. Under EU and PT, we would expect to see a continuous, downward-sloping curve of this

form. Notice that, for discrete changes in the value of X, the rank-dependence effect reinforces

the curvature effect when X crosses Z, but opposes it when X crosses Y . Accordingly, if the

rank-dependence effect is important, we should observe substantially different changes in the

modified equalizing reductions in these two cases.

We implemented our supplemental design with 84 Stanford subjects in the Fall of 2017 and

Winter of 2018. Each subject completed 18 modified equalizing reduction tasks. In each task

subjects made a series of decisions between two lotteries. We examined two probability vectors,

{p, q, 1 − p − q} = {0.4, 0.3, 0.3} and {p, q, 1 − p − q} = {0.6, 0.2, 0.2}, corresponding to the

examples provided above. In each task Y = $36, Z = $18, m = $4 and k ranged from $0

to $9.75 in $0.25 increments. We used nine values of X/X ′/X ′′ for each probability vector,

{2, 3, 4, 20, 21, 22, 38, 39, 40}; notice that X increased by a factor of 20 across all tasks. We

vary X over this wide range to ensure that the differences are salient to the subjects, and we

verify this salience by demonstrating below that subjects respond to the variation in X as one

would predict in light of the utility function’s curvature. Online Appendix Figure A5 exhibits

a sample task.56 As before, subjects also completed the seven Prospect Theory elicitation tasks

of Tversky and Kahneman (1992) which we used to generate one set of benchmark predictions

for behavior in the new environment. Seventy-two of 84 subjects (85.7%) completed all tasks

without multiple switching.57

Figure 5 presents results from this supplemental experiment. As before, the elicited certainty

equivalents reproduce the S -shaped pattern commonly associated with probability weighting.

Based on these data, we estimate α = 0.982 (clustered s.e. = 0.024) and γ = 0.766 (0.021),
56Note that subjects had no opportunity to choose values of k that would have changed payoff ranks within

any task.
57Incorporating multiple switching subjects by removing only their multiple switching observations yields

virtually identical results.
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and reject at all conventional levels the null hypothesis of a linear weighting function, γ = 1,

F1,71 = 121.9, (p < 0.01). Using these parameters, we generate a benchmark by predicting

modified equalizing reductions.58 Panel B shows the predicted pattern for each probability

vector. The predicted X − k schedule exhibits striking non-monotonicity.59 Additionally, the

curvature effect discussed above leads to decreasing values of k within the regions X > Y > Z,

Y > X ′ > Z, and Y > X ′′ > Z.

To address potential concerns about failures of procedural invariance, we also generate

alternative benchmarks analogous to those presented in Section 4.3. Specifically, we exploit

variation in probabilities within each of the three regimes to estimate the curvature parameter

of the probability weighting function,60 and then use that estimate to predict changes in the

modified equalizing reduction. Online Appendix Figure A6 contrasts the benchmarks generated

from these estimates with actual behavior. Our conclusions are robust with respect to these

alternative benchmarks.

In contrast to the predictions based on the calibrated CPT models, the average value of the

actual modified equalizing reduction shows no hint of non-monotonicity in X. Though subjects

respond strongly to differences in probabilities, there is no indication that payoff ranks matter,

either as CPT predicts or otherwise. The observed declines in equalizing reductions are smooth

and monotonic, and the overall patterns are qualitatively consistent with the curvature effect

noted above. At the individual level, only 4 of 72 subjects exhibit the non-monotonic pattern

predicted by CPT for both probability vectors.61

58For these predictions we assume a reference point of r = 0 and calculate the value k that solves for
indifference between L = ({p, q, 1− p− q}, {X,Y, Z}) and Le = ({p, q, 1− p− q}, {X +m,Y − k, Z − k}) at the
estimated CPT parameters.

59The X − k schedule does not feature sharp discontinuities because of our use of non-infinitesimal values of
m and k. There exist two transitional regions where either: 1) Z > X and Z − k < X + m, or 2) Y > X and
Y − k < X +m.

60Using the functional forms of Tversky and Kahneman (1992) and an additive disturbance, we estimate
equations (6), (7), and (8) using non-linear least squares with standard errors clustered at the individual level.
The estimates for γ are 0.785 (0.032), 0.863 (0.024), and 0.741 (0.042) for X > Y > Z, Y > X ′ > Z,
and Y > Z > X ′′, respectively. The estimates for α are 0.844 (0.074), 0.437 (0.364), and 1.066 (0.021) for
X > Y > Z, Y > X ′ > Z, and Y > Z > X ′′, respectively.

61For the purpose of this calculation, we treat the subject as conforming to the predicted pattern for a
particular probability vector if their average values of k and k′′ are at least 25 cents greater than their average
value of k′.
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Analogously to Section 4.4, we can ask whether the PT, CPT, or EU (linear) formulation

of probability weighting provides the best explanation for our data on modified equalizing

reductions. Estimating again equation (5) with standard errors clustered at the individual

level yields α = 0.948 (0.017), γ = 0.809 (0.025), and δ = −0.039 (0.062). The probability

weighting function continues to exhibit substantial curvature, but the rank-dependent CPT

version receives approximately zero weight. Interestingly, the estimated probability weighting

parameter from this specification is quite similar to that obtained from certainty equivalents for

the same subjects, which suggests that there is no meaningful failure of procedural invariance;

i.e., the modified equalizing reduction design does not, itself, dramatically alter the shape of

the probability weighting function.62

Figure 5 confirms that the evidence of rank independence in our main experiment is not

an artifact of cancellation. Subjects attend to payoff values (including X) and probability

vectors when determining their equalizing reductions, but there is no indication that the rank

of outcomes per se influences behavior.

5.4 Random Choice

Finally, it is important to rule out the possibility that we detect no rank dependence because

our subjects ignore the parameters of their decision tasks (either in general, or X in particular)

and make their choices more or less randomly. This hypothesis is inconsistent with the following

findings.

First, as we have noted, equalizing reductions are highly responsive to variations in the

probability vector. Shifting 20% of the probability mass from the high-payoff outcome to the

low-payoff outcome, thereby reducing p from 0.6 to 0.4, cuts the average equalizing reduction in

half (see Table 3 and Figure 3, Panel B). Moving another 30% of the probability mass from the

high payoff to the low payoff, thereby reducing p from 0.4 to 0.1, halves the equalizing reduction

again. According to our parameterized CPT models, the induced changes in payoff ranks should
62Additionally, the similarity in results for estimated probability weighting parameters between our initial

and modified designs suggests that the two samples do not differ meaningfully along this critical dimension.
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Figure 5: Certainty Equivalents and Modified Equalizing Reductions
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Notes: Panel A: Mean behavior for C estimated from interval regression (Stewart, 1983) of experimental
response on indicators for probability vectors. Standard errors clustered at individual level to provide 95%
confidence interval. Dashed line corresponds to predicted CPT behavior with α = 0.982 (s.e. = 0.024) and
γ = 0.766 (0.021); standard errors clustered at individual level. Panel B: Mean behavior for modified equalizing
reduction estimated from interval regression of experimental response on indicators for probability vectors
interacted with indicators for value of X. Standard errors clustered at individual level to provide 95% confidence
interval. Dashed line corresponds to predicted equalizing reductions for CPT decisionmaker with risk preference
parameters α = 0.982 and γ = 0.766.

be just as consequential, in that they ought to induce similar changes in probability weights,

yet they have no effects. More generally, the parameterized CPT model generally predicts

behavior with reasonable accuracy out of sample with the exception of variations involving

rank dependence.

Second, our analysis of subject-level results (section 4.3) shows that estimates of the per-

centage change in k induced by a change in payoff ranks cluster tightly around zero. In other
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words, as a general matter, changing payoff ranks induces very little change in the equalizing

reduction, which means we rarely observe subjects who exhibit economically meaningful rank

dependence. In contrast, if choices were truly random, we would often observe economically

meaningful rank dependence simply by chance: the distributions for the change in equalizing

reduction resulting from a change in ranks would still be centered around zero, but they would

be far more diffuse (see Online Appendix D for simulations). Thus, the consistent absence of

rank dependence, documented in Panel A of Figure 4, rejects the random choice hypothesis.

Third, our analysis of the cancellation hypothesis (section 4.5) shows clearly that equalizing

reductions respond strongly to changes in X precisely in the way theory predicts they should

based on utility curvature. (See in particular Panel B of Figure 5, in which the relationships

between actual equalizing reductions and X are robustly downward-sloping.) In light of these

results, one cannot plausibly claim that our experiments induce subjects to ignore variations

in the value of X.

6 Event Splitting and Violations of Dominance

Our analysis casts doubt on the empirical validity of the assumption about rank-dependent

probability weighting that lies at the core of CPT. What type of model should behavioral

economists consider in its place? One possibility is that PT is correct, in which case people

should actually exhibit the implied violations of first-order stochastic dominance that motivated

the formulation of CPT in the first place. After we obtained our main results, we fielded an

additional treatment designed to investigate that hypothesis.

We conducted the follow-up experiment at Stanford University and UC San Diego during the

Spring and Fall of 2015. A total of 214 subjects completed the experiment, and 182 exhibited

no instances of multiple switching.63 We elicited certainty equivalents first for binary lotteries,

such as a 40% chance of receiving $30 and 60% chance or receiving $20. In one task the lower
63We recruited 126 at UC San Diego and 88 at Stanford. Those who exhibited no instances of multiple

switching include 99 subjects from UC San Diego and 83 from Stanford. Subjects from the two locations made
qualitatively similar choices.
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payoff was more likely, and in another it was less likely. Then, we elicited certainty equivalents

for related “split-event” lotteries, which we created by splitting the more likely event in each of

the binary lotteries. For the preceding example, a “split-event” lottery would take the following

form: a 40% chance of receiving $30, a 30% chance of receiving $20 + ε, and a 30% chance of

receiving $20 − ε. Across tasks, ε took on the following values: $0.50, $1, $2, and $3. Note

that this split-event design is also immune to critiques involving the cancellation hypothesis,

as subjects choose between lotteries and sure amounts rather than between two lotteries with

common elements. Subjects also completed a series of seven Prospect Theory elicitation tasks

involving binary lotteries, as before.

Most empirical parameterizations of PT imply that a 60% probability receives substantially

less than twice the weight of a 30% probability. Splitting an event occurring with 60% prob-

ability into two similar events, each occurring with 30% probability, should therefore increase

certainty equivalents dramatically. It follows that PT predicts a sharp downward discontinu-

ity at ε = 0. As noted in Section 1, such discontinuities imply violations of dominance. In

contrast, CPT predicts that responses vary smoothly with ε and thereby avoid dominance vio-

lations. Importantly, under CPT the nature of the outcome that is split influences the direction

of response. Splitting a good event occurring with 60% probability into two similar events with

30% probability creates a lottery with greater proportionate weight on better outcomes, increas-

ing valuations.64 Splitting a bad event occurring with 60% probability into two similar events

with 30% probability creates a lottery with greater proportionate weight on worse outcomes,

decreasing valuations.65 Hence, CPT can generate an asymmetric prediction in this setting.

This prediction differs in turn from that of EU, which predicts weakly decreasing (increasing)
64Consider a 60% probability of $30, 40% probability of $20. Split the 60% of $30 to two 30% probabilities

of $30 +/− ε. The split lottery will yield higher utility if

π(0.3)u(30 + ε|r) + [π(0.6)− π(0.3)]u(30− ε|r) + [1− π(0.6)]u(20|r) > π(0.6)u(30|r) + [1− π(0.6)]u(20|r).

Under the approximation u(30+ ε|r)−u(30|r) = u′(30|r)ε and u(30|r)−u(30− ε|r) = u′(30|r)ε , this expression
reduces to

2π(0.3) > π(0.6),

a property generally satisfied by S -shaped weighting functions used in the literature.
65Consider a 60% probability of $20, 40% probability of $30. Split the 60% of $20 to two 30% probabilities
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valuations for all types of split events provided utility is concave (convex).66

Figure 6 presents our findings. As shown in Panel A, the Prospect Theory elicitation tasks

exhibit the hallmark pattern of probability weighting. In Panel B, we use the fitted probability

weighting to predict the effect of event-splitting on certainty equivalents.67 The predicted

certainty equivalents vary smoothly but asymmetrically with ε under CPT, and feature a sharp

increase at zero under PT. In contrast, the means of the actual certainty equivalents both

decrease sharply when we split the low-outcome event, and then level off. Specifically, moving

from ε = 0 to ε = 0.5 reduces the average certainty equivalent by $0.47 (clusted s.e. = 0.11),

(z = 4.16, p < 0.01).68 We observe a qualitatively similar though somewhat muted pattern

when we split the high-outcome event.69

The findings in Panel B of Figure 6 are inconsistent with PT, CPT, and EU, and there-

fore call for an alternative explanation. A unified theory must account simultaneously for all

three patterns discussed in this study: (1) robust evidence of probability weighting based on

behavioral responses to variations in probabilities, (2) rank independence in equalizing reduc-

of $20 +/− ε. The split lottery will yield lower utility if

π(0.4)u(30|r) + [π(0.7)− π(0.4)]u(20 + ε|r) + [1− π(0.7)]u(20− ε|r) < π(0.4)u(30|r) + [1− π(0.4)]u(20|r).

Under the approximation u(20+ ε|r)−u(20|r) = u′(20|r)ε and u(20|r)−u(20− ε|r) = u′(20|r)ε , this expression
reduces to

2π(0.7) < 1 + π(0.4),

a property generally satisfied by S -shaped weighting functions used in the literature.
66Another valuable aspect of this design is that certainty equivalents are used for elicitation of both the CPT

parameters and split-event valuations. Hence, any elicitation issues related to certainty effects plausibly effect
both elements of the design.

67Using the same estimation strategy as before, we obtain the following parameter values: α = 0.975 (clustered
s.e. = 0.019) and γ = 0.671 (0.013).

68Test statistics are derived from interval regressions (Stewart, 1983) of certainty equivalents on indicators
for ε. Standard errors are clustered at the subject level.

69The apparent distaste for splitting an event, which turns a binary lottery into a trinary one, is not an
artifact of differences in presentation. As shown in Figure 6, certainty equivalents are essentially the same
regardless of whether we present a binary lottery as a 60%-40% gamble, or as a 30%-30%-40% gamble with
identical payoffs for the first two events. Recall that we employed a single presentation of binary lotteries
for each subject, so this finding reflects between-subject comparisons. One notable phenomenon discussed
by Birnbaum (2008) is a sensitivity of lottery valuations to description of events. Describing two lotteries
as ({0.85, 0.10, 0.05}; {100, 50, 50}) and ({0.85, 0.10, 0.05}; {100, 100, 7}) leads to different hypothetical binary
choice patterns than ({0.85, 0.15}; {100, 50}) and ({0.95, 0.05}; {100, 7}). This failure of ‘coalescing’ is one of a
number of violations reviewed by Birnbaum (2008) and is clearly at odds with CPT. Interestingly, in incentivized
tasks we do not see the failure of coalescing noted by Birnbaum (2008) for hypothetical choice.
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Figure 6: Certainty Equivalents and Split Probabilities
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Notes: Panel A: Average certainty equivalent, C, estimated from an interval regression (Stewart, 1983) of
elicited certainty equivalents on the probability of winning $25. Confidence intervals based on standard errors
clustered at the subject level. Dashed line corresponds to CPT predictions with α = 0.975 (s.e. = 0.019) and
γ = 0.671 (0.013); standard errors clustered at individual level. Panel B: Average certainty equivalent, C,
estimated from interval regressions of elicited certainty equivalents on the value of ε. Confidence intervals based
on standard errors clustered at subject level. For ε = 0, separate averages reported based on presentation style
(either 60%-40% or 30%-30%-40% with identical payoffs for the first two events). Dashed line corresponds to
CPT predictions assuming PT at aggregate parameters. Solid line corresponds to prediction assuming CPT at
aggregate parameters.

tions, and (3) the sharp drop in certainty equivalents that results from splitting an event. EU

is inconsistent with (1) and (3). In light of (1), CPT is inconsistent with (2) and (3), and

PT is inconsistent with (3). Alternatives to CPT that likewise incorporate rank-dependent

probability weighting are also rejected.

One possibility is to reformulate PT probability weighting in terms of normalized weights

– that is, π(pk)
π(p1)+...+π(pK)

rather than simply π(pk). That model accounts for the downward

discontinuity observed when splitting the low-payoff event, but implies an upward discontinuity

when splitting the high-payoff event, which we do not observe. It also precludes the theory from

accounting for the well-known certainty effect, which Allais famously described as a “preference
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for security in the neighborhood of certainty” (Allais, 2008), for which there is considerable

evidence (see, e.g., Camerer, 1992; Harless and Camerer, 1994).

A second and more promising possibility is that the observed behavior reflects a combination

of standard PT and a form of complexity aversion: people may prefer lotteries with fewer

outcomes because they are easier to understand.70 One can think of the certainty effect as a

special case of this more general phenomenon. Under this hypothesis, sufficiently small values

of ε lead subjects to see a lottery as binary rather than trinary, which discretely increases

their certainty equivalents. Because the PT probability-weighting effect works in the opposite

direction, the composite effect of reducing ε to zero can be positive or negative.

The aforementioned theory can in principle account for the somewhat different patterns

observed when we split the high-payoff and low-payoff events. Higher stakes may reduce the

magnitude of the complexity effect by making subjects more willing to ponder their prospects.

Additionally, if subjects think of discrepancies between payoffs in relative terms, a higher payoff

will tend to enlarge the “neighborhood” within which they implicitly “merge” events yielding

similar outcomes. Both implications are consistent with the pattern observed in Panel B of

Figure 6, but we acknowledge that this is an ex post rationalization for a somewhat limited

collection of results rather than a bona fide and systematic test of the theory.

It is important to acknowledge that complexity effects, like PT, potentially give rise to

violations of dominance. However, the implied violations are explicable, because they involve

the selection of options that are easier to understand. To illustrate, in our experiment, splitting

a 60% chance of receiving $20 into a 30% chance of receiving $20.50 and a 30% chance of

receiving $19.50 decreases the certainty equivalent by $0.47. Assuming the addition of $0.50

to the $19.50 payoff increases the certainty equivalent by less than $0.47, we plainly have a

violation of dominance: the individual attaches more value to the original lottery than to the
70We are certainly not the first to discuss complexity as a driver of choice. A body of relevant work has

highlighted the effects of complexity and the number of decision options on choice (see, e.g., Iyengar and
Lepper, 2000; Iyengar, Jiang and Huberman, 2003; Iyengar and Kamenica, 2010; Sonsino and Mandelbaum,
2001). Additionally, Stodder (1997) draws links between complexity and Allais-style behavior in a theory
involving costly calculation.
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revised split-event lottery even though the latter dominates the former.71

7 Conclusion

The main lessons of this study concern the empirical validity of rank-dependent probability

weighting, an assumption that lies at the core of Cumulative Prospect Theory (CPT). We

conduct an experimental investigation involving the elicitation of ‘equalizing reductions.’ A

meaningful degree of rank dependence implies that these equalizing reductions should change

discontinuously when a shift in the payoff associated with an unrelated realization alters the

ranking of payoffs, but should otherwise remain constant. Indeed, we have shown that the

percentage change in the equalizing reduction precisely (and non-parametrically) measures

the percentage change in the relative decision weights applied to the outcomes. Based on

standard parameterizations of CPT as well as our own estimates for our subject pool, these

discontinuities should be substantial. And yet we find no evidence of the predicted pattern at

either the aggregate or individual level, based on both within and between-subjects analysis.

Thus we conclude that an empirical foundation for rank-dependent probability weighting is

absent. We demonstrate that models with reference distributions (notably Koszegi and Rabin,

2006, 2007) have similar implications, and hence we falsify them as well. Other features of our

results are contrary to theories of payoff-sensitive reference points (as in Bell, 1985; Loomes

and Sugden, 1986).

Our findings pose serious challenges for future research on choice under uncertainty. If

CPT has taken the PT agenda in the wrong direction by promoting the assumption of rank-

dependent probability weighting (which several other recent theories embrace), how can we

reconcile PT with the presumed absence of implied dominance violations? As we demonstrate

in a supplemental experiment involving the effects of “event splitting,” those violations indeed

do not arise. Instead, we observe a different type of violation that is at odds not only with
71Viewing complexity as a rationale for indirect violations of dominance between binary and trinary lotteries

may also yield insights concerning other indirect dominance violations between binary and degenerate lotteries,
such as those documented by Gneezy, List and Wu (2006) and Andreoni and Sprenger (2011).
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PT, but also with CPT and EU. An important direction for future research is to explore

tractable explanations for this finding that do not involve rank dependence. One potential

explanation involves a general form of aversion to complexity. That notion rationalizes the

behavioral patterns discussed in this study, but whether it survives rigorous and systematic

testing remains to be seen.

A potential defense of rank dependence is that it is an assumption of convenience: it renders

PT more tractable for applications, but is rarely required to account for observed behavior,

including anomalies. This argument strikes us as odd. First, rank dependence undeniably plays

a critical role in a number of applications, and is responsible for generating particular results.

We noted several examples in footnote 9. If there is no empirical support for rank dependence,

then plainly those applications require reexamination. Second, in other applications, either (1)

it is known that rank dependence is inessential for generating the results of interest, or (2) it

is not known. Case (1) cannot arise unless the researcher has conducted the analysis without

assuming rank dependence and found it tractable, in which case there is no reason to employ

rank dependence as an assumption of convenience. In case (2), the possibility remains that the

result of interest may be an artifact of an assumption that lacks empirical validity.

Additional research is plainly required to test the robustness of our findings. In twenty-

five years since the publication of Tversky and Kahneman (1992), there have been numerous

studies of probability weighting for binary lotteries, but decidedly few systematic studies of rank

dependence. Further work is needed to resolve the relevance of rank dependence in a variety of

experimental and naturally occurring contexts. If the findings of the current study replicate,

the profession could either discard CPT and other models that employ or (as in the case of

Koszegi and Rabin’s theory of reference distributions) imply rank dependence, or augment the

CPT model with additional degrees of freedom to accommodate the absence of rank dependence

in the data. If the former path is followed, valuable research could focus on the importance

of complexity in decision making under uncertainty. If the latter path is followed, the model

will need to be augmented with novel degrees of freedom, as preexisting hypotheses concerning
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heuristic cancellation and the nature of reference dependence cannot rationalize the data.
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Appendix: Proofs and Proposition 3

Proofs of Propositions 1 and 2

Proof of Proposition 1 : Noting that k and k converge to zero as m→ 0, we apply l’Hospital’s
rule (along with continuity of the log function) to obtain

lim
m→0

∆ log(k) = ∆ log

(
lim
m→0

dk

dm

)
Fixing any value of X 6= Y, Z and choosing m sufficiently small so that the orderings of X, Y, Z
and X, Y + m,Z − k (and hence the decision weights wX , wY , and wZ) are the same, we see
from equation (2) that

dk

dm
=
wY
wZ

(
u′(Y +m)

u′(Z − k)

)
Because u is continuously differentiable at Y and Z, we have:

lim
m→0

dk

dm
=
wY
wZ

(
u′(Y )

u′(Z)

)
.

But then

∆ log

(
lim
m→0

dk

dm

)
= log

(
wY
wZ

(
u′(Y )

u′(Z)

))
− log

(
wY
wZ

(
u′(Y )

u′(Z)

))
= ∆ log

(
wY
wZ

)
Q.E.D.

Proof of Proposition 2 : As in the proof of Proposition 1,

lim
m→0

∆ log(k) = ∆ log

(
lim
m→0

dk

dm

)
Choosing m sufficiently small so that the orderings of the payoffs (and hence the decision
weights wX , wY , and wZ) are the same, we implicitly differentiate the indifference condition,
equation (2), using u1 and u2 to stand for the partial derivates of the utility function with
respect to the payoff and the reference point, respectively, to obtain:

dk

dm
=
wY
[
u1(Y +m, r) + (u2(Y +m,R)− u2(Y,R)) dR

dm

]
+ wZ (u2(Z − k,R)− u2(Z,R)) dR

dm

wZ
[
u1(Z − k, r) + (u2(Z,R)− u2(Z − k,R)) dR

dk

]
+ wY (u2(Y,R)− u2(Y +m,R)) dR

dk

Given the (local) continuous differentiability of u and R, it follows that

lim
m→0

dk

dm
=
wY
wZ

(
u1(Y,R)

u1(Z,R)

)
But then, for fixed n,
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∆ log

(
lim
m→0

dk

dm

)
= log

(
wY
wZ

(
u′(Y,R

n
)

u′(Z,R
n
)

))
− log

(
wY
wZ

(
u′(Y,Rn)

u′(Z,Rn)

))

= ∆ log

(
wY
wZ

)
+ log

((
u′(Y,R

n
)

u′(Y,Rn)

)(
u′(Z,Rn)

u′(Z,R
n
)

))
Using the local continuity of R and the local continuous differentiability of u, we have

lim
n→∞

log

((
u′(Y,R

n
)

u′(Y,Rn)

)(
u′(Z,Rn)

u′(Z,R
n
)

))
= 0.

The desired conclusion follows immediately.
Q.E.D.

Proposition 3: Opposing Discontinuities

Define the (marginal) modified equalizing reduction as e = dk
dm

∣∣
m=0

. In this appendix section,
we establish that e exhibits two discontinuities in X, of opposite signs, at X = Y and X = Z.

Proposition 3: Suppose u is continuously differentiable and (weakly) concave, π(p) >
π(p+ q)− π(q), and 1− π(1− p) > π(p+ q)− π(q).

(i) Consider two infinite sequences X1
n ↓ Y and X2

n ↑ Y . Then limn→∞
e1n
e2n
> 1.

(ii) Consider two infinite sequences X3
n ↓ Z and X4

n ↑ Z. Then limn→∞
e3n
e4n
< 1.

Proof: We begin with part (i). Define

J(θ) =

(
π(q)

π(p+ q)− π(q)

)
du

dY
+

(
1− π(p+ q)

π(p+ q)− π(q)

)
θ,

K(θ) =

(
π(p+ q)− π(p)

π(p)

)
du

dY
+

(
1− π(p+ q)

π(p)

)
θ,

and
DH(θ) ≡ J(θ)

K(θ)
.

Because u is continuously differentiable (so that, in the limit, we can cancel terms involving
du
dX1

n
and du

dX2
n
), we have DH( du

dZ
) ≡ limn→∞

e1n
e2n
. Notice that DH( du

dY
) > 0, and that du

dY
≤ du

dZ
(due

to the concavity of u). If du
dY

= du
dZ
, then the conclusion is immediate, so we will assume in what

follows that du
dY

< du
dZ
.

Suppose contrary to the claim that DH( du
dZ

) 5 1. Then, because DH is continuous in θ
on the pertinent domain, there exists some value θH ∈

(
du
dY
, du
dZ

]
for which DH(θH) = 1 and

DH(θ) > 1 for all θ ∈
[
du
dY
, θH

)
. Moreover, because DH is continuously differentiable in θ on

the pertinent domain, we must also have D′
H(θH) ≤ 0. Observe that

D
′

H(θ) =
1− π(p+ q)

(K(θ))2

[
K(θ)

(
1

π(p+ q)− π(q)

)
− J(θ)

(
1

π(p)

)]
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Noting that J(θH) = K(θH), we have

D
′

H(θH) =
1− π(p+ q)

K(θH)

[(
1

π(p+ q)− π(q)

)
−
(

1

π(p)

)]
> 0,

which is a contradiction.
Now turn to part (ii). Define

M(θ) =

(
π(q)

1− π(1− p)

)
θ +

(
π(1− p)− π(q)

1− π(1− p)

)
du

dZ
,

N(θ) =

(
π(q)

π(p+ q)− π(q)

)
θ +

(
1− π(p+ q)

π(p+ q)− π(q)

)
du

dZ

and
DL(θ) ≡ M(θ)

N(θ)
.

Because u is continuously differentiable (so that, in the limit, we can cancel terms involving
du
dX3

n
and du

dX4
n
), we have DL( du

dY
) ≡ limn→∞

e3n
e4n
. Notice that DL( du

dZ
) < 0. Once again, concavity

of u ensures that du
dY
≤ du

dZ
, and if du

dY
= du

dZ
the conclusion is immediate, so we will assume in

what follows that du
dY

< du
dZ
.

Suppose contrary to the claim that DL( du
dY

) ≥ 1. Then, because DL is continuous in θ on the
pertinent domain, there exists some value θL ∈

[
du
dY
, du
dZ

)
for which DL(θL) = 1 and DL(θ) < 1

for all θ ∈
(
θL, du

dZ

]
. Moreover, because DL is continuously differentiable in θ on the pertinent

domain, we must also have D′
L(θL) ≤ 0. Observe that

D
′

L(θ) =
π(q)

(N(θ))2

[
N(θ)

(
1

π(p+ q)− π(q)

)
−M(θ)

(
1

1− π(1− p)

)]
Noting that M(θL) = N(θL), we have

D
′

H(θL) =
π(q)

N(θL)

[(
1

π(p+ q)− π(q)

)
−
(

1

1− π(1− p)

)]
> 0,

which is a contradiction. Q.E.D.
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Online Appendix

A Re-examination of Prior Prospect Theory Elicitation
Data

Experiments designed to elicit Prospect Theory parameters such as Tversky and Kahneman
(1992), Tversky and Fox (1995), and Gonzalez and Wu (1999) generally have subjects provide
certainty equivalents for binary lotteries. For example, Tversky and Kahneman (1992) elicit
certainty equivalents for a 10%, 50%, and 90% chance of receiving $50 with the alternative
being zero, and also elicit certainty equivalents for a 10%, 50%, and 90% chance of receiving
$50 with the alternative being $100.

One may wish to use such data to examine whether a given probability of receiving $50 is
weighted differently depending on its rank. Note that binary lotteries generally do not permit
meaningful tests of the core axioms of comonotonic and non-comonotonic independence in the
vein of Wu (1994) andWakker et al. (1994) because two binary lotteries with a common outcome
will have a dominance relation. Nonetheless, parametric estimates using binary lottery data
could, in principle, support an interpretation of rank dependence in probability weights.

For lotteries with a p-probability of receiving $50 and an alternative of $0, Tversky and
Kahneman (1992) report median certainty equivalents for p ∈ {0.1, 0.5, 0.9} of {$9, $21, $37}.
For lotteries with a p-probability of receiving $50 and an alternative of $100, Tversky and
Kahneman (1992) report median certainty equivalents for p ∈ {0.1, 0.5, 0.9} of {$83, $71, $59}.

Using these two data sets, one could estimate probability weighting and curvature under
the null hypothesis of rank-independence and then test that null. That is, for each lottery, one
assumes the indifference condition

C = u−1 (π(p)u(50) + π(1− p)u(X)) + ε

is satisfied, where X is either $0 or $100 depending on the lottery in question.72 Given the
two parameter model and non-linear estimation techniques described in section 4.1, with three
observations we can estimate both the probability weighting parameter of π(·), γ, and the utility
curvature parameter of u(·), α, with one degree of freedom in each series. Conducting such an
exercise using the reported median data for lotteries between $50 and $0, we find γ = 0.64 and
α = 0.98. Conducting such an exercise using the reported median data for lotteries between
$50 and $100, we find γ = 0.55 and α = 1.99. Strictly speaking, these point estimates are
inconsistent with the null hypothesis of rank independence. Consider a 90% chance of receiving
$50 when the alternative is $0. With γ = 0.64, π(0.9) = 0.74. Now consider a 90% chance
of receiving $50 when the alternative is $100. With γ = 0.55, π(0.9) = 0.66. Thus, the 90%
chance of $50 either receives 74% or 66% of the decision weight depending on whether the
alternative is higher or lower than $50. Setting aside the question of statistical precision, these
estimates are inconsistent with the null hypothesis of rank independence.73

72Note that this formulation is not equivalent to that of Kahneman and Tversky (1979) for binary lotteries,
which, by their equation 2, is rank-dependent.

73This conclusion is not altered (although the direction changes) if one imposes a common value of α = 0.98
across the two data sets. The estimated γ for the alternative of $100 becomes 0.70 and a 90% chance of $50
receives a decision weight of 78%.
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Exercises such as the one described above suffer from a fundamental identification problem.
If one does not make specific functional assumptions about the shape of utility, the same data
are reconcilable with rank independence. Let wH(p) and wL(p) represent the weight applied to
a $50 payoff when it is higher than the alternative (i.e., $0) or lower than the alternative (i.e.,
$100), respectively. The certainty equivalents for such prospects are

wH(p)u(50) + wH(1− p)u(0) = u(c1)

wL(p)u(50) + wL(1− p)u(100) = u(c2).

The weighting function is rank-independent if wH(p) = wL(p) = w(p). In such a case

w(1− p) =
u(c2)− u(c1)

u(100)− u(0)
.

Appropriate choice of utility function u(·) can rationalize the behavior c1 and c2 with a rank-
independent weighting function. For example, focusing on Kahneman and Tversky’s data for
p = 0.9, rationalization requires

w(1− 0.9) =
u(59)− u(37)

u(100)− u(0)
.

Thus, to rationalize all the data from Tversky and Kahneman (1992) with a rank-independent
weighting function, one need only find u(·) and w(·) such that

w(0.1) =
u(59)− u(37)

u(100)− u(0)
,

w(0.5) =
u(71)− u(21)

u(100)− u(0)
,

w(0.9) =
u(83)− u(9)

u(100)− u(0)
.

This exercise demonstrates that interpreting data from binary lotteries as evidence for (or
against) rank dependence is problematic. Different assumptions about the shape of utility can
lead to qualitative differences in the extent of apparent rank dependence. One clear benefit
of our proposed test of rank dependence is that at its core it is free from functional form
assumptions both for the shape of utility and probability weighting.

B Examples of Confounds Affecting Existing Tests of Rank
Dependence

In section 2.3, we explained that existing tests of rank dependence are difficult to interpret
without a parametric model of noisy choice. In this appendix, we provide examples to illustrate
the conceptual points made in the text.

As noted in section 2.3, prior experiments in this domain have compared the frequencies
of Comonotonic Independence (CI) and Non-Comonotonic Independence NCI violations. One
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first elicits a binary preference between two comonotonic lotteries, S and R, that share a payoff
event. One tests CI by replacing the shared payoff with another payoff that does not alter the
ranking of outcomes, and eliciting preferences between the new options, S ′ and R′. One tests
NCI by replacing the shared payoff with another payoff that does alter the ranking of outcomes,
and eliciting preferences between the new options S ′′ and R′′. For example, in one series of
tasks, Wakker et al. (1994) consider the comonotonic lotteries

S = ({0.55, 0.25, 0.2}; {0.5, 6.0, 7.0}) , R = ({0.55, 0.25, 0.2}; {0.5, 4.5, 9.0}).

They replace the common 55% chance of 0.50 with 3.50 to construct

S ′ = ({0.55, 0.25, 0.2}; {3.5, 6.0, 7.0}) , R′ = ({0.55, 0.25, 0.2}; {3.5, 4.5, 9.0}),

which preserves the ranking. They replace the common 55% chance of 3.50 with 6.50 to
construct

S ′′ = ({0.55, 0.25, 0.2}; {6.5, 6.0, 7.0}) , R′′ = ({0.55, 0.25, 0.2}; {6.5, 4.5, 9.0}),

which alters the rankings. CPT requires a stable preference between (S,R) and (S ′, R′), an
implication of CI, but permits preference reversals between (S ′, R′) and (S ′′, R′′), a failure of
NCI.

Given that rank-dependent models permit violations of NCI, but not CI, some have used
the relative frequency of CI and NCI violations in such environments as a measure of empirical
support for rank dependence. The predominant finding is that decisionmakers violate both CI
and NCI with high frequency, and at roughly the same rates.74 Some interpret this finding as
casting doubt on the validity of rank dependence.

Two features of these experiments preclude strong inference and may have limited the impact
of these works.

First, as explained in the text, the premise of the approach – that violation frequencies
are necessarily higher for invalid axioms – is flawed. For reasonable models of noisy choice,
noise-induced violations of independence are more likely to occur when the parameters of the
choice tasks place the decisionmaker closer to the point of indifference. Existing approaches
provide no way to ensure that the “distance from indifference” is held constant when comparing
CI and NCI violations. Accordingly, one has no way of knowing whether the frequency of CI
violations provides a valid benchmark for judging whether and to what extent the frequency of
NCI violations is elevated. It is potentially an apples-to-oranges comparison.75

The following simple example starkly illustrates the problems resulting from this first point.
We envision a CPT subject who obeys CI but not NCI. As noted above, we test CI by comparing
choices between lotteries S and R with choices between lotteries S ′ and R′. Assume the subject

74Wakker et al. (1994) consider 12 CI tests and 6 NCI tests for each subject. The violation rates for both
CI and NCI are around 40%. Wu (1994) presents similar tests and finds CI violation rates of 47-50% and NCI
violation rates of 38-50%.

75To make formal comparisons, Wakker et al. (1994) explicitly assume that noise produces the same rate of
violations for all choices. That assumption is obviously problematic, as one would expect violations to be much
more common for tasks that place the decisionmaker close to the point of indifference, which is what we assume
for our next illustration.
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has a “true” strict preference between S and R, and necessarily the same preference between
S ′ and R′, but because of (independent) noise chooses both S and S ′ with probability p. In
that case, we will observe violations of CI with probability 2p(1− p). Likewise, we test NCI by
comparing choices between S ′ and R′ with choices between S ′′ and R′′. Assume the resulting
change in probability weighting yields a strong preference, so that S ′′ is chosen over R′′ with
probability 1. In that case, the frequency of observed NCI violations will be 1−p. The difference
between the frequency of NCI and CI violations is then (1−p)(1−2p). A couple of observations
follow. First, if the subject is initially close to indifference, so that p is close to 0.5, the observed
differences in violation frequencies will be close to zero. Second, if p > 0.5, one will actually
observe a higher frequency of violations for CI than for NCI, despite the fact that CPT is valid.

Second, even if one could control for “distance to indifference,” existing approaches offer no
basis for judging whether a given discrepancy between the frequencies of CI and NCI violations
is large or small relative to the implications of a reasonably parameterized “noisy" CPT model.
The following example illustrates how, even with constant “distance to indifference,” one could
find little or no difference between violation frequencies for CI and NCI, even though the rank-
dependent formulation is correct. Assume in particular that, when confronted with a choice
between two lotteries, the decisionmaker behaves according to the following noisy version of
CPT: with probability p, she flips a coin; with probability 1− p, she picks the best alternative
according to a stable CPT objective function. Now suppose the experimental tasks are inad-
vertently chosen so that the typical subject is always far from indifference, with the unintended
implication that rank reversals have no effect on the optimal choice according to the CPT rep-
resentation. In that case, true rank dependence will not give rise to any NCI violations. Thus,
the observed frequencies of CI and NCI violations will be identical (p/2), even though CPT is
the right theory, subject to noise.

Our illustrations are admittedly extreme. However, our point is general: without having a
parameterized model of noisy choice and a method of gauging distance from indifference, there
is simply no way to judge whether the discrepancy between the frequencies of CI and NCI
violations is out of line with the implications of CPT.

C Equalizing Reductions Under Different Reference Point
Formulations

C.1 Fixed Referents

This section investigates the predictions of CPT decisionmaking under alternative locations of
an exogenous reference point. Under CPT, the decisionmaker is assumed to separate gains and
losses and weight the corresponding probabilities separately. Gains are weighted according to
the cumulative distribution beginning with the best possible outcome, while losses are weighted
according to the decumulative distribution beginning with the worst possible outcome. CPT
also allows for differences in the extent of probability weighting for gains and losses, π+(·) and
π−(·), and the shape of utility for gains and losses, u+(·) and u−(·).

In Section 2.2, we explained that CPT robustly implies a discontinuous change in decision
weights whenX crosses Y or Z, and that the percentage change in equalizing reduction robustly
approximates the percentage change in relative decision weights. One complication noted in
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the text is that for non-infinitesimal values of m, Y +m, Z−k, or Z−k may cross the reference
point.

In order to examine the effect of crossing the reference point, Figure A1 provides simulations
for k, k and ∆log(k) for Z = $18, Y = $24, X = 23 and X = $30 at values of the reference
point, r ∈ (0, 40) for each of our probability vectors. Following Tversky and Kahneman (1992),
we assume that gain and loss probability weighting functions are identical, π−(p) = π+(p) =
pγ/(pγ + (1 − p)γ)1/γ, with γ = 0.61. We also assume a piecewise linear formulation for loss
averse utility such that u−(−x) = −λu+(x) with u+(x) = x. The value of λ varies across rows.
In addition to predicted behavior, we also provide estimates of ∆log(wY /wZ) for γ = 0.61 and
the relevant probability vector for each condition.

Provided r < Z − k, Z − k or r > Y + m, the values of ∆log(k) closely approximate the
change in weights ∆log(wY /wZ). Note, however, that because probability weighting is reference
dependent, the relevant theoretical benchmark shifts from log(π(p+q)−π(p))− log(π(q)) when
r < Z − k, Z − k to log(π(1− p)− π(1− p− q))− log(1− π(1− q)) when r > Y +m.

Figure A1, also illustrates two regions of transition. The first region encompasses r ∈
(Z − k, Z). In this region, log changes in behavior deviate from the theoretical benchmark. As
r passes Z − k, k is determined both by loss aversion, λ, and the weight attached to Z − k
when it is considered a loss, π(1 − p − q). Once r passes Z − k, the same is true of k. When
Z − k, Z − k < r < Z, ∆log(k) 6= log(π(p + q) − π(p)) − log(π(q)). However, the simple
difference,

(k − k)Z−k,Z−k<r<Z =
π(p+ q)− π(p)− π(q)

λπ(1− p− q)
m,

can be related to the prior difference when r < Z − k,

(k − k)r<Z−k =
π(p+ q)− π(p)− π(q)

1− π(p+ q)
m.

Whether the difference (k − k), and hence ∆log(k), grows or shrinks relative to this prior case
depends on the value of λ and the difference between π(1 − p − q) and 1 − π(p + q). For our
probability vectors, with γ = 0.61, π(1− p− q) < 1− π(p + q). As such, reference dependent
probability distortions, alone, would lead to larger values of ∆log(k) in this region, and more
apparent evidence of rank dependence. The top panel of Figure A1, illustrates this case with
λ = 1. Values of λ > 1 counteract the force of probability weighting in this region. It must
be noted, however, that even with substantial loss aversion of λ = 2, large negative values of
∆log(k) are still predicted. When r passes Z, simulated behavior once again accords with the
theoretical benchmark.

A second transition region arises for r ∈ (Y, Y + m). Because Y and Y + m are treated
asymetrically, k and k are a function both of reference-dependent probability distortions, and
loss aversion. Specifically,

k =
π(q)

π(1− p− q)λ
m+

[π(q)− (1− π(1− q))λ]

π(1− p− q)λ
(Y − r)

k =
(π(p+ q)− π(p))

π(1− p− q)λ
m+

{[(π(p+ q)− π(p))]− [(π(1− p)− π(1− p− q))λ]}
π(1− p− q)λ

(Y − r)
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Figure A1: Fixed Referents and Equalizing Reductions
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in the transitional region. When r → Y ,

∆log(k)→ log(π(p+ q)− π(p))− log(π(q)),

and when r → Y +m,

∆log(k)→ log(π(1− p)− π(1− p− q))− log(1− π(1− q)),

exactly the theoretical benchmarks at the region end-points. Though reference-dependent prob-
ability distortions determine the end-points of the transitional region, Figure A1 illustrates that
the value of λ governs the speed of transition.

An interesting implication of CPT, which we mention in the main text, is that the relative
decision weights on Y and Z do not just depend on their relationship to X, but also on the
relationship of all three to the reference point. Examples of such effects are readily observed
in Figure A1. As r passes the key points of Z and Y , equalizing reductions change abruptly,
regardless of ranking information. This observation suggests a method for empirically identi-
fying reference points: look for values of X, Y, Z at which the equalization reduction changes
even though payoff ranks remain fixed.

These simulations show that CPT under standard parametric assumptions predicts sizable
differences between k and k when the values of m and k are non-infinitesimal regardless of
the location of the reference point, and that the percentage change in the equalizing reduction
continues to approximate the percentage change in the relative decision weights outside of
narrow regions of transition.

C.2 Endogenous Referents

Section 2.2 also provided a discussion of endogenous reference-points as in the models of Dis-
appointment Aversion (DA) due to Bell (1985) and Loomes and Sugden (1986). In DA the
reference point is taken to be the EU certainty equivalent of the lottery in question, c. Here we
point out another feature of such models: even without rank-dependent probability weighting,
these models imply the existence of a discontinuity in the equalizing reduction when X crosses
the certainty equivalent, c. By varying X over a range that encompasses plausible values of c,
one can therefore either identify the reference point or, in failing to find a discontinuity (as in
our data), reject the theory.

Consider lottery L, which yields X > Y > Z with corresponding probabilities p, q, 1−p− q.
Absent any additional probability weighting, the disappointment averse representation is

UDA(L) = pu(X|c) + qu(Y |c) + (1− p− q)u(Z|c),

where
c = v−1 (pv(X) + qv(Y ) + (1− p− q)v(Z)) .

The reference dependent utility is formalized as

u(x|r) = v(x) + µ(v(x)− v(r)).
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Assume a piecewise-linear gain-loss utility function,

µ(y) =

{
η · y if y ≥ 0
η · λ · y if y < 0

}
,

where the parameter η captures sensitivity to gains and losses and λ represents the degree
of loss aversion.76 Note that this piece-wise linear form for reference dependence rules out a
possibility discussed in subsection 2.2: non-constancy of the X − k schedule within regimes for
which the ranks of X, Y , Z, and the reference point are fixed. Under this formulation, for X
treated as a gain, k/m remains an approximation for the marginal rate of substitution between
Y and Z:

MRSY Z(X > Y, c) =

[
q + ηq − ηpq − ηq2 − ηλq(1− p− q)

(1− p− q) + ηλ(1− p− q)− ηp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2

] [
v′(Y )

v′(Z)

]
≈ k

m
.

If one lowers X to X, but it remains treated as a gain relative to c, one predicts no change
in equalizing reduction. However, if X is low enough to be considered a loss relative to c,77 one
finds

MRSY Z(X < Y, c) =

[
q + ηq − ηλpq − ηq2 − ηλq(1− p− q)

(1− p− q) + ηλ(1− p− q)− ηλp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2

] [
v′(Y )

v′(Z)

]
≈ k

m

and

∆log(k) = log

(
q + ηq − ηpq − ηq2 − ηλq(1− p− q)
q + ηq − ηλpq − ηq2 − ηλq(1− p− q)

)
+

log

(
(1− p− q) + ηλ(1− p− q)− ηλp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2

(1− p− q) + ηλ(1− p− q)− ηp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2

)
≈ ∆log(MRSY Z).

76Whether Y is a loss or a gain depends on the exact values, probabilities, and shape of the utility function.
Here, we analyze the case when Y is a gain and the addition of m and subtraction of k doesn’t alter any gain
loss comparisons. In this case

UDA(L) = [p+ ηp− ηp2 − ηpq − ηλp(1− p− q)]v(X) +

[q + ηq − ηpq − ηq2 − ηλq(1− p− q)]v(Y ) +

[(1− p− q) + ηλ(1− p− q)− ηp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2]v(Z),

a formulation which ‘weights’ each outcome. If the addition of m to Y and subtraction of k from Z doesn’t
alter any gain loss comparisons, the weights are the same for the equivalent lottery, Le. As in our general
formulation, the equalizing reduction captures the relative weights for outcomes Y and Z.

77For X low enough to be considered a loss, one arrives at

UDA(L) = [p+ ηλp− ηλp2 − ηpq − ηλp(1− p− q)]v(X) +

[q + ηq − ηλpq − ηq2 − ηλq(1− p− q)]v(Y ) +

[(1− p− q) + ηλ(1− p− q)− ηλp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2]v(Z).

Note that the weights on both Y and Z have changed relative to the previous case. As before, the equalizing
reduction summarizes these new relative weights.
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The value of X crossing the endogenous reference point of c leads to a discontinuity in the
marginal rate of substitution and, hence, in equalizing reductions absent independent proba-
bility weighting.

C.3 Endogenous Reference Distributions

Koszegi and Rabin (2006, 2007) (KR) build upon DA by assuming that the referent is depen-
dent on the entire distribution of expected outcomes. An additional innovation of Koszegi and
Rabin (2006, 2007) is a rational expectations equilibrium concept, the Unacclimating Personal
Equilibrium (UPE). The objective of the UPE concept is to represent the notion that a rational
individual will employ a reference distribution that coincides with the distribution of outcomes
that will actually follow from her choices. The KR theory also features two refinements, Pre-
ferred Personal Equilibrium (PPE) and Choice-acclimating Personal Equilibrium (CPE).78 We
apply CPE when deriving the predictions of KR. That is, we assume the equalizing reduction
corresponds to the point where the the decisionmaker switches from choosing L to Le in CPE.

Let r represent a possible reference point drawn according to measure F . Let x be an
outcome drawn according to the same measure F . Then the KR CPE utility formulation is the
double integral

U(F |F ) =

∫∫
u(x|r)dF (r)dF (x)

with u(x|r) as in DA. Under these preferences, the utility of lottery L, which yields X > Y > Z
with probabilities p, q, (1− p− q) is

UKR(L|L) = p (p[v(X)] + q[v(Y ) + ηλ(v(Y )− v(X))] + (1− p− q)[v(Z) + ηλ(v(Z)− v(X))]) +

q (p[v(X) + η(v(X)− v(Y ))] + q[v(Y )] + (1− p− q)[v(Z) + ηλ(v(Z)− v(Y ))]) +

(1− p− q) (p[v(X) + η(v(X)− v(Z))] + q[v(Y ) + η(v(Y )− v(Z))] + (1− p− q)[v(Z)]) .

As for other models k/m remains an approximation for the marginal rate of substitution be-
tween Y and Z, when X > Y :

MRSY Z(X > Y ) =

[
(q + pqη(λ− 1) + q(1− p− q)η(1− λ))

((1− p− q) + p(1− p− q)η(λ− 1) + q(1− p− q)η(λ− 1))

] [
v′(Y )

v′(Z)

]
≈ k

m
.

For X < Y , the gain-loss comparisons are altered relative to the prior case, and

MRSY Z(X < Y ) =

[
(q + pqη(1− λ) + q(1− p− q)η(1− λ))

((1− p− q) + p(1− p− q)η(λ− 1) + q(1− p− q)η(λ− 1))

] [
v′(Y )

v′(Z)

]
≈ k

m
.

As X passes below Y , the marginal rate of substitution, and hence, the equalizing reduction
78Both concepts maintains that the choice with the highest ex-ante expected utility is selected. The opera-

tional distinction between the two concepts is that a CPE need not be UPE, but a PPE must be UPE.
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changes discontinuously, with

∆log(k) = log

(
(q + pqη(λ− 1) + q(1− p− q)η(1− λ))

(q + pqη(1− λ) + q(1− p− q)η(1− λ))

)
≈ ∆log(MRSY Z).

Even without explicit probability weighting, the KR theory carries implications of rank depen-
dence and can also be tested by comparing equalizing reductions at different ranks.

To get a sense for magnitudes, Table A1 simulates behavior under KR preferences in our
experiment with v(x) = x, η = 1 and λ = 1.5, 2.79 These simulations show that under the KR
model, substantial discontinuities in equalizing reductions should be observed, in contrast to
our findings.80

Table A1: Koszegi-Rabin Preferences

η = 1, λ = 1.5 η = 1, λ = 2

{p, q, 1− p− q} k k ∆log(k) k k ∆log(k)

{0.6, 0.3, 0.1} 6.72 12.93 0.65 2.37 11.84 1.61

{0.4, 0.3, 0.3} 2.41 3.89 0.48 0.88 3.24 1.30

{0.1, 0.3, 0.6} 1.35 1.56 0.14 0.54 0.89 0.51

Notes: Simulated values of k and k under Koszegi-Rabin preferences.

D Random Choice
In Section 4.6, we addressed the possibility that we detect no rank dependence because our
subjects ignore the parameters of their decision tasks (either in general, or X in particular)
and make their choices more or less randomly. In this appendix, we examine this possibility
more formally by considering two explicit models. First, we consider individuals who choose
randomly in each row of each equalizing reduction task. Such individuals would be expected to
exhibit patterns of multiple switching many times in our experiment, which we do not observe.
Standard practice in the experimental literature has been to take the first switch point as the
relevant decision for such subjects. We reproduce our aggregate and individual graphs under
this hypothesis in Figures A2 and A3. We simulate 100 random subjects in our experimental
design, choosing each option with 50% probability. Two patterns would be observed in our data

79For λ > 2 the CPE version of the KR model violates first order stochastic dominance. As such, the case of
λ = 2 represents the most extreme loss aversion possible without generating such behavior.

80Notably, these differences are in the opposite direction than those predicted by our calibrated models
of CPT. This difference is due to the convexity of our estimated weighting functions over our experimental
parameters. Indeed, had we estimated a globally concave CPT weighting function, the directional predictions
of CPT and KR would be the same.
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Figure A2: Aggregate Data With Random Response
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if such random choice were prevalent. First, in the aggregate data equalizing reductions would
generally be low (the random first switch point would rarely stray above a few dollars) and
would be insensitive to variation in probabilities or ranks. Second, in individual data, a wide
degree of heterogeneity would be observed in the log difference, ∆log(k), delivering apparent
evidence of substantial rank dependence for many subjects.81 These counterfactual predictions,
along with the implication for the frequency of multiple switching, rule this hypothesis out as
a plausible explanation of our data.

Second, we consider the possibility that each subject chooses a random switch point in each
decision task. Simulated data for 100 such subjects appear in Figures A2 and A3. In addition
to exhibiting no rank dependence, the aggregate choices of these subjects would be insensitive
to probability distributions. At the individual level, we would again find wide heterogeneity
in the log difference, ∆log(k), providing apparent evidence of substantial rank dependence for
many subjects. These implied patterns at the aggregate and individual levels clearly differ from
the observed data. Our subjects respond to changes in probability distribution across tasks and
exhibit subject-level log differences in equalizing reductions tightly centered around zero.

E Additional Tables and Figures
The following tables and figures are referenced in the main text and Online Appendix F

81Where the simulated log difference exceeded the bounds of +/- 3, we put the value at the boundary,
including values of +/- ∞ when simulated as such.
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Figure A3: Individual Data With Random Response
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Table A2: Certainty Equivalents

Certainty Equivalents Risk Premia
(1) (2)

p = 0.05 2.88 1.63***
(0.19) (0.19)

p = 0.10 3.83 1.33***
(0.19) (0.19)

p = 0.25 6.45 0.20
(0.17) (0.17)

p = 0.50 10.72 -1.78***
(0.23) (0.23)

p = 0.75 15.44 -3.31***
(0.31) (0.31)

p = 0.90 19.83 -2.67***
(0.29) (0.29)

p = 0.95 21.63 -2.12***
(0.24) (0.24)

Notes: Coefficients for certainty equivalents and risk pre-
mia calculated from interval regression of certainty equiva-
lent on indicators for probability. Standard errors clustered
on individual level in parentheses. Result of χ2(1) test for
the null hypothesis of risk neutrality (risk premium equal
to zero) presented in column (2). Levels of significance: *
0.10, ** 0.05, *** 0.01.
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Table A3: Equalizing Reductions Within and Between Subjects

(1) (2) (3) (4) (5) (6)

{p, q, 1− p− q} = {0.4, 0.3, 0.3} -4.72*** -4.72*** -5.03*** -5.13*** -5.13*** -5.13***
(0.31) (0.17) (0.60) (0.60) (0.60) (0.60)

{p, q, 1− p− q} = {0.1, 0.3, 0.6} -6.40*** -6.40*** -6.65*** -6.77*** -6.77*** -6.77***
(0.37) (0.18) (0.68) (0.68) (0.68) (0.68)

(X > Y ) 0.26 0.26 -1.10 -0.93 -0.64 -0.74
(0.17) (0.22) (0.85) (0.87) (0.83) (0.83)

(X > Y ) × {0.4, 3, 0.3} -0.22 -0.22 0.73 0.60 0.60 0.60
(0.16) (0.24) (0.75) (0.76) (0.76) (0.76)

(X > Y ) × {0.1, 3, 0.6} -0.33 -0.33 0.82 0.71 0.71 0.71
(0.18) (0.26) (0.88) (0.89) (0.89) (0.89)

19 < Age < 22 -0.10 -0.24
(0.41) (0.43)

Age ≥ 22 -0.33 -0.46
(0.45) (0.46)

Male 0.89** 0.98**
(0.39) (0.39)

Cognitve Reflect Test 0.41** 0.40**
(0.17) (0.17)

Avg. Certainty Equivalent 0.19**
(0.08)

Constant 9.02 7.44 9.81 9.92 6.37 8.73
(0.39) (0.59) (0.65) (0.65) (1.17) (0.77)

Predicted {0.6, 3, 0.1} 9.02 9.02 9.81 9.92 9.77 9.82
(0.39) (0.16) (0.65) (0.65) (0.60) (0.60)

H0: No Rank Dependence χ2(3) = 4.50 χ2(3) = 1.82 χ2(3) = 3.76 χ2(3) = 2.50 χ2(3) = 0.64 χ2(3) = 0.86
(p = 0.21) (p = 0.61) (p = 0.29) (p = 0.47) (p = 0.89) (p = 0.84)

Fixed Effects No Yes No No No No
First Block of Tasks Only No No Yes Yes Yes Yes
Demographic Controls No No No No Yes Yes
# Observations 2574 2574 429 405 405 405
# Subjects 143 143 143 135 135 135
Log-Likelihood -8891.80 -8191.34 -1481.49 -1393.60 -1379.56 -1382.05

Notes: Coefficients from interval regression of equalizing reduction on indicators for probability series {p, q, 1−p−q} and order of outcome X > Y .
Standard errors clustered on individual level in columns (1), (3), (4), (5), (6). Robust standard errors in parentheses in column (2). Column
(4) restricts Column (3) sample to 135 Individuals with full control information. Constant, omitted category, is {p, q, 1 − p − q} = {0.6, 3, 0.1}
with X < Y . Predicted average for {p, q, 1− p− q} = {0.6, 3, 0.1} in (2), (5), (6) calculated as average of of fixed effects or at the average level
of controls. Tested null hypothesis of no rank dependence corresponds to test that coefficients (X > Y ), (X > Y ) × {0.4, 3, 0.3}, (X > Y ) ×
{0.1, 3, 0.6} all equal zero. Levels of significance: * 0.10, ** 0.05, *** 0.01.
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Table A4: Equalizing Reductions for All Conditions

k k
(1) (2) (3) (4) (5) (6) (7) (8)

{p, q, 1− p− q} X = 19 X = 21 X = 23 X < Y X = 30 X = 32 X = 34 X > Y

{0.6, 0.3, 0.1} 9.03 9.03 9.02 9.02 9.24 9.44 9.17 9.28
(0.41) (0.40) (0.42) (0.39) (0.41) (0.42) (0.40) (0.38)

{0.4, 0.3, 0.3} 4.33 4.22 4.37 4.31 4.30 4.34 4.38 4.34
(0.14) (0.13) (0.14) (0.12) (0.14) (0.15) (0.13) (0.12)

{0.1, 0.3, 0.6} 2.65 2.60 2.64 2.63 2.58 2.52 2.57 2.56
(0.09) (0.11) (0.11) (0.08) (0.08) (0.08) (0.09) (0.07)

Notes: Coefficients calculated from interval regression of equalizing reduction on indicators for probability set,
value of X/X and all interactions. Standard errors clustered on individual level in parentheses. Columns (4) and
(8) provide estimated averages for k and k for columns (1)-(3) and (5)-(7), respectively.

Table A5: Equalizing Reductions with Fixed Effects

{p, q, 1− p− q} k k
̂

∆log
(
wY
wZ

)
[95% Conf.]

{0.6, 0.3, 0.1} 9.02 (0.16) 9.28 (0.16) 0.03 (0.02)
[-0.02,0.08]

{0.4, 0.3, 0.3} 4.31 (0.07) 4.34 (0.07) 0.01 (0.02)
[-0.04,0.05]

{0.1, 0.3, 0.6} 2.63 (0.09) 2.56 (0.09) -0.03 (0.05)
[-0.12,0.07]

Notes: Mean behavior for k and k estimated from interval regression (Stewart, 1983) of experimental response
on indicators for probability vector interacted with indicator for whether X > Y with individual fixed effects.
Constant taken as mean of fixed effects. Robust standard errors parentheses.
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Table A6: Equalizing Reductions Between Subjects Alternate Controls
Panel A: First Task Block (without Controls) Panel B: First Task Block (with Alternate Controls)

{p, q, 1− p− q} k k
̂

∆log
(
wY
wZ

)
k k

̂
∆log

(
wY
wZ

)
[95% Conf.] [95% Conf.]

{0.6, 0.3, 0.1} 9.81 (0.65) 8.71 (0.56) -0.12 (0.09) 9.82 (0.60) 9.09 (0.56) -0.08 (0.09)
[-0.30,0.06] [-0.25,0.09]

{0.4, 0.3, 0.3} 4.78 (0.19) 4.41 (0.19) -0.08 (0.06) 4.70 (0.22) 4.56 (0.20) -0.03 (0.07)
[-0.20,0.04] [-0.16,0.10]

{0.1, 0.3, 0.6} 3.16 (0.16) 2.88 (0.12) -0.09 (0.07) 3.06 (0.19) 3.03 (0.15) -0.01 (0.08)
[-0.22,0.04] [-0.17,0.15]

Notes: Mean behavior for k and k estimated from interval regression (Stewart, 1983) of experimental response
on indicators for probability vector interacted with indicator for whether X > Y . Estimated change in
relative decision weights, ̂∆log (wY /wZ), calculated as ∆log(k). Standard errors clustered at individual level
and calculated using the delta method, in parentheses. See Online Appendix Table A3, columns (3) and
(5) for detail. Panel A: No controls; 143 total subjects. Panel B: controls include age, gender, Cognitive
Reflection Task score; 135 total subjects.

Table A7: Equalizing Reductions with Multiple Switchers

k k
(1) (2) (3) (4) (5) (6) (7) (8)

{p, q, 1− p− q} X = 19 X = 21 X = 23 X < Y X = 30 X = 32 X = 34 X > Y

{0.6, 0.3, 0.1} 8.72 8.78 8.69 8.73 8.92 9.09 8.76 8.93
(0.41) (0.38) (0.41) (0.38) (0.40) (0.42) (0.40) (0.38)

{0.4, 0.3, 0.3} 4.31 4.17 4.29 4.26 4.24 4.32 4.28 4.28
(0.14) (0.12) (0.14) (0.12) (0.14) (0.15) (0.14) (0.12)

{0.1, 0.3, 0.6} 2.62 2.56 2.58 2.59 2.59 2.55 2.59 2.58
(0.09) (0.11) (0.11) (0.08) (0.09) (0.08) (0.09) (0.07)

Notes: Coefficients calculated from interval regression of equalizing reduction on indicators for probability set,
value of X/X and all interactions. Standard errors clustered on individual level in parentheses. Columns (4) and
(8) provide estimated averages for k and k for columns (1)-(3) and (5)-(7), respectively.
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Table A8: Equalizing Reductions First/Last Task Block

k k
(1) (2) (3) (4) (5) (6) (7) (8)

{p, q, 1− p− q} X = 19 X = 21 X = 23 X < Y X = 30 X = 32 X = 34 X > Y

Panel A: First Task Block

{0.6, 0.3, 0.1} 11.10 8.01 10.49 9.81 7.87 9.39 8.85 8.71
(1.14) (0.99) (1.13) (0.65) (1.12) (1.21) (0.72) (0.56)

{0.4, 0.3, 0.3} 4.89 4.24 5.27 4.78 4.02 4.61 4.54 4.41
(0.32) (0.34) (0.30) (0.19) (0.48) (0.29) (0.24) (0.19)

{0.1, 0.3, 0.6} 3.17 3.08 3.24 3.16 2.62 2.89 3.03 2.88
(0.25) (0.25) (0.35) (0.16) (0.20) (0.11) (0.20) (0.12)

Panel B: Last Task Block

{0.6, 0.3, 0.1} 9.46 11.37 6.85 9.12 8.09 8.53 9.72 8.75
(0.77) (0.93) (0.95) (0.54) (0.93) (1.11) (1.24) (0.64)

{0.4, 0.3, 0.3} 4.27 4.59 3.84 4.22 4.07 4.15 4.16 4.13
(0.25) (0.31) (0.31) (0.17) (0.24) (0.51) (0.42) (0.23)

{0.1, 0.3, 0.6} 2.63 2.37 2.60 2.55 2.51 2.56 2.37 2.48
(0.19) (0.23) (0.28) (0.13) (0.14) (0.34) (0.17) (0.14)

Notes: Coefficients calculated from interval regression of equalizing reduction on indicators for probability set,
value of X/X and all interactions. Standard errors clustered on individual level in parentheses. Columns (4) and
(8) provide estimated averages for k and k for columns (1)-(3) and (5)-(7), respectively.
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Figure A4: Equalizing Reductions With Alternate Benchmarks

0
5

10
15

Eq
ua

liz
in

g 
R

ed
uc

tio
n:

 k
fo

r X
, Y

=2
4+

5,
 Z

=1
8-

k

20 25 30 35
X

with Y = 24, Z = 18

Panel A
CPT Fit Y>X>Z

0
5

10
15

Eq
ua

liz
in

g 
R

ed
uc

tio
n:

 k
fo

r X
, Y

=2
4+

5,
 Z

=1
8-

k

20 25 30 35
X

with Y = 24, Z = 18

Panel B
CPT Fit X>Y>Z

p = 0.6 p = 0.4 p = 0.1
95% CI CPT Pred CPT 95% CI

Notes: Both panels: mean behavior for k estimated from interval regression of experimental response on indi-
cators for probability vectors interacted with indicators for value of X. Standard errors clustered at individual
level to provide 95% confidence interval. Online Appendix Table A4 provides corresponding estimates. Dashed
line corresponds to predicted values of equation (3) for CPT decisionmaker with risk preference parameters
estimated from behavior. Panel A: predictions based on tasks with Y > X > Z, α = 0.911 (clustered s.e. =
0.063), and γ = 0.784 (0.020). Panel B: predictions based on tasks with X > Y > Z, α = 1.024 (0.082) and
γ = 0.830 (0.022). Delta method used to provide 95% prediction confidence interval.
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Figure A5: Sample Modified Equalizing Reduction

TASK 1
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $40, a 30 in 100 chance of receiving $36 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $44, a 30 in 100 chance of receiving $36 and 30
in 100 chance of receiving $18. As you proceed, Option B will change. For each row, decide whether you
prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $40 $36 $18 2 or $44 $36.00 $18.00 2
2) $40 $36 $18 2 or $44 $35.75 $17.75 2
3) $40 $36 $18 2 or $44 $35.50 $17.50 2
4) $40 $36 $18 2 or $44 $35.25 $17.25 2
5) $40 $36 $18 2 or $44 $35.00 $17.00 2
6) $40 $36 $18 2 or $44 $34.75 $16.75 2
7) $40 $36 $18 2 or $44 $34.50 $16.50 2
8) $40 $36 $18 2 or $44 $34.25 $16.25 2
9) $40 $36 $18 2 or $44 $34.00 $16.00 2
10) $40 $36 $18 2 or $44 $33.75 $15.75 2
11) $40 $36 $18 2 or $44 $33.50 $15.50 2
12) $40 $36 $18 2 or $44 $33.25 $15.25 2
13) $40 $36 $18 2 or $44 $33.00 $15.00 2
14) $40 $36 $18 2 or $44 $32.75 $14.75 2
15) $40 $36 $18 2 or $44 $32.50 $14.50 2
16) $40 $36 $18 2 or $44 $32.25 $14.25 2
17) $40 $36 $18 2 or $44 $32.00 $14.00 2
18) $40 $36 $18 2 or $44 $31.75 $13.75 2
19) $40 $36 $18 2 or $44 $31.50 $13.50 2
20) $40 $36 $18 2 or $44 $31.25 $13.25 2
21) $40 $36 $18 2 or $44 $31.00 $13.00 2
22) $40 $36 $18 2 or $44 $30.75 $12.75 2
23) $40 $36 $18 2 or $44 $30.50 $12.50 2
24) $40 $36 $18 2 or $44 $30.25 $12.25 2
25) $40 $36 $18 2 or $44 $30.00 $12.00 2
26) $40 $36 $18 2 or $44 $29.75 $11.75 2
27) $40 $36 $18 2 or $44 $29.50 $11.50 2
28) $40 $36 $18 2 or $44 $29.25 $11.25 2
29) $40 $36 $18 2 or $44 $29.00 $11.00 2
30) $40 $36 $18 2 or $44 $28.75 $10.75 2
31) $40 $36 $18 2 or $44 $28.50 $10.50 2
32) $40 $36 $18 2 or $44 $28.25 $10.25 2
33) $40 $36 $18 2 or $44 $28.00 $10.00 2
34) $40 $36 $18 2 or $44 $27.75 $9.75 2
35) $40 $36 $18 2 or $44 $27.50 $9.50 2
36) $40 $36 $18 2 or $44 $27.25 $9.25 2
37) $40 $36 $18 2 or $44 $27.00 $9.00 2
38) $40 $36 $18 2 or $44 $26.75 $8.75 2
39) $40 $36 $18 2 or $44 $26.50 $8.50 2
40) $40 $36 $18 2 or $44 $26.25 $8.25 2
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Figure A6: Modified Equalizing Reductions with Alternate Benchmarks
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Notes: All Panels: Mean behavior for modified equalizing reduction estimated from interval regression of
experimental response on indicators for probability vectors interacted with indicators for value of X. Standard
errors clustered at individual level to provide 95% confidence interval. Dashed line corresponds to predicted
equalizing reductions for CPT decisionmaker with risk preference parameters estimated from behavior. Panel
A: risk preferences estimated from tasks with X > Y > Z, α = 0.844 and γ = 0.785. Panel B: risk preferences
estimated from conditions with Y > X ′ > Z, α = 0.437 and γ = 0.863. Panel C: risk preferences estimated
from conditions with Y > Z > X ′′, α = 1.066 and γ = 0.741.

F Additional Robustness Exercises

F.1 Alternative CPT Formulations

Up to this point, we have focused exclusively on the Tversky and Kahneman (1992) parame-
terization of CPT. Others have proposed alternative functional forms. One leading alternative
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is due to Prelec (1998), who posits a probability weighting function of the form

π(p) = exp(−(−ln(p))γ).

To explore whether our conclusions are sensitive to functional form, we repeat our analysis for
Prelec’s specification. Using our data on certainty equivalents for binary lotteries, we arrive
at the following estimates: weighting parameter γ = 0.665 (clustered s.e. = 0.021) and utility
parameter α = 0.928 (0.019). We then use the parameterized model to predict k and k as
before. Results appear in Table A9, Panel A. For convenience, we reproduce our results for
Tversky and Kahneman’s specification in Panel B. Note that the predicted discontinuities are
even larger, and hence less consistent with actual behavior, with the Prelec specification.

Table A9: Equalizing Reduction Predictions for Alternative Functional Forms
Panel A: Prelec Weighting Panel B: Tversky Kahneman Weighting

{p, q, 1− p− q} k k ∆log(k)
̂

∆log
(
wY
wZ

)
k k ∆log(k)

̂
∆log

(
wY
wZ

)
[95% Conf.] [95% Conf.] [95% Conf.] [95% Conf.]

{0.6, 0.3, 0.1} 8.77 (0.27) 6.50 (0.38) -0.30 (0.03) -0.30 (0.03) 7.58 (0.36) 6.06 (0.35) -0.22 (0.01) -0.23 (0.01)
[-0.35,-0.24] [-0.36,-0.25] [-0.25,-0.21] [-0.24,-0.20]

{0.4, 0.3, 0.3} 4.81 (0.05) 2.63 (0.12) -0.60 (0.04) -0.61 (0.04) 4.01 (0.10) 2.52 (0.13) -0.46 (0.03) -0.47 (0.03)
[-0.69,-0.52] [-0.70,-0.52] [-0.52,-0.41] [-0.52,-0.41]

{0.1, 0.3, 0.6} 2.95 (0.04) 1.70 (0.05) -0.55 (0.04) -0.56 (0.04) 2.65 (0.03) 1.87 (0.06) -0.35 (0.03) -0.35 (0.03)
[-0.64,-0.47] [-0.64,-0.47] [-0.40,-0.30] [-0.40,-0.30]

Notes: Panel A: Predicted behavior and change in decision weights calculated from equation (3) for Prelec
CPT decisionmaker with parameters α = 0.928 (s.e. = 0.019) and γ = 0.665 (0.021). Standard errors
clustered at individual level and calculated using the delta method, in parentheses. Panel B: Predicted
behavior and change in decision weights calculated from equation (3) for Kahneman and Tversky CPT
decisionmaker with parameters α = 0.965 (s.e. = 0.021) and γ = 0.703 (0.015). Standard errors clustered at
individual level and calculated using the delta method, in parentheses.

F.2 Using Explicit Rank Changes

The last task block in each session featured X = $25 and Y = $24, so that adding m = $5
to Y changes its rank. Using the estimated aggregate CPT parameter values, one predicts
equalizing reductions of 7.28, 3.71, and 2.49 for {p, q, 1− p− q} = {0.6, 0.3, 0.1}, {0.4, 0.3, 0.3}
and {0.1, 0.3, 0.6}, respectively. Note that these values are close to the CPT predictions of k
reported in Table 3, Panel B and are substantially higher than those of k.

For {p, q, 1 − p − q} = {0.6, 0.3, 0.1}, the mean equalizing reduction is 8.94 (clustered s.e.
= 0.41). This value is statistically indistinguishable from the actual value of k for X ′ < Y
reported in Table 3, Panel A, χ2(1) = 0.27, (p = 0.61), and is significantly lower than the value
of k for X > Y , χ2(1) = 3.44, (p = 0.06). For {p, q, 1 − p − q} = {0.4, 0.3, 0.3}, the mean
equalizing reduction is 4.12 (0.13), significantly lower than the values of both k and k reported
in Table 3, Panel A, χ2(1) = 4.19, (p = 0.04) and χ2(1) = 5.36, (p = 0.02), respectively. For
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{p, q, 1−p−q} = {0.1, 0.3, 0.6}, the mean equalizing reduction is 2.34 (0.08), significantly lower
than the values of both k and k reported in Table 3, Panel A, χ2(1) = 18.82, (p < 0.01) and
χ2(1) = 11.55, (p < 0.01), respectively.

The pattern described in the previous paragraph is, on its face, somewhat puzzling. If
the equalizing reduction does not depend on the ranking of the payoff Y , it is difficult to see
why it should be systematically lower in the transitional region. Certainly, that implication
is inconsistent not only with CPT, but also with PT and EU. A possible explanation is that
the X = 25 task block always comes last, and equalizing reductions decline as the experiment
progresses from the first task block to the last (see Table A8, Panel B). Consistent with this
hypothesis, the equalizing reductions in the X = $25 tasks are quite close to the values reported
for the those for last task block (see Table A8, Panel B).

F.3 Multiple Switching

Our main results are derived from the choices of 143 subjects who did not exhibit multiple
switching in any task. For Table A10, we include the remaining subjects, each of whom exhib-
ited multiple switching at least once. The results are qualitatively unchanged. As in Table 3,
we predict substantial differences between k and k but observe none.82 Thus our conclusions
are robust with respect to the inclusion or exclusion of potentially confused subjects.

Table A10: Equalizing Reductions with Multiple Switchers
Panel A: Mean Behavior and Estimated Rank Dependence Panel B: CPT Estimates and Predicted Rank Dependence

Equalizing Reductions Equalizing Reductions Certainty Equivalents
Y > X > Z X > Y > Z

γ = 0.776 (0.020) γ = 0.813 (0.023) γ = 0.703 (0.015)

{p, q, 1− p− q} k k
̂

∆log
(
wY
wZ

) ̂
∆log

(
wY
wZ

) ̂
∆log

(
wY
wZ

) ̂
∆log

(
wY
wZ

)
[95% Conf.] [95% Conf.] [95% Conf.] [95% Conf.]

{0.6, 0.3, 0.1} 8.73 (0.38) 8.93 (0.38) 0.02 (0.02) -0.19 (0.01) -0.16 (0.02) -0.23 (0.01)
[-0.01,0.06] [-0.21,-0.16] [-0.19,-0.12] [-0.25,-0.22]

{0.4, 0.3, 0.3} 4.26 (0.12) 4.28 (0.12) 0.01 (0.02) -0.36 (0.03) -0.30 (0.04) -0.49 (0.03)
[-0.03,0.04] [-0.43,-0.29] [-0.37,-0.22] [-0.54,-0.44]

{0.1, 0.3, 0.6} 2.59 (0.08) 2.58 (0.07) -0.00 (0.02) -0.26 (0.03) -0.21 (0.03) -0.37 (0.03)
[-0.05,0.04] [-0.31,-0.20] [-0.26,-0.15] [-0.42,-0.32]

Notes: Panel A: Mean behavior for k and k estimated from interval regression (Stewart, 1983) of experimental
response on indicators for probability vector interacted with indicator for whether X > Y . Estimated
change in relative decision weights, ̂∆log (wY /wZ), calculated as ∆log(k). Standard errors clustered at
individual level and calculated using the delta method, in parentheses. See Online Appendix Table A3,
column (1) and Online Appendix Table A4 for detail. Panel B: Predicted change in probability weight for
CPT decisionmaker with probability weighting estimated solely from equalizing reductions with Y > X > Z,
from equalizing reductions with X > Y > Z, or from certainty equivalents data. Estimated probability
weighting parameter noted for each prediction. Estimated change in relative decision weights, ̂∆log (wY /wZ),
calculated as log(π(p+ q)− π(p))− log(π(q)) for estimated weighting function. Standard errors clustered at
individual level and calculated using the delta method, in parentheses.

82Online Appendix Table A7 provides estimates of equalizing reductions for each value of X and X ′, and
demonstrates the stability of equalizing reductions across these values.
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Hello and Welcome.

ELIGIBILITY FOR THIS STUDY: To be in this study, you must be a

Stanford student. There are no other requirements. The study will be completely

anonymous. We will not collect your name, student ID or any other identifying

information. You have been assigned a participant number and it is on the note

card in front of you. This number will be used throughout the study. Please inform

us if you do not know or cannot read your participant number.

Participant Number:



EARNING MONEY: Whatever you earn from the study today will be paid in cash at the end of the

study today. In addition to your earnings from the study, you will receive a $5 participation payment. This $5

participation payment will also be paid to you at the end of the study today.

In this study you will complete 28 tasks, each of which asks you to make a series of decisions between two options.

The first option will always be called OPTION A. The second option will always be called OPTION B. Each decision

you make is a choice. For each decision, all you have to do is decide whether you prefer OPTION A or OPTION B.

Once all of the decision tasks have been completed, we will randomly select one decision as the decision-that-

counts. This will done in two steps. First, we will randomly select one of the 28 tasks, and, second, we will randomly

select a decision from that task to be the decision-that-counts. Each decision has an equal chance of being the

decision-that-counts. So, it is in your interest to treat each decision as if it could be the one that determines your

payments.

If you prefer OPTION A in the decision-that-counts, then OPTION A will be implemented. If you prefer

OPTION B, then OPTION B will be implemented.

Throughout the tasks, either OPTION A, OPTION B or both will involve chance. You will be fully informed

of the chance involved for every decision. Once we know which is the decision-that-counts, and whether you prefer

OPTION A or OPTION B, we will then determine the value of your payments.

For example, OPTION A could be a 10 in 100 chance of receiving $20, a 30 in 100 chance of receiving $14 and

60 in 100 chance of receiving $8. This might be compared to OPTION B of a 10 in 100 chance of receiving $20, a

30 in 100 chance of receiving $19 and 60 in 100 chance of receiving $8. Imagine for a moment which one you would

prefer. You have been provided with a calculator should you like to use it in making your decisions.

If this was chosen as the decision-that-counts, and you preferred OPTION A, we would then randomly choose

a number from 1 to 100. This would be done by throwing two ten-sided die: one for the tens digit and one for the

ones digit (0-0 will be 100). If the chosen number was between 1 and 10 (inclusive) you would receive $20. If the

number was between 11 and 40 (inclusive) you would receive $14 . If the number was between 41 and 100 (inclusive)

you would receive $8.

If, instead, you preferred OPTION B, we would randomly choose another number from 1 to 100. This random

number would be completely independent of the random number previously described. If the chosen number was

between 1 and 10 (inclusive) you would receive $20. If the number was between 11 and 40 (inclusive) you would

receive $19. If the number was between 41 and 100 (inclusive) you would receive $8 .

In this example, if you preferred OPTION B and the die read 6-8, how much would you receive (don’t forget

your participation payment!):

In this example, if you preferred OPTION A and the die read 0-9, how much would you receive (don’t forget

your participation payment!):

The tasks are presented in eight separate blocks. In a moment we will begin the first block of tasks.



TASK BLOCK 1

Participant Number:



TASKS 1-3

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 1 Option

A will be a 10 in 100 chance of receiving $34, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $34, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 1 is reproduced

as an example.

EXAMPLE

Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $34 $24 $18 2 or $34 $29 $18.00 2
If your prefer Option A, check the green box...

1) $34 $24 $18 2� or $34 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $34 $29 $18 2 or $34 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 1
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $34, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $34, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $34 $24 $18 2 or $34 $29 $18.00 2
2) $34 $24 $18 2 or $34 $29 $17.75 2
3) $34 $24 $18 2 or $34 $29 $17.50 2
4) $34 $24 $18 2 or $34 $29 $17.00 2
5) $34 $24 $18 2 or $34 $29 $16.75 2
6) $34 $24 $18 2 or $34 $29 $16.50 2
7) $34 $24 $18 2 or $34 $29 $16.25 2
8) $34 $24 $18 2 or $34 $29 $16.00 2
9) $34 $24 $18 2 or $34 $29 $15.75 2
10) $34 $24 $18 2 or $34 $29 $15.50 2
11) $34 $24 $18 2 or $34 $29 $15.25 2
12) $34 $24 $18 2 or $34 $29 $15.00 2
13) $34 $24 $18 2 or $34 $29 $14.50 2
14) $34 $24 $18 2 or $34 $29 $14.00 2
15) $34 $24 $18 2 or $34 $29 $13.50 2
16) $34 $24 $18 2 or $34 $29 $13.00 2
17) $34 $24 $18 2 or $34 $29 $12.50 2
18) $34 $24 $18 2 or $34 $29 $12.00 2
19) $34 $24 $18 2 or $34 $29 $11.50 2
20) $34 $24 $18 2 or $34 $29 $11.00 2
21) $34 $24 $18 2 or $34 $29 $10.50 2
22) $34 $24 $18 2 or $34 $29 $10.00 2
23) $34 $24 $18 2 or $34 $29 $9.50 2
24) $34 $24 $18 2 or $34 $29 $9.00 2
25) $34 $24 $18 2 or $34 $29 $8.50 2
26) $34 $24 $18 2 or $34 $29 $8.00 2
27) $34 $24 $18 2 or $34 $29 $7.50 2
28) $34 $24 $18 2 or $34 $29 $7.00 2
29) $34 $24 $18 2 or $34 $29 $6.50 2
30) $34 $24 $18 2 or $34 $29 $6.00 2
31) $34 $24 $18 2 or $34 $29 $5.50 2
32) $34 $24 $18 2 or $34 $29 $5.00 2
33) $34 $24 $18 2 or $34 $29 $4.50 2
34) $34 $24 $18 2 or $34 $29 $4.00 2
35) $34 $24 $18 2 or $34 $29 $3.50 2
36) $34 $24 $18 2 or $34 $29 $3.00 2
37) $34 $24 $18 2 or $34 $29 $2.50 2
38) $34 $24 $18 2 or $34 $29 $2.00 2



TASK 2
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $34, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $34, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $34 $24 $18 2 or $34 $29 $18.00 2
2) $34 $24 $18 2 or $34 $29 $17.75 2
3) $34 $24 $18 2 or $34 $29 $17.50 2
4) $34 $24 $18 2 or $34 $29 $17.00 2
5) $34 $24 $18 2 or $34 $29 $16.75 2
6) $34 $24 $18 2 or $34 $29 $16.50 2
7) $34 $24 $18 2 or $34 $29 $16.25 2
8) $34 $24 $18 2 or $34 $29 $16.00 2
9) $34 $24 $18 2 or $34 $29 $15.75 2
10) $34 $24 $18 2 or $34 $29 $15.50 2
11) $34 $24 $18 2 or $34 $29 $15.25 2
12) $34 $24 $18 2 or $34 $29 $15.00 2
13) $34 $24 $18 2 or $34 $29 $14.50 2
14) $34 $24 $18 2 or $34 $29 $14.00 2
15) $34 $24 $18 2 or $34 $29 $13.50 2
16) $34 $24 $18 2 or $34 $29 $13.00 2
17) $34 $24 $18 2 or $34 $29 $12.50 2
18) $34 $24 $18 2 or $34 $29 $12.00 2
19) $34 $24 $18 2 or $34 $29 $11.50 2
20) $34 $24 $18 2 or $34 $29 $11.00 2
21) $34 $24 $18 2 or $34 $29 $10.50 2
22) $34 $24 $18 2 or $34 $29 $10.00 2
23) $34 $24 $18 2 or $34 $29 $9.50 2
24) $34 $24 $18 2 or $34 $29 $9.00 2
25) $34 $24 $18 2 or $34 $29 $8.50 2
26) $34 $24 $18 2 or $34 $29 $8.00 2
27) $34 $24 $18 2 or $34 $29 $7.50 2
28) $34 $24 $18 2 or $34 $29 $7.00 2
29) $34 $24 $18 2 or $34 $29 $6.50 2
30) $34 $24 $18 2 or $34 $29 $6.00 2
31) $34 $24 $18 2 or $34 $29 $5.50 2
32) $34 $24 $18 2 or $34 $29 $5.00 2
33) $34 $24 $18 2 or $34 $29 $4.50 2
34) $34 $24 $18 2 or $34 $29 $4.00 2
35) $34 $24 $18 2 or $34 $29 $3.50 2
36) $34 $24 $18 2 or $34 $29 $3.00 2
37) $34 $24 $18 2 or $34 $29 $2.50 2
38) $34 $24 $18 2 or $34 $29 $2.00 2



TASK 3
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $34, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $34, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $34 $24 $18 2 or $34 $29 $18.00 2
2) $34 $24 $18 2 or $34 $29 $17.75 2
3) $34 $24 $18 2 or $34 $29 $17.50 2
4) $34 $24 $18 2 or $34 $29 $17.00 2
5) $34 $24 $18 2 or $34 $29 $16.75 2
6) $34 $24 $18 2 or $34 $29 $16.50 2
7) $34 $24 $18 2 or $34 $29 $16.25 2
8) $34 $24 $18 2 or $34 $29 $16.00 2
9) $34 $24 $18 2 or $34 $29 $15.75 2
10) $34 $24 $18 2 or $34 $29 $15.50 2
11) $34 $24 $18 2 or $34 $29 $15.25 2
12) $34 $24 $18 2 or $34 $29 $15.00 2
13) $34 $24 $18 2 or $34 $29 $14.50 2
14) $34 $24 $18 2 or $34 $29 $14.00 2
15) $34 $24 $18 2 or $34 $29 $13.50 2
16) $34 $24 $18 2 or $34 $29 $13.00 2
17) $34 $24 $18 2 or $34 $29 $12.50 2
18) $34 $24 $18 2 or $34 $29 $12.00 2
19) $34 $24 $18 2 or $34 $29 $11.50 2
20) $34 $24 $18 2 or $34 $29 $11.00 2
21) $34 $24 $18 2 or $34 $29 $10.50 2
22) $34 $24 $18 2 or $34 $29 $10.00 2
23) $34 $24 $18 2 or $34 $29 $9.50 2
24) $34 $24 $18 2 or $34 $29 $9.00 2
25) $34 $24 $18 2 or $34 $29 $8.50 2
26) $34 $24 $18 2 or $34 $29 $8.00 2
27) $34 $24 $18 2 or $34 $29 $7.50 2
28) $34 $24 $18 2 or $34 $29 $7.00 2
29) $34 $24 $18 2 or $34 $29 $6.50 2
30) $34 $24 $18 2 or $34 $29 $6.00 2
31) $34 $24 $18 2 or $34 $29 $5.50 2
32) $34 $24 $18 2 or $34 $29 $5.00 2
33) $34 $24 $18 2 or $34 $29 $4.50 2
34) $34 $24 $18 2 or $34 $29 $4.00 2
35) $34 $24 $18 2 or $34 $29 $3.50 2
36) $34 $24 $18 2 or $34 $29 $3.00 2
37) $34 $24 $18 2 or $34 $29 $2.50 2
38) $34 $24 $18 2 or $34 $29 $2.00 2



TASK BLOCK 2

Participant Number:



TASKS 4-6

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 4 Option

A will be a 10 in 100 chance of receiving $32, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $32, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 4 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $32 $24 $18 2 or $32 $29 $18.00 2
If your prefer Option A, check the green box...

1) $32 $24 $18 2� or $32 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $32 $29 $18 2 or $32 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 4
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $32, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $32, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $32 $24 $18 2 or $32 $29 $18.00 2
2) $32 $24 $18 2 or $32 $29 $17.75 2
3) $32 $24 $18 2 or $32 $29 $17.50 2
4) $32 $24 $18 2 or $32 $29 $17.00 2
5) $32 $24 $18 2 or $32 $29 $16.75 2
6) $32 $24 $18 2 or $32 $29 $16.50 2
7) $32 $24 $18 2 or $32 $29 $16.25 2
8) $32 $24 $18 2 or $32 $29 $16.00 2
9) $32 $24 $18 2 or $32 $29 $15.75 2
10) $32 $24 $18 2 or $32 $29 $15.50 2
11) $32 $24 $18 2 or $32 $29 $15.25 2
12) $32 $24 $18 2 or $32 $29 $15.00 2
13) $32 $24 $18 2 or $32 $29 $14.50 2
14) $32 $24 $18 2 or $32 $29 $14.00 2
15) $32 $24 $18 2 or $32 $29 $13.50 2
16) $32 $24 $18 2 or $32 $29 $13.00 2
17) $32 $24 $18 2 or $32 $29 $12.50 2
18) $32 $24 $18 2 or $32 $29 $12.00 2
19) $32 $24 $18 2 or $32 $29 $11.50 2
20) $32 $24 $18 2 or $32 $29 $11.00 2
21) $32 $24 $18 2 or $32 $29 $10.50 2
22) $32 $24 $18 2 or $32 $29 $10.00 2
23) $32 $24 $18 2 or $32 $29 $9.50 2
24) $32 $24 $18 2 or $32 $29 $9.00 2
25) $32 $24 $18 2 or $32 $29 $8.50 2
26) $32 $24 $18 2 or $32 $29 $8.00 2
27) $32 $24 $18 2 or $32 $29 $7.50 2
28) $32 $24 $18 2 or $32 $29 $7.00 2
29) $32 $24 $18 2 or $32 $29 $6.50 2
30) $32 $24 $18 2 or $32 $29 $6.00 2
31) $32 $24 $18 2 or $32 $29 $5.50 2
32) $32 $24 $18 2 or $32 $29 $5.00 2
33) $32 $24 $18 2 or $32 $29 $4.50 2
34) $32 $24 $18 2 or $32 $29 $4.00 2
35) $32 $24 $18 2 or $32 $29 $3.50 2
36) $32 $24 $18 2 or $32 $29 $3.00 2
37) $32 $24 $18 2 or $32 $29 $2.50 2
38) $32 $24 $18 2 or $32 $29 $2.00 2



TASK 5
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $32, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $32, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $32 $24 $18 2 or $32 $29 $18.00 2
2) $32 $24 $18 2 or $32 $29 $17.75 2
3) $32 $24 $18 2 or $32 $29 $17.50 2
4) $32 $24 $18 2 or $32 $29 $17.00 2
5) $32 $24 $18 2 or $32 $29 $16.75 2
6) $32 $24 $18 2 or $32 $29 $16.50 2
7) $32 $24 $18 2 or $32 $29 $16.25 2
8) $32 $24 $18 2 or $32 $29 $16.00 2
9) $32 $24 $18 2 or $32 $29 $15.75 2
10) $32 $24 $18 2 or $32 $29 $15.50 2
11) $32 $24 $18 2 or $32 $29 $15.25 2
12) $32 $24 $18 2 or $32 $29 $15.00 2
13) $32 $24 $18 2 or $32 $29 $14.50 2
14) $32 $24 $18 2 or $32 $29 $14.00 2
15) $32 $24 $18 2 or $32 $29 $13.50 2
16) $32 $24 $18 2 or $32 $29 $13.00 2
17) $32 $24 $18 2 or $32 $29 $12.50 2
18) $32 $24 $18 2 or $32 $29 $12.00 2
19) $32 $24 $18 2 or $32 $29 $11.50 2
20) $32 $24 $18 2 or $32 $29 $11.00 2
21) $32 $24 $18 2 or $32 $29 $10.50 2
22) $32 $24 $18 2 or $32 $29 $10.00 2
23) $32 $24 $18 2 or $32 $29 $9.50 2
24) $32 $24 $18 2 or $32 $29 $9.00 2
25) $32 $24 $18 2 or $32 $29 $8.50 2
26) $32 $24 $18 2 or $32 $29 $8.00 2
27) $32 $24 $18 2 or $32 $29 $7.50 2
28) $32 $24 $18 2 or $32 $29 $7.00 2
29) $32 $24 $18 2 or $32 $29 $6.50 2
30) $32 $24 $18 2 or $32 $29 $6.00 2
31) $32 $24 $18 2 or $32 $29 $5.50 2
32) $32 $24 $18 2 or $32 $29 $5.00 2
33) $32 $24 $18 2 or $32 $29 $4.50 2
34) $32 $24 $18 2 or $32 $29 $4.00 2
35) $32 $24 $18 2 or $32 $29 $3.50 2
36) $32 $24 $18 2 or $32 $29 $3.00 2
37) $32 $24 $18 2 or $32 $29 $2.50 2
38) $32 $24 $18 2 or $32 $29 $2.00 2



TASK 6
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $32, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $32, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $32 $24 $18 2 or $32 $29 $18.00 2
2) $32 $24 $18 2 or $32 $29 $17.75 2
3) $32 $24 $18 2 or $32 $29 $17.50 2
4) $32 $24 $18 2 or $32 $29 $17.00 2
5) $32 $24 $18 2 or $32 $29 $16.75 2
6) $32 $24 $18 2 or $32 $29 $16.50 2
7) $32 $24 $18 2 or $32 $29 $16.25 2
8) $32 $24 $18 2 or $32 $29 $16.00 2
9) $32 $24 $18 2 or $32 $29 $15.75 2
10) $32 $24 $18 2 or $32 $29 $15.50 2
11) $32 $24 $18 2 or $32 $29 $15.25 2
12) $32 $24 $18 2 or $32 $29 $15.00 2
13) $32 $24 $18 2 or $32 $29 $14.50 2
14) $32 $24 $18 2 or $32 $29 $14.00 2
15) $32 $24 $18 2 or $32 $29 $13.50 2
16) $32 $24 $18 2 or $32 $29 $13.00 2
17) $32 $24 $18 2 or $32 $29 $12.50 2
18) $32 $24 $18 2 or $32 $29 $12.00 2
19) $32 $24 $18 2 or $32 $29 $11.50 2
20) $32 $24 $18 2 or $32 $29 $11.00 2
21) $32 $24 $18 2 or $32 $29 $10.50 2
22) $32 $24 $18 2 or $32 $29 $10.00 2
23) $32 $24 $18 2 or $32 $29 $9.50 2
24) $32 $24 $18 2 or $32 $29 $9.00 2
25) $32 $24 $18 2 or $32 $29 $8.50 2
26) $32 $24 $18 2 or $32 $29 $8.00 2
27) $32 $24 $18 2 or $32 $29 $7.50 2
28) $32 $24 $18 2 or $32 $29 $7.00 2
29) $32 $24 $18 2 or $32 $29 $6.50 2
30) $32 $24 $18 2 or $32 $29 $6.00 2
31) $32 $24 $18 2 or $32 $29 $5.50 2
32) $32 $24 $18 2 or $32 $29 $5.00 2
33) $32 $24 $18 2 or $32 $29 $4.50 2
34) $32 $24 $18 2 or $32 $29 $4.00 2
35) $32 $24 $18 2 or $32 $29 $3.50 2
36) $32 $24 $18 2 or $32 $29 $3.00 2
37) $32 $24 $18 2 or $32 $29 $2.50 2
38) $32 $24 $18 2 or $32 $29 $2.00 2



TASK BLOCK 3

Participant Number:



TASKS 7-9

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 7 Option

A will be a 10 in 100 chance of receiving $30, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $30, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 7 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $30 $24 $18 2 or $30 $29 $18.00 2
If your prefer Option A, check the green box...

1) $30 $24 $18 2� or $30 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $30 $29 $18 2 or $30 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 7
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $30, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $30, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $30 $24 $18 2 or $30 $29 $18.00 2
2) $30 $24 $18 2 or $30 $29 $17.75 2
3) $30 $24 $18 2 or $30 $29 $17.50 2
4) $30 $24 $18 2 or $30 $29 $17.00 2
5) $30 $24 $18 2 or $30 $29 $16.75 2
6) $30 $24 $18 2 or $30 $29 $16.50 2
7) $30 $24 $18 2 or $30 $29 $16.25 2
8) $30 $24 $18 2 or $30 $29 $16.00 2
9) $30 $24 $18 2 or $30 $29 $15.75 2
10) $30 $24 $18 2 or $30 $29 $15.50 2
11) $30 $24 $18 2 or $30 $29 $15.25 2
12) $30 $24 $18 2 or $30 $29 $15.00 2
13) $30 $24 $18 2 or $30 $29 $14.50 2
14) $30 $24 $18 2 or $30 $29 $14.00 2
15) $30 $24 $18 2 or $30 $29 $13.50 2
16) $30 $24 $18 2 or $30 $29 $13.00 2
17) $30 $24 $18 2 or $30 $29 $12.50 2
18) $30 $24 $18 2 or $30 $29 $12.00 2
19) $30 $24 $18 2 or $30 $29 $11.50 2
20) $30 $24 $18 2 or $30 $29 $11.00 2
21) $30 $24 $18 2 or $30 $29 $10.50 2
22) $30 $24 $18 2 or $30 $29 $10.00 2
23) $30 $24 $18 2 or $30 $29 $9.50 2
24) $30 $24 $18 2 or $30 $29 $9.00 2
25) $30 $24 $18 2 or $30 $29 $8.50 2
26) $30 $24 $18 2 or $30 $29 $8.00 2
27) $30 $24 $18 2 or $30 $29 $7.50 2
28) $30 $24 $18 2 or $30 $29 $7.00 2
29) $30 $24 $18 2 or $30 $29 $6.50 2
30) $30 $24 $18 2 or $30 $29 $6.00 2
31) $30 $24 $18 2 or $30 $29 $5.50 2
32) $30 $24 $18 2 or $30 $29 $5.00 2
33) $30 $24 $18 2 or $30 $29 $4.50 2
34) $30 $24 $18 2 or $30 $29 $4.00 2
35) $30 $24 $18 2 or $30 $29 $3.50 2
36) $30 $24 $18 2 or $30 $29 $3.00 2
37) $30 $24 $18 2 or $30 $29 $2.50 2
38) $30 $24 $18 2 or $30 $29 $2.00 2



TASK 8
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $30, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $30, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $30 $24 $18 2 or $30 $29 $18.00 2
2) $30 $24 $18 2 or $30 $29 $17.75 2
3) $30 $24 $18 2 or $30 $29 $17.50 2
4) $30 $24 $18 2 or $30 $29 $17.00 2
5) $30 $24 $18 2 or $30 $29 $16.75 2
6) $30 $24 $18 2 or $30 $29 $16.50 2
7) $30 $24 $18 2 or $30 $29 $16.25 2
8) $30 $24 $18 2 or $30 $29 $16.00 2
9) $30 $24 $18 2 or $30 $29 $15.75 2
10) $30 $24 $18 2 or $30 $29 $15.50 2
11) $30 $24 $18 2 or $30 $29 $15.25 2
12) $30 $24 $18 2 or $30 $29 $15.00 2
13) $30 $24 $18 2 or $30 $29 $14.50 2
14) $30 $24 $18 2 or $30 $29 $14.00 2
15) $30 $24 $18 2 or $30 $29 $13.50 2
16) $30 $24 $18 2 or $30 $29 $13.00 2
17) $30 $24 $18 2 or $30 $29 $12.50 2
18) $30 $24 $18 2 or $30 $29 $12.00 2
19) $30 $24 $18 2 or $30 $29 $11.50 2
20) $30 $24 $18 2 or $30 $29 $11.00 2
21) $30 $24 $18 2 or $30 $29 $10.50 2
22) $30 $24 $18 2 or $30 $29 $10.00 2
23) $30 $24 $18 2 or $30 $29 $9.50 2
24) $30 $24 $18 2 or $30 $29 $9.00 2
25) $30 $24 $18 2 or $30 $29 $8.50 2
26) $30 $24 $18 2 or $30 $29 $8.00 2
27) $30 $24 $18 2 or $30 $29 $7.50 2
28) $30 $24 $18 2 or $30 $29 $7.00 2
29) $30 $24 $18 2 or $30 $29 $6.50 2
30) $30 $24 $18 2 or $30 $29 $6.00 2
31) $30 $24 $18 2 or $30 $29 $5.50 2
32) $30 $24 $18 2 or $30 $29 $5.00 2
33) $30 $24 $18 2 or $30 $29 $4.50 2
34) $30 $24 $18 2 or $30 $29 $4.00 2
35) $30 $24 $18 2 or $30 $29 $3.50 2
36) $30 $24 $18 2 or $30 $29 $3.00 2
37) $30 $24 $18 2 or $30 $29 $2.50 2
38) $30 $24 $18 2 or $30 $29 $2.00 2



TASK 9
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $30, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $30, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $30 $24 $18 2 or $30 $29 $18.00 2
2) $30 $24 $18 2 or $30 $29 $17.75 2
3) $30 $24 $18 2 or $30 $29 $17.50 2
4) $30 $24 $18 2 or $30 $29 $17.00 2
5) $30 $24 $18 2 or $30 $29 $16.75 2
6) $30 $24 $18 2 or $30 $29 $16.50 2
7) $30 $24 $18 2 or $30 $29 $16.25 2
8) $30 $24 $18 2 or $30 $29 $16.00 2
9) $30 $24 $18 2 or $30 $29 $15.75 2
10) $30 $24 $18 2 or $30 $29 $15.50 2
11) $30 $24 $18 2 or $30 $29 $15.25 2
12) $30 $24 $18 2 or $30 $29 $15.00 2
13) $30 $24 $18 2 or $30 $29 $14.50 2
14) $30 $24 $18 2 or $30 $29 $14.00 2
15) $30 $24 $18 2 or $30 $29 $13.50 2
16) $30 $24 $18 2 or $30 $29 $13.00 2
17) $30 $24 $18 2 or $30 $29 $12.50 2
18) $30 $24 $18 2 or $30 $29 $12.00 2
19) $30 $24 $18 2 or $30 $29 $11.50 2
20) $30 $24 $18 2 or $30 $29 $11.00 2
21) $30 $24 $18 2 or $30 $29 $10.50 2
22) $30 $24 $18 2 or $30 $29 $10.00 2
23) $30 $24 $18 2 or $30 $29 $9.50 2
24) $30 $24 $18 2 or $30 $29 $9.00 2
25) $30 $24 $18 2 or $30 $29 $8.50 2
26) $30 $24 $18 2 or $30 $29 $8.00 2
27) $30 $24 $18 2 or $30 $29 $7.50 2
28) $30 $24 $18 2 or $30 $29 $7.00 2
29) $30 $24 $18 2 or $30 $29 $6.50 2
30) $30 $24 $18 2 or $30 $29 $6.00 2
31) $30 $24 $18 2 or $30 $29 $5.50 2
32) $30 $24 $18 2 or $30 $29 $5.00 2
33) $30 $24 $18 2 or $30 $29 $4.50 2
34) $30 $24 $18 2 or $30 $29 $4.00 2
35) $30 $24 $18 2 or $30 $29 $3.50 2
36) $30 $24 $18 2 or $30 $29 $3.00 2
37) $30 $24 $18 2 or $30 $29 $2.50 2
38) $30 $24 $18 2 or $30 $29 $2.00 2



TASK BLOCK 4

Participant Number:



TASKS 10-12

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 10 Option

A will be a 10 in 100 chance of receiving $23, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $23, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 10 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $23 $24 $18 2 or $23 $29 $18.00 2
If your prefer Option A, check the green box...

1) $23 $24 $18 2� or $23 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $23 $29 $18 2 or $23 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 10
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $23, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $23, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $23 $24 $18 2 or $23 $29 $18.00 2
2) $23 $24 $18 2 or $23 $29 $17.75 2
3) $23 $24 $18 2 or $23 $29 $17.50 2
4) $23 $24 $18 2 or $23 $29 $17.00 2
5) $23 $24 $18 2 or $23 $29 $16.75 2
6) $23 $24 $18 2 or $23 $29 $16.50 2
7) $23 $24 $18 2 or $23 $29 $16.25 2
8) $23 $24 $18 2 or $23 $29 $16.00 2
9) $23 $24 $18 2 or $23 $29 $15.75 2
10) $23 $24 $18 2 or $23 $29 $15.50 2
11) $23 $24 $18 2 or $23 $29 $15.25 2
12) $23 $24 $18 2 or $23 $29 $15.00 2
13) $23 $24 $18 2 or $23 $29 $14.50 2
14) $23 $24 $18 2 or $23 $29 $14.00 2
15) $23 $24 $18 2 or $23 $29 $13.50 2
16) $23 $24 $18 2 or $23 $29 $13.00 2
17) $23 $24 $18 2 or $23 $29 $12.50 2
18) $23 $24 $18 2 or $23 $29 $12.00 2
19) $23 $24 $18 2 or $23 $29 $11.50 2
20) $23 $24 $18 2 or $23 $29 $11.00 2
21) $23 $24 $18 2 or $23 $29 $10.50 2
22) $23 $24 $18 2 or $23 $29 $10.00 2
23) $23 $24 $18 2 or $23 $29 $9.50 2
24) $23 $24 $18 2 or $23 $29 $9.00 2
25) $23 $24 $18 2 or $23 $29 $8.50 2
26) $23 $24 $18 2 or $23 $29 $8.00 2
27) $23 $24 $18 2 or $23 $29 $7.50 2
28) $23 $24 $18 2 or $23 $29 $7.00 2
29) $23 $24 $18 2 or $23 $29 $6.50 2
30) $23 $24 $18 2 or $23 $29 $6.00 2
31) $23 $24 $18 2 or $23 $29 $5.50 2
32) $23 $24 $18 2 or $23 $29 $5.00 2
33) $23 $24 $18 2 or $23 $29 $4.50 2
34) $23 $24 $18 2 or $23 $29 $4.00 2
35) $23 $24 $18 2 or $23 $29 $3.50 2
36) $23 $24 $18 2 or $23 $29 $3.00 2
37) $23 $24 $18 2 or $23 $29 $2.50 2
38) $23 $24 $18 2 or $23 $29 $2.00 2



TASK 11
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $23, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $23, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $23 $24 $18 2 or $23 $29 $18.00 2
2) $23 $24 $18 2 or $23 $29 $17.75 2
3) $23 $24 $18 2 or $23 $29 $17.50 2
4) $23 $24 $18 2 or $23 $29 $17.00 2
5) $23 $24 $18 2 or $23 $29 $16.75 2
6) $23 $24 $18 2 or $23 $29 $16.50 2
7) $23 $24 $18 2 or $23 $29 $16.25 2
8) $23 $24 $18 2 or $23 $29 $16.00 2
9) $23 $24 $18 2 or $23 $29 $15.75 2
10) $23 $24 $18 2 or $23 $29 $15.50 2
11) $23 $24 $18 2 or $23 $29 $15.25 2
12) $23 $24 $18 2 or $23 $29 $15.00 2
13) $23 $24 $18 2 or $23 $29 $14.50 2
14) $23 $24 $18 2 or $23 $29 $14.00 2
15) $23 $24 $18 2 or $23 $29 $13.50 2
16) $23 $24 $18 2 or $23 $29 $13.00 2
17) $23 $24 $18 2 or $23 $29 $12.50 2
18) $23 $24 $18 2 or $23 $29 $12.00 2
19) $23 $24 $18 2 or $23 $29 $11.50 2
20) $23 $24 $18 2 or $23 $29 $11.00 2
21) $23 $24 $18 2 or $23 $29 $10.50 2
22) $23 $24 $18 2 or $23 $29 $10.00 2
23) $23 $24 $18 2 or $23 $29 $9.50 2
24) $23 $24 $18 2 or $23 $29 $9.00 2
25) $23 $24 $18 2 or $23 $29 $8.50 2
26) $23 $24 $18 2 or $23 $29 $8.00 2
27) $23 $24 $18 2 or $23 $29 $7.50 2
28) $23 $24 $18 2 or $23 $29 $7.00 2
29) $23 $24 $18 2 or $23 $29 $6.50 2
30) $23 $24 $18 2 or $23 $29 $6.00 2
31) $23 $24 $18 2 or $23 $29 $5.50 2
32) $23 $24 $18 2 or $23 $29 $5.00 2
33) $23 $24 $18 2 or $23 $29 $4.50 2
34) $23 $24 $18 2 or $23 $29 $4.00 2
35) $23 $24 $18 2 or $23 $29 $3.50 2
36) $23 $24 $18 2 or $23 $29 $3.00 2
37) $23 $24 $18 2 or $23 $29 $2.50 2
38) $23 $24 $18 2 or $23 $29 $2.00 2



TASK 12
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $23, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $23, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $23 $24 $18 2 or $23 $29 $18.00 2
2) $23 $24 $18 2 or $23 $29 $17.75 2
3) $23 $24 $18 2 or $23 $29 $17.50 2
4) $23 $24 $18 2 or $23 $29 $17.00 2
5) $23 $24 $18 2 or $23 $29 $16.75 2
6) $23 $24 $18 2 or $23 $29 $16.50 2
7) $23 $24 $18 2 or $23 $29 $16.25 2
8) $23 $24 $18 2 or $23 $29 $16.00 2
9) $23 $24 $18 2 or $23 $29 $15.75 2
10) $23 $24 $18 2 or $23 $29 $15.50 2
11) $23 $24 $18 2 or $23 $29 $15.25 2
12) $23 $24 $18 2 or $23 $29 $15.00 2
13) $23 $24 $18 2 or $23 $29 $14.50 2
14) $23 $24 $18 2 or $23 $29 $14.00 2
15) $23 $24 $18 2 or $23 $29 $13.50 2
16) $23 $24 $18 2 or $23 $29 $13.00 2
17) $23 $24 $18 2 or $23 $29 $12.50 2
18) $23 $24 $18 2 or $23 $29 $12.00 2
19) $23 $24 $18 2 or $23 $29 $11.50 2
20) $23 $24 $18 2 or $23 $29 $11.00 2
21) $23 $24 $18 2 or $23 $29 $10.50 2
22) $23 $24 $18 2 or $23 $29 $10.00 2
23) $23 $24 $18 2 or $23 $29 $9.50 2
24) $23 $24 $18 2 or $23 $29 $9.00 2
25) $23 $24 $18 2 or $23 $29 $8.50 2
26) $23 $24 $18 2 or $23 $29 $8.00 2
27) $23 $24 $18 2 or $23 $29 $7.50 2
28) $23 $24 $18 2 or $23 $29 $7.00 2
29) $23 $24 $18 2 or $23 $29 $6.50 2
30) $23 $24 $18 2 or $23 $29 $6.00 2
31) $23 $24 $18 2 or $23 $29 $5.50 2
32) $23 $24 $18 2 or $23 $29 $5.00 2
33) $23 $24 $18 2 or $23 $29 $4.50 2
34) $23 $24 $18 2 or $23 $29 $4.00 2
35) $23 $24 $18 2 or $23 $29 $3.50 2
36) $23 $24 $18 2 or $23 $29 $3.00 2
37) $23 $24 $18 2 or $23 $29 $2.50 2
38) $23 $24 $18 2 or $23 $29 $2.00 2



TASK BLOCK 5

Participant Number:



TASKS 13-15

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 13 Option

A will be a 10 in 100 chance of receiving $21, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $21, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 13 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $21 $24 $18 2 or $21 $29 $18.00 2
If your prefer Option A, check the green box...

1) $21 $24 $18 2� or $21 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $21 $29 $18 2 or $21 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 13
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $21, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $21, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $21 $24 $18 2 or $21 $29 $18.00 2
2) $21 $24 $18 2 or $21 $29 $17.75 2
3) $21 $24 $18 2 or $21 $29 $17.50 2
4) $21 $24 $18 2 or $21 $29 $17.00 2
5) $21 $24 $18 2 or $21 $29 $16.75 2
6) $21 $24 $18 2 or $21 $29 $16.50 2
7) $21 $24 $18 2 or $21 $29 $16.25 2
8) $21 $24 $18 2 or $21 $29 $16.00 2
9) $21 $24 $18 2 or $21 $29 $15.75 2
10) $21 $24 $18 2 or $21 $29 $15.50 2
11) $21 $24 $18 2 or $21 $29 $15.25 2
12) $21 $24 $18 2 or $21 $29 $15.00 2
13) $21 $24 $18 2 or $21 $29 $14.50 2
14) $21 $24 $18 2 or $21 $29 $14.00 2
15) $21 $24 $18 2 or $21 $29 $13.50 2
16) $21 $24 $18 2 or $21 $29 $13.00 2
17) $21 $24 $18 2 or $21 $29 $12.50 2
18) $21 $24 $18 2 or $21 $29 $12.00 2
19) $21 $24 $18 2 or $21 $29 $11.50 2
20) $21 $24 $18 2 or $21 $29 $11.00 2
21) $21 $24 $18 2 or $21 $29 $10.50 2
22) $21 $24 $18 2 or $21 $29 $10.00 2
23) $21 $24 $18 2 or $21 $29 $9.50 2
24) $21 $24 $18 2 or $21 $29 $9.00 2
25) $21 $24 $18 2 or $21 $29 $8.50 2
26) $21 $24 $18 2 or $21 $29 $8.00 2
27) $21 $24 $18 2 or $21 $29 $7.50 2
28) $21 $24 $18 2 or $21 $29 $7.00 2
29) $21 $24 $18 2 or $21 $29 $6.50 2
30) $21 $24 $18 2 or $21 $29 $6.00 2
31) $21 $24 $18 2 or $21 $29 $5.50 2
32) $21 $24 $18 2 or $21 $29 $5.00 2
33) $21 $24 $18 2 or $21 $29 $4.50 2
34) $21 $24 $18 2 or $21 $29 $4.00 2
35) $21 $24 $18 2 or $21 $29 $3.50 2
36) $21 $24 $18 2 or $21 $29 $3.00 2
37) $21 $24 $18 2 or $21 $29 $2.50 2
38) $21 $24 $18 2 or $21 $29 $2.00 2



TASK 14
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $21, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $21, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $21 $24 $18 2 or $21 $29 $18.00 2
2) $21 $24 $18 2 or $21 $29 $17.75 2
3) $21 $24 $18 2 or $21 $29 $17.50 2
4) $21 $24 $18 2 or $21 $29 $17.00 2
5) $21 $24 $18 2 or $21 $29 $16.75 2
6) $21 $24 $18 2 or $21 $29 $16.50 2
7) $21 $24 $18 2 or $21 $29 $16.25 2
8) $21 $24 $18 2 or $21 $29 $16.00 2
9) $21 $24 $18 2 or $21 $29 $15.75 2
10) $21 $24 $18 2 or $21 $29 $15.50 2
11) $21 $24 $18 2 or $21 $29 $15.25 2
12) $21 $24 $18 2 or $21 $29 $15.00 2
13) $21 $24 $18 2 or $21 $29 $14.50 2
14) $21 $24 $18 2 or $21 $29 $14.00 2
15) $21 $24 $18 2 or $21 $29 $13.50 2
16) $21 $24 $18 2 or $21 $29 $13.00 2
17) $21 $24 $18 2 or $21 $29 $12.50 2
18) $21 $24 $18 2 or $21 $29 $12.00 2
19) $21 $24 $18 2 or $21 $29 $11.50 2
20) $21 $24 $18 2 or $21 $29 $11.00 2
21) $21 $24 $18 2 or $21 $29 $10.50 2
22) $21 $24 $18 2 or $21 $29 $10.00 2
23) $21 $24 $18 2 or $21 $29 $9.50 2
24) $21 $24 $18 2 or $21 $29 $9.00 2
25) $21 $24 $18 2 or $21 $29 $8.50 2
26) $21 $24 $18 2 or $21 $29 $8.00 2
27) $21 $24 $18 2 or $21 $29 $7.50 2
28) $21 $24 $18 2 or $21 $29 $7.00 2
29) $21 $24 $18 2 or $21 $29 $6.50 2
30) $21 $24 $18 2 or $21 $29 $6.00 2
31) $21 $24 $18 2 or $21 $29 $5.50 2
32) $21 $24 $18 2 or $21 $29 $5.00 2
33) $21 $24 $18 2 or $21 $29 $4.50 2
34) $21 $24 $18 2 or $21 $29 $4.00 2
35) $21 $24 $18 2 or $21 $29 $3.50 2
36) $21 $24 $18 2 or $21 $29 $3.00 2
37) $21 $24 $18 2 or $21 $29 $2.50 2
38) $21 $24 $18 2 or $21 $29 $2.00 2



TASK 15
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $21, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $21, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $21 $24 $18 2 or $21 $29 $18.00 2
2) $21 $24 $18 2 or $21 $29 $17.75 2
3) $21 $24 $18 2 or $21 $29 $17.50 2
4) $21 $24 $18 2 or $21 $29 $17.00 2
5) $21 $24 $18 2 or $21 $29 $16.75 2
6) $21 $24 $18 2 or $21 $29 $16.50 2
7) $21 $24 $18 2 or $21 $29 $16.25 2
8) $21 $24 $18 2 or $21 $29 $16.00 2
9) $21 $24 $18 2 or $21 $29 $15.75 2
10) $21 $24 $18 2 or $21 $29 $15.50 2
11) $21 $24 $18 2 or $21 $29 $15.25 2
12) $21 $24 $18 2 or $21 $29 $15.00 2
13) $21 $24 $18 2 or $21 $29 $14.50 2
14) $21 $24 $18 2 or $21 $29 $14.00 2
15) $21 $24 $18 2 or $21 $29 $13.50 2
16) $21 $24 $18 2 or $21 $29 $13.00 2
17) $21 $24 $18 2 or $21 $29 $12.50 2
18) $21 $24 $18 2 or $21 $29 $12.00 2
19) $21 $24 $18 2 or $21 $29 $11.50 2
20) $21 $24 $18 2 or $21 $29 $11.00 2
21) $21 $24 $18 2 or $21 $29 $10.50 2
22) $21 $24 $18 2 or $21 $29 $10.00 2
23) $21 $24 $18 2 or $21 $29 $9.50 2
24) $21 $24 $18 2 or $21 $29 $9.00 2
25) $21 $24 $18 2 or $21 $29 $8.50 2
26) $21 $24 $18 2 or $21 $29 $8.00 2
27) $21 $24 $18 2 or $21 $29 $7.50 2
28) $21 $24 $18 2 or $21 $29 $7.00 2
29) $21 $24 $18 2 or $21 $29 $6.50 2
30) $21 $24 $18 2 or $21 $29 $6.00 2
31) $21 $24 $18 2 or $21 $29 $5.50 2
32) $21 $24 $18 2 or $21 $29 $5.00 2
33) $21 $24 $18 2 or $21 $29 $4.50 2
34) $21 $24 $18 2 or $21 $29 $4.00 2
35) $21 $24 $18 2 or $21 $29 $3.50 2
36) $21 $24 $18 2 or $21 $29 $3.00 2
37) $21 $24 $18 2 or $21 $29 $2.50 2
38) $21 $24 $18 2 or $21 $29 $2.00 2



TASK BLOCK 6

Participant Number:



TASKS 16-18

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 16 Option

A will be a 10 in 100 chance of receiving $19, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $19, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 16 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $19 $24 $18 2 or $19 $29 $18.00 2
If your prefer Option A, check the green box...

1) $19 $24 $18 2� or $19 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $19 $29 $18 2 or $19 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 16
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $19, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $19, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $19 $24 $18 2 or $19 $29 $18.00 2
2) $19 $24 $18 2 or $19 $29 $17.75 2
3) $19 $24 $18 2 or $19 $29 $17.50 2
4) $19 $24 $18 2 or $19 $29 $17.00 2
5) $19 $24 $18 2 or $19 $29 $16.75 2
6) $19 $24 $18 2 or $19 $29 $16.50 2
7) $19 $24 $18 2 or $19 $29 $16.25 2
8) $19 $24 $18 2 or $19 $29 $16.00 2
9) $19 $24 $18 2 or $19 $29 $15.75 2
10) $19 $24 $18 2 or $19 $29 $15.50 2
11) $19 $24 $18 2 or $19 $29 $15.25 2
12) $19 $24 $18 2 or $19 $29 $15.00 2
13) $19 $24 $18 2 or $19 $29 $14.50 2
14) $19 $24 $18 2 or $19 $29 $14.00 2
15) $19 $24 $18 2 or $19 $29 $13.50 2
16) $19 $24 $18 2 or $19 $29 $13.00 2
17) $19 $24 $18 2 or $19 $29 $12.50 2
18) $19 $24 $18 2 or $19 $29 $12.00 2
19) $19 $24 $18 2 or $19 $29 $11.50 2
20) $19 $24 $18 2 or $19 $29 $11.00 2
21) $19 $24 $18 2 or $19 $29 $10.50 2
22) $19 $24 $18 2 or $19 $29 $10.00 2
23) $19 $24 $18 2 or $19 $29 $9.50 2
24) $19 $24 $18 2 or $19 $29 $9.00 2
25) $19 $24 $18 2 or $19 $29 $8.50 2
26) $19 $24 $18 2 or $19 $29 $8.00 2
27) $19 $24 $18 2 or $19 $29 $7.50 2
28) $19 $24 $18 2 or $19 $29 $7.00 2
29) $19 $24 $18 2 or $19 $29 $6.50 2
30) $19 $24 $18 2 or $19 $29 $6.00 2
31) $19 $24 $18 2 or $19 $29 $5.50 2
32) $19 $24 $18 2 or $19 $29 $5.00 2
33) $19 $24 $18 2 or $19 $29 $4.50 2
34) $19 $24 $18 2 or $19 $29 $4.00 2
35) $19 $24 $18 2 or $19 $29 $3.50 2
36) $19 $24 $18 2 or $19 $29 $3.00 2
37) $19 $24 $18 2 or $19 $29 $2.50 2
38) $19 $24 $18 2 or $19 $29 $2.00 2



TASK 17
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $19, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $19, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $19 $24 $18 2 or $19 $29 $18.00 2
2) $19 $24 $18 2 or $19 $29 $17.75 2
3) $19 $24 $18 2 or $19 $29 $17.50 2
4) $19 $24 $18 2 or $19 $29 $17.00 2
5) $19 $24 $18 2 or $19 $29 $16.75 2
6) $19 $24 $18 2 or $19 $29 $16.50 2
7) $19 $24 $18 2 or $19 $29 $16.25 2
8) $19 $24 $18 2 or $19 $29 $16.00 2
9) $19 $24 $18 2 or $19 $29 $15.75 2
10) $19 $24 $18 2 or $19 $29 $15.50 2
11) $19 $24 $18 2 or $19 $29 $15.25 2
12) $19 $24 $18 2 or $19 $29 $15.00 2
13) $19 $24 $18 2 or $19 $29 $14.50 2
14) $19 $24 $18 2 or $19 $29 $14.00 2
15) $19 $24 $18 2 or $19 $29 $13.50 2
16) $19 $24 $18 2 or $19 $29 $13.00 2
17) $19 $24 $18 2 or $19 $29 $12.50 2
18) $19 $24 $18 2 or $19 $29 $12.00 2
19) $19 $24 $18 2 or $19 $29 $11.50 2
20) $19 $24 $18 2 or $19 $29 $11.00 2
21) $19 $24 $18 2 or $19 $29 $10.50 2
22) $19 $24 $18 2 or $19 $29 $10.00 2
23) $19 $24 $18 2 or $19 $29 $9.50 2
24) $19 $24 $18 2 or $19 $29 $9.00 2
25) $19 $24 $18 2 or $19 $29 $8.50 2
26) $19 $24 $18 2 or $19 $29 $8.00 2
27) $19 $24 $18 2 or $19 $29 $7.50 2
28) $19 $24 $18 2 or $19 $29 $7.00 2
29) $19 $24 $18 2 or $19 $29 $6.50 2
30) $19 $24 $18 2 or $19 $29 $6.00 2
31) $19 $24 $18 2 or $19 $29 $5.50 2
32) $19 $24 $18 2 or $19 $29 $5.00 2
33) $19 $24 $18 2 or $19 $29 $4.50 2
34) $19 $24 $18 2 or $19 $29 $4.00 2
35) $19 $24 $18 2 or $19 $29 $3.50 2
36) $19 $24 $18 2 or $19 $29 $3.00 2
37) $19 $24 $18 2 or $19 $29 $2.50 2
38) $19 $24 $18 2 or $19 $29 $2.00 2



TASK 18
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $19, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $19, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $19 $24 $18 2 or $19 $29 $18.00 2
2) $19 $24 $18 2 or $19 $29 $17.75 2
3) $19 $24 $18 2 or $19 $29 $17.50 2
4) $19 $24 $18 2 or $19 $29 $17.00 2
5) $19 $24 $18 2 or $19 $29 $16.75 2
6) $19 $24 $18 2 or $19 $29 $16.50 2
7) $19 $24 $18 2 or $19 $29 $16.25 2
8) $19 $24 $18 2 or $19 $29 $16.00 2
9) $19 $24 $18 2 or $19 $29 $15.75 2
10) $19 $24 $18 2 or $19 $29 $15.50 2
11) $19 $24 $18 2 or $19 $29 $15.25 2
12) $19 $24 $18 2 or $19 $29 $15.00 2
13) $19 $24 $18 2 or $19 $29 $14.50 2
14) $19 $24 $18 2 or $19 $29 $14.00 2
15) $19 $24 $18 2 or $19 $29 $13.50 2
16) $19 $24 $18 2 or $19 $29 $13.00 2
17) $19 $24 $18 2 or $19 $29 $12.50 2
18) $19 $24 $18 2 or $19 $29 $12.00 2
19) $19 $24 $18 2 or $19 $29 $11.50 2
20) $19 $24 $18 2 or $19 $29 $11.00 2
21) $19 $24 $18 2 or $19 $29 $10.50 2
22) $19 $24 $18 2 or $19 $29 $10.00 2
23) $19 $24 $18 2 or $19 $29 $9.50 2
24) $19 $24 $18 2 or $19 $29 $9.00 2
25) $19 $24 $18 2 or $19 $29 $8.50 2
26) $19 $24 $18 2 or $19 $29 $8.00 2
27) $19 $24 $18 2 or $19 $29 $7.50 2
28) $19 $24 $18 2 or $19 $29 $7.00 2
29) $19 $24 $18 2 or $19 $29 $6.50 2
30) $19 $24 $18 2 or $19 $29 $6.00 2
31) $19 $24 $18 2 or $19 $29 $5.50 2
32) $19 $24 $18 2 or $19 $29 $5.00 2
33) $19 $24 $18 2 or $19 $29 $4.50 2
34) $19 $24 $18 2 or $19 $29 $4.00 2
35) $19 $24 $18 2 or $19 $29 $3.50 2
36) $19 $24 $18 2 or $19 $29 $3.00 2
37) $19 $24 $18 2 or $19 $29 $2.50 2
38) $19 $24 $18 2 or $19 $29 $2.00 2



TASK BLOCK 7

Participant Number:



TASKS 19-25

On the following pages you will complete 7 tasks. In each task you are asked to make a series of

decisions between two options: Option A and Option B. You may complete the tasks in any order

you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 19 Option

A will be a 5 in 100 chance of receiving $25 and a 95 in 100 chance of receiving $0. This will remain

the same for all decisions in the task. Option B will vary across decisions. Initially Option B will

be a 100 in 100 chance of receiving $25. As you proceed, Option B will change. The amount you

receive with 100 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box.

The first question from Task 19 is reproduced as an example.

EXAMPLE
Option A or Option B

5 in 100 Chance 95 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
If your prefer Option A, check the green box...

1) $25 $0 2� or $25.00 2
If your prefer Option B, check the blue box...

1) $25 $0 2 or $25.00 2�

The other tasks in this block will involve the same payment amounts for Option

A, but the chance of receiving the payments will change. Please take a look at all

the tasks and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 19
On this page you will make a series of decisions between two options. Option A will be a 5 in 100

chance of receiving $25 and a 95 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
5 in 100 Chance 95 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 20
On this page you will make a series of decisions between two options. Option A will be a 10 in 100

chance of receiving $25 and a 90 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 Chance 90 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 21
On this page you will make a series of decisions between two options. Option A will be a 25 in 100

chance of receiving $25 and a 75 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
25 in 100 Chance 75 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 22
On this page you will make a series of decisions between two options. Option A will be a 50 in 100

chance of receiving $25 and a 50 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
50 in 100 Chance 50 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 23
On this page you will make a series of decisions between two options. Option A will be a 75 in 100

chance of receiving $25 and a 25 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
75 in 100 Chance 25 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 24
On this page you will make a series of decisions between two options. Option A will be a 90 in 100

chance of receiving $25 and a 10 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
90 in 100 Chance 10 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 25
On this page you will make a series of decisions between two options. Option A will be a 95 in 100

chance of receiving $25 and a 5 in 100 chance of receiving $0. Initially Option B will be a 100 in 100 chance
of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100 chance
will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
95 in 100 Chance 5 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK BLOCK 8

Participant Number:



TASKS 26-28

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 26 Option

A will be a 10 in 100 chance of receiving $25, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $25, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 26 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $25 $24 $18 2 or $25 $29 $18.00 2
If your prefer Option A, check the green box...

1) $25 $24 $18 2� or $25 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $25 $29 $18 2 or $25 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 26
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $25, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $25, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $25 $24 $18 2 or $25 $29 $18.00 2
2) $25 $24 $18 2 or $25 $29 $17.75 2
3) $25 $24 $18 2 or $25 $29 $17.50 2
4) $25 $24 $18 2 or $25 $29 $17.00 2
5) $25 $24 $18 2 or $25 $29 $16.75 2
6) $25 $24 $18 2 or $25 $29 $16.50 2
7) $25 $24 $18 2 or $25 $29 $16.25 2
8) $25 $24 $18 2 or $25 $29 $16.00 2
9) $25 $24 $18 2 or $25 $29 $15.75 2
10) $25 $24 $18 2 or $25 $29 $15.50 2
11) $25 $24 $18 2 or $25 $29 $15.25 2
12) $25 $24 $18 2 or $25 $29 $15.00 2
13) $25 $24 $18 2 or $25 $29 $14.50 2
14) $25 $24 $18 2 or $25 $29 $14.00 2
15) $25 $24 $18 2 or $25 $29 $13.50 2
16) $25 $24 $18 2 or $25 $29 $13.00 2
17) $25 $24 $18 2 or $25 $29 $12.50 2
18) $25 $24 $18 2 or $25 $29 $12.00 2
19) $25 $24 $18 2 or $25 $29 $11.50 2
20) $25 $24 $18 2 or $25 $29 $11.00 2
21) $25 $24 $18 2 or $25 $29 $10.50 2
22) $25 $24 $18 2 or $25 $29 $10.00 2
23) $25 $24 $18 2 or $25 $29 $9.50 2
24) $25 $24 $18 2 or $25 $29 $9.00 2
25) $25 $24 $18 2 or $25 $29 $8.50 2
26) $25 $24 $18 2 or $25 $29 $8.00 2
27) $25 $24 $18 2 or $25 $29 $7.50 2
28) $25 $24 $18 2 or $25 $29 $7.00 2
29) $25 $24 $18 2 or $25 $29 $6.50 2
30) $25 $24 $18 2 or $25 $29 $6.00 2
31) $25 $24 $18 2 or $25 $29 $5.50 2
32) $25 $24 $18 2 or $25 $29 $5.00 2
33) $25 $24 $18 2 or $25 $29 $4.50 2
34) $25 $24 $18 2 or $25 $29 $4.00 2
35) $25 $24 $18 2 or $25 $29 $3.50 2
36) $25 $24 $18 2 or $25 $29 $3.00 2
37) $25 $24 $18 2 or $25 $29 $2.50 2
38) $25 $24 $18 2 or $25 $29 $2.00 2



TASK 27
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $25, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $25, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $25 $24 $18 2 or $25 $29 $18.00 2
2) $25 $24 $18 2 or $25 $29 $17.75 2
3) $25 $24 $18 2 or $25 $29 $17.50 2
4) $25 $24 $18 2 or $25 $29 $17.00 2
5) $25 $24 $18 2 or $25 $29 $16.75 2
6) $25 $24 $18 2 or $25 $29 $16.50 2
7) $25 $24 $18 2 or $25 $29 $16.25 2
8) $25 $24 $18 2 or $25 $29 $16.00 2
9) $25 $24 $18 2 or $25 $29 $15.75 2
10) $25 $24 $18 2 or $25 $29 $15.50 2
11) $25 $24 $18 2 or $25 $29 $15.25 2
12) $25 $24 $18 2 or $25 $29 $15.00 2
13) $25 $24 $18 2 or $25 $29 $14.50 2
14) $25 $24 $18 2 or $25 $29 $14.00 2
15) $25 $24 $18 2 or $25 $29 $13.50 2
16) $25 $24 $18 2 or $25 $29 $13.00 2
17) $25 $24 $18 2 or $25 $29 $12.50 2
18) $25 $24 $18 2 or $25 $29 $12.00 2
19) $25 $24 $18 2 or $25 $29 $11.50 2
20) $25 $24 $18 2 or $25 $29 $11.00 2
21) $25 $24 $18 2 or $25 $29 $10.50 2
22) $25 $24 $18 2 or $25 $29 $10.00 2
23) $25 $24 $18 2 or $25 $29 $9.50 2
24) $25 $24 $18 2 or $25 $29 $9.00 2
25) $25 $24 $18 2 or $25 $29 $8.50 2
26) $25 $24 $18 2 or $25 $29 $8.00 2
27) $25 $24 $18 2 or $25 $29 $7.50 2
28) $25 $24 $18 2 or $25 $29 $7.00 2
29) $25 $24 $18 2 or $25 $29 $6.50 2
30) $25 $24 $18 2 or $25 $29 $6.00 2
31) $25 $24 $18 2 or $25 $29 $5.50 2
32) $25 $24 $18 2 or $25 $29 $5.00 2
33) $25 $24 $18 2 or $25 $29 $4.50 2
34) $25 $24 $18 2 or $25 $29 $4.00 2
35) $25 $24 $18 2 or $25 $29 $3.50 2
36) $25 $24 $18 2 or $25 $29 $3.00 2
37) $25 $24 $18 2 or $25 $29 $2.50 2
38) $25 $24 $18 2 or $25 $29 $2.00 2



TASK 28
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $25, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $25, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $25 $24 $18 2 or $25 $29 $18.00 2
2) $25 $24 $18 2 or $25 $29 $17.75 2
3) $25 $24 $18 2 or $25 $29 $17.50 2
4) $25 $24 $18 2 or $25 $29 $17.00 2
5) $25 $24 $18 2 or $25 $29 $16.75 2
6) $25 $24 $18 2 or $25 $29 $16.50 2
7) $25 $24 $18 2 or $25 $29 $16.25 2
8) $25 $24 $18 2 or $25 $29 $16.00 2
9) $25 $24 $18 2 or $25 $29 $15.75 2
10) $25 $24 $18 2 or $25 $29 $15.50 2
11) $25 $24 $18 2 or $25 $29 $15.25 2
12) $25 $24 $18 2 or $25 $29 $15.00 2
13) $25 $24 $18 2 or $25 $29 $14.50 2
14) $25 $24 $18 2 or $25 $29 $14.00 2
15) $25 $24 $18 2 or $25 $29 $13.50 2
16) $25 $24 $18 2 or $25 $29 $13.00 2
17) $25 $24 $18 2 or $25 $29 $12.50 2
18) $25 $24 $18 2 or $25 $29 $12.00 2
19) $25 $24 $18 2 or $25 $29 $11.50 2
20) $25 $24 $18 2 or $25 $29 $11.00 2
21) $25 $24 $18 2 or $25 $29 $10.50 2
22) $25 $24 $18 2 or $25 $29 $10.00 2
23) $25 $24 $18 2 or $25 $29 $9.50 2
24) $25 $24 $18 2 or $25 $29 $9.00 2
25) $25 $24 $18 2 or $25 $29 $8.50 2
26) $25 $24 $18 2 or $25 $29 $8.00 2
27) $25 $24 $18 2 or $25 $29 $7.50 2
28) $25 $24 $18 2 or $25 $29 $7.00 2
29) $25 $24 $18 2 or $25 $29 $6.50 2
30) $25 $24 $18 2 or $25 $29 $6.00 2
31) $25 $24 $18 2 or $25 $29 $5.50 2
32) $25 $24 $18 2 or $25 $29 $5.00 2
33) $25 $24 $18 2 or $25 $29 $4.50 2
34) $25 $24 $18 2 or $25 $29 $4.00 2
35) $25 $24 $18 2 or $25 $29 $3.50 2
36) $25 $24 $18 2 or $25 $29 $3.00 2
37) $25 $24 $18 2 or $25 $29 $2.50 2
38) $25 $24 $18 2 or $25 $29 $2.00 2
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