
Textual Features for Programming by Example

Aditya Krishna Menon
University of California, San Diego,

9500 Gilman Drive, La Jolla CA 92093
akmenon@ucsd.edu

Omer Tamuz
Faculty of Mathematics and Computer Science,

The Weizmann Institute of Science, Rehovot Israel
omer.tamuz@weizmann.ac.il

Sumit Gulwani
Microsoft Research,

One Microsoft Way, Redmond, WA 98052
sumitg@microsoft.com

Butler Lampson
Microsoft Research,

One Memorial Drive, Cambridge MA 02142
butler.lampson@microsoft.com

Adam Tauman Kalai
Microsoft Research,

One Memorial Drive, Cambridge MA 02142
adum@microsoft.com

September 19, 2012

Abstract
In Programming by Example, a system attempts to infer a program from in-

put and output examples, generally by searching for a composition of certain base
functions. Performing a naı̈ve brute force search is infeasible for even mildly in-
volved tasks. We note that the examples themselves often present clues as to which
functions to compose, and how to rank the resulting programs. In text processing,
which is our domain of interest, clues arise from simple textual features: for ex-
ample, if parts of the input and output strings are permutations of one another, this
suggests that sorting may be useful. We describe a system that learns the reliability
of such clues, allowing for faster search and a principled ranking over programs.
Experiments on a prototype of this system show that this learning scheme facili-
tates efficient inference on a range of text processing tasks.

1

ar
X

iv
:1

20
9.

38
11

v1
 [

cs
.A

I]
 1

7
Se

p
20

12

akmenon@ucsd.edu
omer.tamuz@weizmann.ac.il
sumitg@microsoft.com
butler.lampson@microsoft.com
adum@microsoft.com

1 Introduction
Programming by Example (PBE) [10, 1] is an attractive means for end-user program-
ming tasks, wherein the user provides the machine examples of a task she wishes to
perform, and the machine infers a program to accomplish this. This paradigm has
been used in a wide variety of domains; [4] gives a recent overview. We focus on text
processing, a problem most computer users face (be it reformatting the contents of an
email or extracting data from a log file), and for which several complete PBE systems
have been designed, including LAPIS [11], SMARTedit [8], QuickCode [3, 13], and
others [12, 14]. Such systems aim to provide a simpler alternative to the traditional
solutions to the problem, which involve either tedious manual editing, or esoteric com-
puting skills such as knowledge of awk or emacs.

A fundamental challenge in PBE is the following inference problem: given a set of
base functions, how does one quickly search for programs composed of these functions
that are consistent with the user-provided examples? One way is to make specific
assumptions about the nature of the base functions, as is done by many existing PBE
systems [11, 8, 3], but this is unsatisfying because it restricts the range of tasks a user
can perform. The natural alternative, brute force search, is infeasible for even mildly
involved programs [2]. Thus, a basic question is whether there is a solution possessing
both generality and efficiency.

This paper aims to take a step towards an affirmative answer to this question. We
observe that there are often telling features in the user examples suggesting which
functions are likely. For example, suppose that a user demonstrates their intended
task through one or more input-output pairs of strings {(xi, yi)}, where each yi is
a permutation of xi. This feature provides a clue that when the system is searching
for the f(·) such that f(xi) = yi, sorting functions may be useful. Our strategy is
to incorporate a library of such clues, each suggesting relevant functions based on
textual features of the input-output pairs. We learn weights telling us the reliability
of each clue, and use this to bias program search. This bias allows for significantly
faster inference compared to brute force search. Experiments on a prototype system
demonstrate the effectiveness of feature-based learning.

To clarify matters, we step through a concrete example of our system’s operation.

1.1 Example of our system’s operation
Imagine a user has a long list of names with some repeated entries (say, the Oscar
winners for Best Actor), and would like to create a list of the unique names, each anno-
tated with their number of occurrences. Following the PBE paradigm, in our system,
the user illustrates the operation by providing an example, which is an input-output pair
of strings. Figure 1 shows one possible such pair, which uses a subset of the full list (in
particular, the winners from ’91–’95) the user possesses.

One way to perform the above transformation is to first generate an intermediate
list where each element of the input list is appended with its occurrence count – which
would look like ["Anthony Hopkins (1)", "Al Pacino (1)", "Tom Hanks (2)",

"Tom Hanks (2)", "Nicolas Cage (1)"] – and then remove duplicates. The corre-

2

Anthony Hopkins
Al Pacino
Tom Hanks
Tom Hanks
Nicolas Cage

→

Anthony Hopkins (1)
Al Pacino (1)
Tom Hanks (2)
Nicolas Cage (1)

Figure 1: Input-output example for the desired task.

sponding program f(·) may be expressed as the composition

f(x) = dedup(concatLists(x, “ ”, concatLists(“(”, count(x, x), “)”))).

The argument x here represents the list of input lines that the user wishes to process,
which may be much larger than the input provided in the example. We assume here
a base language comprising (among others) a function dedup that removes duplicates
from a list, concatLists that concatenates lists of strings elementwise, implicitly
expanding singleton arguments, and count that finds the number of occurrences of the
elements of one list in another.

While simple, this example is out of scope for existing text processing PBE sys-
tems. Most systems support a restricted, pre-defined set of functions that do not include
natural tasks like removing duplicates; for example [3] only supports functions that op-
erate on a line-by-line basis. These systems perform inference with search routines
that are hand-coded for their supported functionality, and are thus not easily extensi-
ble. (Even if an exception could be made for specific examples like the one above, there
are countless other text processing applications we would like to solve.) Systems with
richer functionality are inapplicable because they perform inference with brute force
search (or a similarly intractable operation [5]) over all possible function compositions.
Such a naı̈ve search over even a moderate sized library of base functions is unlikely to
find the complex composition of our example. Therefore, a more generic framework is
needed.

Our basic observation is that certain textual features can help bias our search by pro-
viding clues about which functions may be relevant: in particular, (a) there are dupli-
cate lines in the input but not output, suggesting that dedup may be useful, (b) there are
parentheses in the output but not input, suggesting the function concatLists("(",L,")")
for some list L, (c) there are numbers on each line of the output but none in the input,
suggesting that count may be useful, and (d) there are many more spaces in the out-
put than the input, suggesting that " " may be useful. Our claim is that by learning
weights that tell us the reliability of these clues – for example, how confident can we
be that duplicates in the input but not the output suggests dedup – we can significantly
speed up the inference process over brute force search.

In more detail, a clue is a function that generates rules in a probabilistic context
free grammar based on features of the provided example. Each rule corresponds to
a function1 (possibly with bound arguments) or constant in the underlying program-
ming language. The rule probabilities are computed from weights on the clues that
generate them, which in turn are learned from a training corpus of input-output ex-
amples. To learn f(·), we now search through derivations of this grammar in order

1When we describe clues as suggesting functions, we implicitly mean the corresponding grammar rule.

3

of decreasing probability. Table 1 illustrates what the grammar may look like for the
above example. Note that the grammar rules and probabilities are example specific; we
do not include a rule such as DELIM→ "$", say, because there is no instance of "$"
in the input or output. Further, compositions of rules may also be generated, such as
concatList("(",LIST,")").

Production Probability Production Probability
P→join(LIST,DELIM) 1 CAT→LIST 0.7
LIST→split(x,DELIM) 0.3 CAT→DELIM 0.3
LIST→concatList(CAT,CAT,CAT) 0.1 DELIM→"\n" 0.5
LIST→concatList("(",CAT,")") 0.2 DELIM→" " 0.3
LIST→dedup(LIST) 0.2 DELIM→"(" 0.1
LIST→count(LIST,LIST) 0.2 DELIM→")" 0.1

Table 1: Example of grammar rules generated for task in Figure 1.

Table 1 is of course a condensed view of the actual grammar our prototype system
generates, which is based on a large library of about 100 features and clues. With the
full grammar, a naı̈ve brute force search over compositions takes 30 seconds to find the
right solution to the example of Figure 1, whereas with learning the search terminates
in just 0.5 seconds.

1.2 Contributions
To the best of our knowledge, ours is the first PBE system to exploit textual features
for inference, which we believe is a step towards achieving the desiderata of efficiency
and generality. The former will be demonstrated in an empirical evaluation of our
learning scheme. For the latter, while the learning component is discussed in the con-
text of text processing, the approach could possibly be adapted for different domains.
Further, the resulting system is highly extensible. Through the use of clues, one only
considers broadly relevant functions during the search for a suitable program: one is
free to add functionality to process addresses, e.g. , without fear of it adversely affect-
ing the performance of processing dates. Through the use of learning, we further sift
amongst these broadly relevant functions, and determine which of them is likely to be
useful in explaining the given data. A system designer need only write clues for any
new functionality, and add relevant examples to the training corpus. Our system then
automatically learns weights associated with these clues.

1.3 Comparison to previous learning systems
Most previous PBE systems for text processing handle a relatively small subset of nat-
ural text processing tasks. This is in order to admit efficient representation and search
over consistent programs, e.g. using a version space [7], thus sidestepping the issue of
searching for programs using general classes of functions. To our knowledge, every
system designed for a library of arbitrary functions searches for appropriate composi-
tions of functions either by brute force search, or a similarly intractable operation such

4

as invoking a SAT solver [5].2 Our learning approach based on textual features is thus
more general and flexible than previous approaches.

Having said this, our goal in this paper is not to compete with existing PBE systems
in terms of functionality. Instead, we wish to show that the fundamental PBE inference
problem may be attacked by learning with textual features. This idea could in fact
be applied in conjunction with prior systems. A specific feature of the data, such as
the input and output having the same number of lines, may be a clue that a function
corresponding to a system like QuickCode [3] will be useful.

2 Formalism of our approach
We begin a formal discussion of our approach by defining the learning problem in PBE.

2.1 Programming by example (PBE)
Let S denote the set of strings. At inference time, the user provides a system input
z := (x, x̄, ȳ) ∈ S3, where x represents the data to be processed, and (x̄, ȳ) is the
example input-output pair that represents the string transformation the user wishes to
perform. In the example of the previous section, (x̄, ȳ) is the pair of strings represented
in Figure 1, and x is the list of all Oscar winners. While a typical choice for x̄ is
some prefix of x, this is not required in general3. We assume that ȳ = f(x̄), for some
unknown target function or program f ∈ SS , from the set of functions that map strings
to strings. Our goal is to recover f(·).

We do so by defining a probability model Pr[f |z; θ] over programs, parameterized
by some θ. Given some θ, at inference time on input z, we pick the most likely program
under Pr[f |z; θ] which is also consistent with z. We do so by invoking a search function
σθ,τ : S3 → SS that depends on θ and an upper bound τ on search time. This produces
our conjectured program f̂ = σθ,τ (z) computing a string-to-string transformation, or
a trivial failure function ⊥ if the search fails in the allotted time.

The θ parameters are learned at training time, where the system is given a corpus of
T training quadruples, {(z(t), y(t))}Tt=1, with z(t) = (x(t), x̄(t), ȳ(t)) ∈ S3 represent-
ing the actual data and the example input-output pair, and y(t) ∈ S the correct output
on x(t). Note that each quadruple here represents a different task; for example, one
may represent the Oscar winners example of the previous section, another a generic
email processing task, and so on. From these examples, the system chooses the param-
eters θ that maximize the likelihood Pr[f |z; θ]. We now describe how we model the
conditional distribution Pr[f |z; θ] using a probabilistic context-free grammar.

2One could consider employing heuristic search techniques such as Genetic Programming. However,
this requires picking a metric that captures meaningful search progress. This is difficult, since functions like
sorting cause drastic changes on an input. Thus, standard metrics like edit distance may not be appropriate.

3This is more general than the setup of e.g. [3], which assumes x̄ and ȳ have the same number of lines,
each of which is treated as a separate example.

5

2.2 PCFGs for programs
We maintain a probability distribution over programs with a Probabilistic Context-
Free Grammar (PCFG) G, as discussed in [9]. The grammar is defined by a set of
non-terminal symbols V , terminal symbols Σ (which may include strings s ∈ S and
also other program-specific objects such as lists or functions), and rules R. Each rule
r ∈ R has an associated probability Pr[r|z; θ] of being generated given the system
input z, where θ represents the unobserved parameters of the grammar. WLOG, each
rule r is also associated with a function fr : ΣNArgs(r) → Σ, where NArgs(r) denotes
the number of arguments in the RHS of rule r. A program4 is a derivation of the start
symbol Vstart. The probability of any program f(·) is the probability of its constituent
rulesRf (counting repetitions):

Pr[f |z; θ] = Pr[Rf |z; θ] =
∏
r∈Rf

Pr[r|z; θ]. (1)

We now describe how the distribution Pr[r|z; θ] is parameterized using clues.

2.3 Features and clues for learning
The learning process exploits the following simple fact: the chance of a rule being part
of an explanation for a string pair (x̄, ȳ) depends greatly on certain characteristics in
the structure of x̄ and ȳ. For example, one interesting binary feature is whether or not
every line of ȳ is a substring of x̄. If true, it may suggest that the select field
rule should receive higher probability in the PCFG, and hence will be combined with
other rules more often in the search. Another binary feature indicates whether or not
“Massachusetts” occurs repeatedly as a substring in ȳ but not in x̄. This suggests that
a rule generating the string “Massachusetts” may be useful. Conceptually, given a
training corpus, we would like to learn the relationship between such features and the
successful rules. However, there are an infinitude of such binary features as well as
rules (e.g. a feature and rule corresponding to every possible constant string), but of
course limited data and computational resources. So, we need a mechanism to estimate
the relationship between the two entities.

We connect features with rules via clues. A clue is a function c : S3 → 2R

that states, for each system input z, which subset of rules in R (the infinite set of
grammar rules), may be relevant. This set of rules will be based on certain features
of z, meaning that we search over compositions of instance-specific rules5. For ex-
ample, one clue might return {E → select field(E, Delim, Int)} if each line of ȳ
is a substring of x̄, and ∅ otherwise. Another clue might recognize the input string
is a permutation of the output string, and generate rules {E → sort(E, COMP), E →

4Two programs from different derivations may compute exactly the same function f : S → S. However,
determining whether two programs compute the same function is undecidable in general. Hence, we abuse
notation and consider these to be different functions.

5As long as the functions generated by our clues library include a Turing-complete subset, the class of
functions being searched amongst is always the Turing-computable functions, though having a good bias is
probably more useful than being Turing complete.

6

reverseSort(E, COMP), COMP → alphaComp, . . .}, i.e., rules for sorting as well as intro-
ducing a nonterminal along with corresponding rules for various comparison functions.
Note that a single clue can suggest a multitude of rules for different z’s (e.g. E→ s for
every substring s in the input), and “common” functions (e.g. concatenation of strings)
may be suggested by multiple clues.

We now describe our probability model that is based on the clues formalism.

2.4 Probability model
Suppose the system has n clues c1, c2, . . . , cn. For each clue ci, we keep an associated
parameter θi ∈ R. Let Rz = ∪ni=1ci(z) be the set of instance-specific rules (wrt z) in
the grammar. While the set of all rules R will be infinite in general, we assume there
are a finite number of clues suggesting a finite number of rules, so thatRz is finite. For
each rule r /∈ Rz , we take Pr[r|z] = 0, i.e. a rule that is not suggested by any clue is
disregarded. For each rule r ∈ Rz , we use the probability model

Pr[r | z; θ] =
1

ZLHS(r)
exp

 ∑
i:r∈ci(z)

θi

 . (2)

where for each nonterminal V , the normalizer ZV ensures we get a valid probability
distribution:

ZV =
∑

r∈Rz :LHS(r)=V

exp

 ∑
i:r∈ci(z)

θi

 .

This is a log-linear model for the probabilities, where each clue has a weight eθi , which
is intuitively its reliability, and the probability of each rule is proportional to the prod-
uct of the weights generating that rule. An alternative would be to make the proba-
bilities be the (normalized) sums of corresponding weights, but we favor products for
two reasons. First, as described shortly, maximizing the log-likelihood is a convex op-
timization problem in θ for products, but not for sums. Second, this formalism allows
clues to have positive, neutral, or even negative influence on the likelihood of a rule,
based upon the sign of θi.

3 System training and usage
We are now ready to describe in full the operation of the training and inference phases.

3.1 Training phase: learning θ

At training time, we wish to learn the parameter θ that characterizes the conditional
probability of a program given the input, Pr[f |z; θ]. We assume each training example
z(t) is also annotated with the “correct” program f (t) that explains both the example
and actual data pairs. We may attempt to discover these annotations automatically
by bootstrapping: we start with a uniform parameter estimate θ(j) = 0. In iteration

7

j = 1, 2, 3, . . ., we select f (j,t) to be the most likely program, based on θ(j−1), con-
sistent with the system data. (If no program is found within the timeout, the example
is ignored.) Then, parameters θ(j) are learned, as described below. This is run until
convergence.

Fix a single iteration j. For notational convenience, we write target programs
f (t) = f (j,t) and parameters θ = θ(j). We choose θ so as to minimize the negative
log-likelihood of the data, plus a regularization term:

θ = argmin
θ′∈Rn

− log Pr[f (t)|z(t); θ′] + λΩ(θ′),

where Pr[f (t)|z(t); θ] is defined by equations (1) and (2), the regularizer Ω(θ) is the
`2 norm 1

2 ||θ||
2
2, and λ > 0 is the regularization strength which may be chosen by

cross-validation. If f (t) consists of rules r(t)1 , r
(t)
2 , . . . , r

(t)

k(t)
(possibly with repetition),

then

log Pr[f (t)|z(t); θ] =

k=k(t)∑
k=1

log
(
Z
LHS(r

(t)
k)

)
−

∑
i:r

(t)
k ∈ci(z(t))

θi

The convexity of the objective follows from the convexity of the regularizer and the
log-sum-exp function. The parameters θ are optimized by gradient descent.

3.2 Inference phase: evaluating on new input
At inference time, we are given system input z = (x, x̄, ȳ), n clues c1, c2, . . . , cn, and
parameters θ ∈ Rn learned from the training phase. We are also given a timeout τ . The
goal is to infer the most likely program f̂ that explains the data under a certain PCFG.
This is done as follows:

(i) We evaluate each clue on the system input z. The underlying PCFG Gz consists
of the union of all suggested rules,Rz =

⋃n
i=1 ci(z).

(ii) Probabilities are assigned to these rules via Equation 2, using the learned param-
eters θ.

(iii) We enumerate over Gz in order of decreasing probability, and return the first
discovered f̂ that explains the (x̄, ȳ) string transformation, or⊥ if we exceed the
timeout.

To find the most likely consistent program, we enumerate all programs of proba-
bility at least η > 0, for any given η. We begin with a large η, gradually decreasing
it and testing all programs until we find one which outputs ȳ on x̄ (or we exceed the
timeout τ). (If more than one consistent program is found, we just select the most
likely one.) Due to the exponentially increasing nature of the number of programs, this
decreasing threshold approach imposes a negligible overhead due to redundancy – the
vast majority of programs are executed just once.

To compute all programs of probability at least η, a dynamic program first computes
the maximal probability of a full trace from each nonterminal. Given these values, it
is simple to compute the maximal probability completion of any partial trace. We then
iterate over each nonterminal expansion, checking whether applying it can lead to any
programs above the threshold; if so, we recurse.

8

4 Results on prototype system
To test the efficacy of our proposed system, we report results on a prototype web app
implemented using client-side JavaScript and executed in a web browser on an Intel
Core i7 920 processor. Our goal with the experiments is not to claim that our prototype
system is “better” than existing systems in terms of functionality or richness. (Even
if we wished to compare functionality, this would be difficult since all existing text
processing systems that we are aware of are proprietary.) Instead, our aim is to evaluate
whether learning weights using textual features – which has not been studied in any
prior system, to our knowledge – can speed up inference. Nonetheless, we do attempt
to construct a reasonably functional system so that our results can be indicative of what
we might expect to see in a real-world text processing system.

4.1 Details of base functions and clues
As discussed in Section 2.2, we associated the rules in our PCFG with a set of base
functions. In total we created around 100 functions, such as dedup, concatLists,
and count, as described in Section 1.1. For clues to connect these functions to features
of the examples, we had one set of base clues that suggested functions we believed to
be common, regardless of the system input z (e.g. string concatenation). Other clues
were designed to support common formats that we expected, such as dates, tabular
and delimited data. Table 2 gives a sample of some of the clues in our system, in the
form of grammar rules that certain textual features are connected to; in total we had
approximately 100 clues. The full list of functions and clues is available as part of our
supplementary material.

Table 2: Sample of clues used. LIST denotes a list-, E a string-nonterminal.
Feature Suggested rule(s)
Substring s appears in output but not input? E → “s”, LIST → {E}
Duplicates in input but not output? LIST → dedup(LIST)

Numbers on each input line but not output line? LIST → count(LIST)

4.2 Training set for learning
To evaluate the system, we compiled a set of 280 examples with both an example
pair (x̄, ȳ) and evaluation pair (x, y) specified. These examples were partly hand-
crafted, based on various common usage scenarios the authors have encountered, and
partly based on examples used in [3]. All examples are expressible as (possibly deep)
compositions of our base functions; the median depth of composition on most examples
is around 4. Like any classical learning model, we assume these are iid samples from
the distribution of interest, namely over “natural’ text processing examples. It is hard
to justify this independence assumption in our case, but we are not aware of a good
solution to this problem in general; even examples collected from a user study, say,
will tend to be biased in some way. Table 3 gives a sample of some of the scenarios we
tested the system on. To encourage future research on this problem, our suite of training

9

examples is ready for public release, and is available as part of our supplementary
material.

Table 3: Sample of test-cases used to evaluate the system.
Input Output
Adam Ant\n1 Ray Rd.\nMA\n90113 90113
28/6/2010 June the 28th 2010
612 Australia case 612: return Australia;

4.3 Does learning help?
The learning procedure aims to allow us to find the correct program in the shortest
amount of time. We compare this method to a baseline, hoping to see quantifiable
improvements in performance.

Baseline. Our baseline is to search through the grammar in order of increasing pro-
gram size, attempting to find the shortest grammar derivation that explains the trans-
formation. The grammar does use clues to winnow down the set of relevant rules, but
does not use learned weights: we let θi = 0 for all i, i.e. all rules that are suggested by
a clue have the same constant probability. This method’s performance lets us measure
the impact of learning. Note that pure brute force search would not even use clues to
narrow down the set of feasible grammar rules, and so would perform strictly worse.
Such a method is infeasible for the tasks we consider, because some of them involve
e.g. constant strings, which cannot be enumerated.

Measuring performance. To assess a method, we look at its accuracy, as mea-
sured by the fraction of correctly discovered programs, and efficiency, as measured by
the time required for inference. As every target program in the training set is express-
ible as a composition of our base functions, there are two ways in which we might fail
to infer the correct program: (a) the program is not discoverable within the timeout set
for the search, or (b) another program (one which also explains the example transfor-
mation) is wrongly given a higher probability. We call errors of type (a) timeout errors,
and errors of type (b) ranking errors. Larger timeouts lead to fewer timeout errors.

Evaluation scheme. One possible pitfall in an empirical evaluation is having an
overly specific set of clues for the training set: an extreme case would be a single clue
for each training example, which automatically suggested the correct rules to com-
pose. To ensure that the system is capable of making useful predictions on new data,
we report the test error after creating 10 random 80–20 splits of the training set. For
each split, we compare the various methods as the inference timeout τ varies from
{1/16, 1/8, . . . , 16} seconds. For the learning method, we performed 3 bootstrap iter-
ations (see Section 3.1) with a timeout of 8 seconds to get annotations for each training
example.

Results. Figures 2(a) and 2(b) plot the timeout and ranking error rates respectively.
As expected, for both methods, most errors arise due to timeout when the τ is small. To
achieve the same timeout error rate, learning saves about two orders of magnitude in
τ compared to the baseline. Learning also achieves lower mean ranking error, but this
difference is not as pronounced as for timeout errors. This is not surprising, because the

10

0

10

20

30

40

50

60

Inference timeout (secs)

T
e

s
t

ty
p

e
 1

 e
rr

o
r

ra
te

 (
%

)

2
−4

 2
−3

 2
−2

 2
−1

 2
0
 2

1
 2

2
 2

3
 2

4

Baseline
Learning

(a) Timeout errors.

0

2

4

6

8

10

12

14

Inference timeout (secs)

T
e

s
t

ty
p

e
 2

 e
rr

o
r

ra
te

 (
%

)

2
−4

 2
−3

 2
−2

 2
−1

 2
0
 2

1
 2

2
 2

3
 2

4

Baseline
Learning

(b) Ranking errors.

0

5

10

15

20

25

30

35

40

Inference timeout (secs)

M
e

a
n

 i
n

fe
re

n
c
e

 s
p

e
e

d
u

p

2
−4

 2
−3

 2
−2

 2
−1

 2
0
 2

1
 2

2
 2

3
 2

4

(c) Mean speedup due to learning.

Baseline inference time (secs)

L
e

a
rn

in
g

 i
n

fe
re

n
c
e

 t
im

e
 (

s
e

c
s
)

2
−10

 2
−8

 2
−6

 2
−4

 2
−2

 2
0
 2

2
 2

4

2
−10

2
−8

2
−6

2
−4

2
−2

2
0

2
2

2
4

(d) Scatterplot of prediction times.

Figure 2: Comparison of baseline versus learning approach.

baseline generally finds few candidates in the first place (recall that the ranking error
is only measured on examples that do not timeout); by contrast, the learning method
opens the space of plausible candidates, but introduces a risk of some of them being
incorrect.

Figure 2(c) shows the relative speedup due to learning as τ varies. We see that
learning manages to cut down the prediction time by a factor of almost 40 over the
baseline with τ = 16 seconds. (The system would be even faster if implemented
in a low-level programming language such as C instead of Javascript.) The trend of
the curve suggests there are examples that the baseline is unable to discover with 16
seconds, but learning discovers with far fewer. Figure 2(d) is a scatterplot of the times
taken for both methods with τ = 16 over all 10 train-test splits, confirms this: in
the majority of cases, learning finds a solution in much less time than the baseline,
and solves many examples the baseline fails on within a fraction of a second. (In
some cases, learning slightly increases inference time. Here, the test example involves
functions insufficiently represented in the training set.)

Finally, Figure 3 compares the depths of programs (i.e. number of constituent gram-
mar rules) discovered by learning and the baseline over all 10 train-test splits, with an
inference timeout of τ = 16 seconds. As expected, the learning procedure discovers
many more programs that involve deep (depth ≥ 4) compositions of rules, since the
rules that are relevant are given higher probability.

11

1 2 3 4 5 6 7 8 9 N/A
0

50

100

150

200

Program depth
#
 o

f
in

s
ta

n
c
e
s

Baseline
Learning

Figure 3: Learnt program depths, τ = 16s. “N/A” denotes that no successful program
is found.

5 Conclusion and future work
We propose a PBE system for repetitive text processing based on exploiting certain
clues in the input data. We show how one can learn the utility of clues, which relate
textual features to rules in a context free grammar. This allows us to speed up the search
process, and obtain a meaningful ranking over programs. Experiments on a prototype
system show that learning with clues brings significant savings over naı̈ve brute force
search. As future work, it would be interesting to learn correlations between rules
and clues that did not suggest them, although this would necessitate enforcing some
strong parameter sparsity. It would also be interesting to incorporate ideas like adaptor
grammars [6] and learning program structure as in [9].

References
[1] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David

Maulsby, Brad A. Myers, and Alan Turransky, editors. Watch what I do: pro-
gramming by demonstration. MIT Press, Cambridge, MA, USA, 1993. ISBN
0262032139.

[2] Sumit Gulwani. Dimensions in program synthesis. In PPDP, 2010.

[3] Sumit Gulwani. Automating string processing in spreadsheets using input-output
examples. In POPL, pages 317–330, 2011.

[4] Sumit Gulwani. Synthesis from examples. WAMBSE (Workshop on Advances in
Model-Based Software Engineering) Special Issue, Infosys Labs Briefings, 10(2),
2012.

[5] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In ICSE, pages 215–224, 2010.

[6] Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater. Adaptor grammars:
A framework for specifying compositional nonparametric bayesian models. In
NIPS, pages 641–648, 2006.

12

[7] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. Program-
ming by demonstration using version space algebra. Mach. Learn., 53:111–156,
October 2003. ISSN 0885-6125.

[8] Tessa A. Lau, Pedro Domingos, and Daniel S. Weld. Version space algebra and its
application to programming by demonstration. In ICML, pages 527–534, 2000.

[9] Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierarchi-
cal Bayesian approach. In ICML, pages 639–646, 2010.

[10] H. Lieberman. Your Wish Is My Command: Programming by Example. Morgan
Kaufmann, 2001.

[11] Robert C. Miller and Brad A. Myers. Lightweight structured text processing. In
USENIX Annual Technical Conference, General Track, pages 131–144, 1999.

[12] Robert P. Nix. Editing by example. TOPLAS, 7(4):600–621, 1985.

[13] Rishabh Singh and Sumit Gulwani. Learning semantic string transformations
from examples. PVLDB, 5(8), 2012.

[14] Ian H. Witten and Dan Mo. TELS: learning text editing tasks from examples,
pages 183–203. MIT Press, Cambridge, MA, USA, 1993. ISBN 0-262-03213-9.

13

	1 Introduction
	1.1 Example of our system's operation
	1.2 Contributions
	1.3 Comparison to previous learning systems

	2 Formalism of our approach
	2.1 Programming by example (PBE)
	2.2 PCFGs for programs
	2.3 Features and clues for learning
	2.4 Probability model

	3 System training and usage
	3.1 Training phase: learning
	3.2 Inference phase: evaluating on new input

	4 Results on prototype system
	4.1 Details of base functions and clues
	4.2 Training set for learning
	4.3 Does learning help?

	5 Conclusion and future work

