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Abstract

We study invariant random subgroups (IRSs) of semidirect products G = AoΓ. In
particular, we characterize all IRSs of parabolic subgroups of SLd(R), and show that
all ergodic IRSs of Rdo SLd(R) are either of the form RdoK for some IRS of SLd(R),
or are induced from IRSs of Λ o SL(Λ), where Λ < Rd is a lattice.
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1 Introduction

Let G be a locally compact, second countable group and let SubG be the space of closed
subgroups of G, considered with the Chabauty topology [10].

Definition 1. An invariant random subgroup (IRS) of G is a random element of SubG whose
law is a conjugation invariant Borel probability measure.

IRSs were introduced by Abért–Glasner–Virág in [2], and independently by Vershik [22]
(under a different name) and the second author [7]. Examples of IRSs include normal
subgroups, as well as random conjugates gΓg−1 of a lattice Γ < G, where the conjugate is
chosen by selecting Γg randomly against the given finite measure on Γ\G. More generally,
any IRS of a lattice Λ < G induces an IRS of G: if µΓ is the law of the original IRS and η
is a G-invariant probability measure on Γ\G, the new law µG is given by the integral

µG =

∫
Γg∈Γ\G

g∗µΓ dη,

where µΓ is regarded as a measure on SubΓ ⊂ SubG, and g acts on SubG by conjugation.
Informally, we conjugate the IRS of Γ by an ‘η-random’ element of G. Since SubG is compact
[5, Lemma E.1.1], the space of (conjugation invariant) Borel probability measures on SubG
is weak* compact, by Riesz’s representation theorem and Alaoglu’s theorem. Hence, IRSs
compactify the set of lattices in G. There is a growing literature on IRSs (see, e.g., [3, 6, 8,
9, 19]) and their applications, see especially [1, 7, 13, 21].

Our goal in this note is to develop an understanding of IRSs of semidirect products
G = A o Γ. There are few general constructions of such IRSs: there is the trivial IRS {e},
and IRSs of the form A oK, where K is an IRS of Γ. When the kernel Γtriv of the action
Γ � A is nontrivial, one can also construct IRSs of the form H oK, where H is an IRS of
A and K is an IRS of Γ that lies in Γtriv, but additional examples are hard to find.

The kernel of our work are Theorems 2.6 and 2.7, in which we study ‘transverse’ IRSs
of G = A o Γ when A is torsion-free abelian or simply connected nilpotent. Here, an IRS
H < G is transverse if H ∩ A = {0}. This theorem has two parts: when A is torsion-free
abelian, we prove that that the projection of H to Γ acts trivially on A almost surely, and
if A is a simply connected nilpotent Lie group, we show that an (often large) subgroup of
Γ acts precompactly on the Zariski closure of the set of all first coordinates of elements
(v,M) ∈ H, as H ranges through the support of the IRS.

As applications of Theorems 2.6 and 2.7, we study IRSs of two familiar semidirect prod-
ucts: the special affine groups Rd o SLd(R) and the parabolic subgroups of SLd(R).

1.1 IRSs of special affine groups

We are particularly interested in IRSs of Rd o SLd(R). In addition to the examples {e} and
Rd o K mentioned above, one can construct an IRS from a lattice Λ ⊂ Rd. Namely, the
subgroup SL(Λ) < SLd(R) stabilizing Λ is also a lattice, see [17], so the semidirect product
Λ o SL(Λ) is a lattice in Rd o SLd(R), and hence a random conjugate of it is an IRS.
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Theorem 1.1. Let H be a non-trivial ergodic IRS of Rd o SLd(R). Then either

1. H = Rd oK for some IRS K < SLd(R), or

2. H is induced from an IRS of Λ o SL(Λ), for some lattice Λ < Rd.

Here, an IRS is ergodic if its law is an ergodic measure for the conjugation action of G on
SubG. By Choquet’s theorem [16], every IRS can be written as an integral of ergodic IRSs.
Note that by transitivity of the action of SLd(R) on the space of lattices of a fixed covolume,
we can actually choose Λ in 2. to be a scalar multiple of Zd.

As a corollary, any normal subgroup of Rd o SLd(R) is of the form Rd oK where K is a
normal subgroup of SLd(R). (Here, K = {e}, SLd(R) or {±I}, where the last option is only
available when d is even.) Similarly, it follows that every lattice of Rd o SLd(R) is a finite
index subgroup of some Λo SL(Λ). We expect that these results are not entirely surprising,
although we note that Theorem 4.8 of [11] is that RdoSLd(R) has no uniform lattices, which
follows trivially from this classification.

Stuck–Zimmer [18] show that for d > 2, every ergodic IRS of SLd(R) is either a lattice
or a normal subgroup. This result, together with Theorem 1.1, implies that for d > 2 every
ergodic IRS of Rd o SLd(R) is likewise either a lattice or a normal subgroup.

In light of Theorem 1.1, to understand IRSs in special affine groups it suffices to study
those of G = Zd o SLd(Z). There are the usual examples {e} and Zd oK, where K is an
IRS of SLd(Z), but in general, some subtle finite group theory appears. For instance, let

πn : G −→ (Z/nZ)d o SLd(Z/nZ)

be the reduction map and setting d = 2, consider the subgroup

H =
{(

(t, 0), ( 1 1
0 1 )t

) ∣∣∣ t ∈ Z/nZ
}
< (Z/nZ)d o SLd(Z/nZ).

The preimage π−1
n (H) is a finite index subgroup of G, and therefore can be considered as an

IRS, but it does not have the form Λ oK for any Λ < Zd, K < SLd(Z). However, we will
show that all IRSs of G are semidirect products up to some ‘finite index noise’. Namely, let

Gn = Ker πn = nZd o Γ(n),

where Γ(n) is the kernel of the reduction map SLd(Z)→ SLd(Z/nZ). We prove:

Theorem 1.2. Let H be a non-trivial ergodic IRS of ZdoSLd(Z). Then there is some n ∈ N
such that Hn = H ∩Gn is of the form nZd oK, where K is an IRS of SLd(Z).

Remark 1. In the case of G = SLn(Z), the Nevo–Stuck–Zimmer theorem says that any
ergodic IRS of G is either finite index almost surely, or is central in G, see [18, 15]. Bekka [4]
later generalized this to a rigidity statement about the characters of G. Here, an IRS with
law µ gives the character φ : G −→ [0, 1], where φ(g) = µ({H ∈ SubG | g ∈ H}).
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Specializing Bekka’s proof to the case of IRSs, Theorem 1.2 can be used in place of his
Sections 4 and 5 (and a bit of 6) in a fairly elementary proof of the Nevo–Stuck–Zimmer
theorem for G = SLn(Z). Namely, suppose H ≤ G is an ergodic infinite index IRS. Writing

Zn = 〈x1〉 ⊕ · · · ⊕ 〈xn〉,

we can let Pi ∼= Zn−1 o SLn−1(Z) be the parabolic subgroup of G that is the stabilizer of xi,
and let Vi ∼= Zn−1 be the corresponding unipotent subgroup of Pi. Theorem 1.2 says that
for each i, either H ∩ Pi is almost surely trivial or H almost surely contains a lattice in Vi.
If for every i, we have that H ∩ Vi is a lattice in Vi a.s., then there is some m such that a.s.
H contains the mth powers of all elementary matrices, which implies H is finite index, e.g.
by Tits [20]. So, we can assume that for some i, H ∩ Pi is trivial. Similarly, we can assume
that H ∩ P t

j is trivial for some j, where P t
j is the parabolic subgroup one gets by taking the

transposes of all the matrices in Pj. Moreover, we can assume i 6= j, since if Pi and P t
i were

the only parabolics intersecting H trivially, one would still get all possible mth powers of
elementary matrices in H as above. Switching indices so that (i, j) = (n, 1) puts us at the
beginning of Bekka’s Section 6—and in fact, we already know Lemma 15.

This gives a proof of the Nevo–Stuck–Zimmer theorem for SLn(Z) in which the only
ingredients are our Theorem 1.2 (which is actually easier to prove than much of the content
of this paper), the fact that the mth powers of all the elementary matrices generate a finite
index subgroup of SLn(Z), and the elementary arguments in [4, §6].

1.2 IRSs of parabolic subgroups of SLd(R)

Suppose that W = Rd is a finite dimensional real vector space, written as a direct sum

W = S1 ⊕ · · · ⊕ Sn

of subspaces, and that F is the associated flag

0 = W0 < W1 < · · · < Wn = W, Wk = ⊕ki=1Si.

Let P < SL(W ) be the corresponding parabolic subgroup, i.e. the stabilizer of the flag
F, and let V < P be the associated unipotent subgroup, consisting of all A ∈ P that act
trivially on each of the factors Wi/Wi−1. We then have

P = V oR, R =

{
(A1, . . . , An) ∈

n∏
i=1

GL(Si)
∣∣∣ ∏

i

detAi = 1

}
.

Elements of P can be considered as upper triangular n × n-matrices, where the ijth entry
is an element of L(Sj, Si), the vector space of linear maps Sj −→ Si. Elements of R are
diagonal matrices, and elements of V are upper unitriangular.

Take a subset E ⊂ {1, . . . , n}2 consisting of pairs (i, j) with i < j and such that if
(i, j) ∈ E, then (i′, j), (i, j′) ∈ E for i′ < i and j′ > j. So, imagining elements of E as
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corresponding to matrix entries, we are considering subsets of entries above the diagonal,
that are closed under ‘going up’ and ‘going to the right’. Let VE < P be the normal subgroup
consisting of all matrices that are equal to the identity matrix except at entries corresponding
to elements of E, and let KE < R be the kernel of the R-action (by conjugation) on V/VE.

Theorem 1.3 (IRSs of parabolic subgroups). The ergodic IRSs of P are exactly the random
subgroups of the form VE oK, where K is an ergodic IRS of KE.

The subgroups VE above are exactly the normal subgroups of P that lie in V . So, a
special case of the theorem is that an ergodic IRS of P that is contained in V is a normal
subgroup of P . In fact, when proving Theorem 1.3, one first proves this special case, and
then applies it to H ∩V when H is a general ergodic IRS of P . Once one knows H ∩V = VE,
the statement of Theorem 1.3 is not a surprise, since the only obvious way to construct an
IRS H with H ∩ V = VE is to take a semidirect product with an IRS of KE.

The group KE can be described explicitly via matrices. Let I be the set of all i ∈
{1, . . . , n} such that if i < n, then (i, i + 1) ∈ E, and if i > 1, then (i − 1, i) ∈ E. Then
(A1, . . . , An) acts trivially on V/VE exactly when for each maximal interval {i, . . . , j} ⊂
{1, . . . , n} \ I, there is some λ ∈ R r {0} such that Ai = · · · = Aj = λI. In a picture, if
E consists of the starred entries below, then (A1, . . . , An) ∈ KE can be any diagonal matrix
with the diagonal entries below, subject to the additional condition

∏
i detAi = 1.

λI 0 ? ? ? ? ? ?
0 λI ? ? ? ? ? ?
0 0 A3 ? ? ? ? ?
0 0 0 µI 0 0 ? ?
0 0 0 0 µI 0 ? ?
0 0 0 0 0 µI ? ?
0 0 0 0 0 0 A7 ?
0 0 0 0 0 0 0 A8


(1)

This means that KE is isomorphic to the determinant 1 subgroup of a direct product of
general linear groups. Note that the conjugation action of every element of R on KE is equal
to a conjugation by an element of KE, since R is generated by KE and its centralizer. So,
every IRS of KE is an IRS of R.

1.3 Plan of the paper

The paper is organized as follows. In §2, we establish some preliminary results: we introduce
in §2.1 a useful co-cycle associated to an IRS in AoΓ, prove two facts about finite measure
preserving linear actions in §2.2, and prove the result about transverse IRSs in §2.3. Section
3 concerns IRSs of parabolic subgroups, and in §4 we prove Theorems 1.1 and 1.2.
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2 IRSs in general semidirect products

In this section we study semidirect products G = AoΓ, where Γ acts on A by automorphisms.
As above, pr is the natural projection G→ Γ.

2.1 The cocycle SH

Let H be a subgroup of G. For each M ∈ prH let

SH(M) = {v ∈ A : (v,M) ∈ H}.

Then SH(I) = H ∩ A is a subgroup of A where I ∈ Γ denotes the identity element.
Let (v,M), (w,N) ∈ H. Then (v,M) · (w,N) = (v ·Mw,MN) ∈ H. It follows that

SH(MN) = SH(M) ·MSH(N), (2)

where multiplication here denotes that of sets: B · C = {b · c : b ∈ B, c ∈ C}.

Claim 2.1. If M ∈ prH, then SH(M) is a left coset of SH(I).

Here, Claim 2.1 and Equation (2) say that SH is a cocycle SH : prH −→ SH(I)\A.

Proof. Suppose (v,M) and (w,M) are elements of H. Then

H 3 (v,M) · (w,M)−1 = (v,M) · (M−1w−1,M−1) = (v ·MM−1w−1, I) = (vw−1, I).

And if (v,M) and (x, I) are elements of H, we have

H 3 (x, I) · (v,M) = (x · Iv,M) = (xv,M).

We end this section with a useful observation. As we will apply it only when A is abelian,
we use additive notation here. Let (w,N) be an arbitrary element of G, and let (v,M) ∈ H.
Then (v,M)(w,N) = (N−1v +N−1(M − I)w,MN) ∈ H(w,N). (Here, ab = b−1ab.) Hence

SH(w,N)(MN) = N−1SH(M) +N−1(M − I)w. (3)
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2.2 Group actions preserving finite measures

Here are four useful lemmas.

Lemma 2.2. Suppose that G is a locally compact second countable group, and the induced
action of Z ≤ Aut(G) on the space SubG preserves a finite measure µ that is supported on
lattices. Then Z preserves the Haar measure of G.

Proof. For some n, the set S of lattices with covolume in [ 1
n
, n] has positive measure. If Z

does not preserve Haar measure ν, there is some A ∈ Z with A∗ν = cν with c > n2. The
sets AiS, where i ∈ Z, are then all disjoint and have the same positive measure. This is a
contradiction.

The three following lemmas are inspired by an argument Furstenberg used in his proof
of the Borel density theorem [12, Lemma 3].

Lemma 2.3. Suppose a group Z acts linearly on Rd preserving a finite measure m, and
V = Span(suppm). Then the image of the map Z −→ GL(V ) is precompact.

Proof. Restricting, it suffices to prove the lemma when Span(suppm) = Rd. Let (zn) be a
sequence in Z. After passing to a subsequence, we can assume that there is some subspace
W ⊂ Rd such that the maps zn|W converge to some linear map z : W −→ Rd, while
zn(x)→∞ if x ∈ Rd \W . For instance, one can take W to be any subspace that is maximal
among those for which there exists a subsequence (znk

) with the property that znk
(x) is

bounded for all x ∈ W , and then pass to a subsequence of such a subsequence.
If in the above, we always have W = Rd, we are done. So, assume W 6= Rd. Pick a metric

inducing the one-point compactification topology on Rd ∪∞ and let D : Rd ∪∞ −→ R be
the distance to the closed set z(W ) ∪∞. By the dominated convergence theorem,∫

D(x) dm(x) =

∫
D(zn(x)) dm(x) −→ 0,

so m is supported on z(W ). But as W is a proper subspace, so is z(W ). This contradicts
our assumption that Span(suppm) = Rd.

Lemma 2.4. Suppose that Rd = ⊕iLi, a direct sum of subspaces, and that µ is a finite Borel
measure on the Grassmannian of k-dimensional subspaces of Rd. Suppose that for each j,
there is a linear map Aj : Rd −→ Rd that acts as a scalar map v 7→ λiv on each subspace Li,
satisfies λj > λi for i 6= j, and induces a map on the Grassmannian that preserves µ. Then
µ is concentrated on subspaces W ⊂ Rd that are direct sums of subspaces of the Li:

W = ⊕iSi, Si ⊂ Li.

Proof. The argument is similar to that of Lemma 2.3. Denote the Grassmannian of k-
subspaces of Rd by Gr(k, d), fix j and let Zj be the closed subset of Gr(k, d) consisting
of all subspaces of the form Sj ⊕ P ′, where Sj ⊂ Lj and P ′ ⊂ ⊕i 6=jLi. Given an element
P ∈ Gr(k, d), let Dj(P ) be the distance from P to Zj, with respect to some metric inducing
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the natural topology. Then for each P ∈ Gr(k, d), we have D((Aj)
n(P )) → 0 as n → ∞.

Hence, the dominated convergence theorem says that∫
D(P ) dµ(P ) =

∫
D((Aj)

n(P )) dµ(P )→ 0.

So, µ is supported on Zj. This works for all j, so the lemma follows.

Lemma 2.5. Let V,W be two vector spaces and let L(V,W ) be the space of all linear maps
from V to W . Suppose that X ⊂ L(V,W ) is a random subspace whose law is invariant under
the action of SL(V )× SL(W ). Then almost surely, X is either {0} or L(V,W ).

Here, (A,B) ∈ SL(V )× SL(W ) acts by sending T ∈ L(V,W ) to ATB−1.

Proof. SL(V )× SL(W ) is semisimple, and hence is a m.a.p. group, in the sense of Fursten-
berg’s paper [12]. By [12, Lemma 3] and the exterior power trick in the subsequent ‘Theorem’,
any finite SL(V )×SL(W )-invariant measure on the set of subspaces of L(V,W ) is supported
on subspaces that are invariant under the SL(V ) × SL(W ) action. But it is easy to check
that the only such subspaces are the two trivial ones.

Remark 2. The proof of Lemma 2.5 above is a bit silly since it relies on certain well-known
facts, e.g. that semisimple groups are m.a.p., that are considerably harder to prove than
Lemma 2.5 itself. Really, one can just prove the lemma by applying the arguments from
Furstenberg’s paper to certain well-chosen sequences of elements in SL(V ) × SL(W ). We
encourage the reader to do this, while we lazily give the short proof above.

2.3 Transverse IRSs

Let A and Γ be locally compact, second countable topological groups, and suppose Γ acts
by continuous automorphisms on A. Let Γtriv be the kernel of the action, and let G = AoΓ
be the associated semidirect product.

We call a subgroup H ≤ G transverse if H∩A = {0}. For example, in the direct product
A× A, the diagonal subgroup is transverse, as is the second factor.

Theorem 2.6 (Structure of transverse IRSs in semidirect products, part 1). Suppose G =
Rd o Γ and H is a transverse IRS of G = Rd o Γ. Then prH ≤ Γtriv almost surely.

Remark 3. Theorem 2.6 also applies when G = S o Γ and S is a closed subgroup of Rd.
Indeed, the Γ-action on such an S extends to the span of S to which Theorem 2.6 applies,
and any transverse IRS of G = S o Γ induces a transverse IRS of G = span(S) o Γ.

Remark 4. If the action Γ 	 A is faithful (as it is, for example, in the case of the special
affine groups), then Theorem 2.6 implies there are no nontrivial transverse IRSs of G. Also,
note that the theorem fails when A is not torsion-free abelian. For instance, if A is finite
then a random conjugate of Γ is an IRS of Ao Γ. And if A is not abelian, the antidiagonal

{(g, g−1) | g ∈ A} ⊂ Ao A,
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where a ∈ A acts on x ∈ A by a(x) = a−1xa, is a normal subgroup of A o A that does
not project into Atriv = Z(A). However, we expect that for general A, if H is a transverse
IRS of A o Γ, then the action of any element of prH on A is well-approximated by inner
automorphisms of A in some sense.

Proof of Theorem 2.6. Let H be a nontrivial transverse IRS of G. In order to get a contra-
diction, suppose that it is not the case that prH ≤ Γtriv almost surely. Then there is an
open subset U ⊂ Γ with compact closure such that U ∩ Γtriv = ∅, and prH ∩ U 6= ∅ with
positive probability. In addition we choose U small enough so that for some w ∈ Rd, some
0 < b1 < b2 ∈ R+ and some linear L : Rd −→ R, we have that

b1 ≤ L((M − I)w) ≤ b2, for all M ∈ U. (4)

Choose a left Haar measure µH on prH. By [6, Claim A.2], this can be done so that the
µH vary continuously with H ∈ SubG, when regarded as measures on Γ ≥ prH.

Because H is transverse, SH(M) is a single element of Rd for any M ∈ prH. Selecting
first a random H ∈ SubG with prH ∩U 6= ∅, and then a µH-random M ∈ prH ∩U , we can
interpret the cocycle SH(M) as an Rd-valued random variable. Here, note that µH(prH∩U)
is always finite and nonzero, since prH ∩ U is nonempty, pre-compact and open in H.

Taking w ∈ Rd as in the first paragraph of the proof, let Hw = (w, I)−1H(w, I). Since
prH = prHw, we get a map (H,M) 7→ (Hw,M) defined on the domain{

(H,M) | H ∈ SubG, prH ∩ U 6= ∅, M ∈ prH ∩ U
}

(5)

of the random variable SH(M). As H is an IRS, this map is measure preserving, so the
distributions of SHw(M) and SH(M) are equal, say to a probability measure mU on Rd.

By (3), we have SHw(M) = SH(M) + (M − I)w for all M ∈ prH = prHw. Iterating the
conjugation by w and using (4),

L
(
SH(M)

)
+ nb1 ≤ L

(
SHnw(M)

)
≤ L

(
SH(M)

)
+ nb2, ∀n ∈ N. (6)

This contradicts the fact that mU is a probability measure. For suppose [a1, a2] ⊂ R is an
interval with mU(L−1([a1, a2])) > 0. For a sufficiently sparse sequence nk ∈ N, the intervals
[a1 + nkb1, a2 + nkb2] ⊂ R are all disjoint. Hence,

1 ≥
∑
k

mU

(
L−1[a1 + nkb1, a2 + nkb2]

)
≥
∑
k

mU(L−1[a1, a2]) =∞.

This contradiction proves the theorem.

Theorem 2.7 (Structure of transverse IRSs in semidirect products, part 2). Suppose G =
AoΓ, A is a simply connected nilpotent Lie group, H is a transverse IRS of G = AoΓ and
λ is the law of H. Let

H = ∪H∈suppλH.

If V ⊆ A is the Zariski closure of the set of first coordinates of all (v,M) ∈ H, then V is
Γ-invariant and the image of the map Z(prH) −→ Aut(V) is precompact.
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Here Z(prH) denotes the centralizer of prH in Γ, and the Zariski closure of a subset of
A is the smallest connected Lie subgroup of A containing that subset.

Remark 5. Theorem 2.7 also applies when G = S o Γ and S is a closed subgroup of some
simply connected nilpotent Lie group A. Indeed, the Γ-action on such an S extends to
the Zariski closure S [17, Theorem 2.11], to which Theorem 2.7 applies, and any transverse
IRS of G = S o Γ induces a transverse IRS of G = S o Γ. See [17, Chapter II] for more
information about the ‘Zariski closure’ operation in simply connected nilpotent Lie groups,
which behaves very similarly to ‘span’ in Rd.

Remark 6. To illustrate Theorem 2.7, suppose A = Γ = R2 and (s, t) ∈ Γ acts by a rotation
on A with angle s. Then if

Hθ =
{(

(t cos θ, t sin θ), (0, t)
)
| t ∈ R

}
≤ Ao Γ,

we obtain a transverse IRS of G = Ao Γ by randomly picking θ ∈ [0, 2π] against Lebesgue
measure. Here, the centralizer Z(prH) is all of Γ, which acts compactly on A.

Proof of Theorem 2.7. The Γ-invariance of V is immediate. For if N ∈ Γ and (v,M) ∈ H,

(e,N)−1(v,M)(e,N) = (N−1v,N−1MN). (7)

Here, we write e for the identity element since A is not necessarily abelian. As suppλ is
conjugation invariant, the set of all v ∈ A such that (v,M) ∈ H for some M is Γ-invariant.
Hence, its Zariski closure V is also Γ-invariant.

As in the proof of Theorem 2.6, choose U ⊂ Γ with compact closure such that prH∩U 6= ∅
with positive probability. Let N ∈ Z(prH) and write HN = (e,N)−1H(e,N). Substituting
N−1MN = M in (7) we see that prH = prHN , so as before the distribution of SHN (M) is
the same as mU , the distribution of SH(M). Now, though, (7) implies that

SHN (M) = N−1(SH(M)).

So, the measure mU on A is Z(prH)-invariant.
Since A is a simply connected nilpotent Lie group, there is a diffeomorphism log : A −→ a

to the Lie algebra a that is an inverse for the Lie group exponential map [14, 1.127]. Then
log∗mU is a probability measure on a that is invariant under the induced action of Z(prH)
on a. By Lemma 2.3, Z(prH) acts precompactly on the span VU = Span(supp log∗mU), and
therefore it acts precompactly on the sum V of all VU , as U ranges over all possible choices.
But the Zariski closure V = exp(V ), so then Z(prH) acts precompactly on V as well.

We present an easy corollary of Theorem 2.6:

Corollary 2.8. The only ergodic IRSs of the affine group R o R+ are the point masses on
its closed, normal subgroups: {e}, R, Ro R+ and Ro {αn | n ∈ Z}, where α > 0.

Note that this stands in contrast to other metabelian groups (e.g., lamplighter groups)
that have a rich set of invariant random subgroups [9].
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Proof of Corollary 2.8. Let H be a non-trivial ergodic IRS of R o R+. If H is transverse,
then prH = {1} ∈ R+, by Theorem 2.6. Hence H = {e}.

Otherwise, the random subgroup H ∩ R ⊂ R is nontrivial almost surely, and its law is
invariant under the R+ action (i.e., multiplication by a scalar). So, H∩R = R almost surely,
and H = R o prH. But prH is an ergodic IRS of R+, and thus must be a point mass on
either {1}, R+ or Ro {αn | n ∈ Z}, where α > 0. We have thus proved the claim.

3 IRSs of parabolic subgroups

To recap our notation: W = S1 ⊕ · · · ⊕ Sn is a real vector space, F is the associated flag

0 = W0 < W1 < · · · < Wn = W, Wk = ⊕ki=1Si,

P < SL(W ) is the parabolic subgroup stabilizing F, V < P is the unipotent subgroup of all
A ∈ P that act trivially on each of the factors Wi/Wi−1, and

P = V oR, R =

{
(A1, . . . , An) ∈

n∏
i=1

GL(Si)
∣∣∣ ∏

i

detAi = 1

}
.

Also, E ⊂ {1, . . . , n}2 will denote a subset of pairs (i, j) with i < j that is closed under ‘going
up’ and ‘going to the right’, and we will let VE < P be the normal subgroup consisting of all
matrices that are equal to the identity matrix except at entries corresponding to elements of
E. Let KE < R be the kernel of the R-action (by conjugation) on V/VE.

The goal of this section is to prove Theorem 1.3, i.e. that the ergodic IRSs of P are
exactly the random subgroups of the form VE oK, where K is an ergodic IRS of KE.

We start with the following lemma.

Lemma 3.1. Suppose that H is an invariant random subgroup of P that lies in V . Then
almost surely, H = VE for some E.

Proof. Regard V as the space of upper unitriangular block matrices, where the ijth entries
is in L(Sj, Si). It suffices to show that almost surely, H is a ‘matrix entry subgroup’, i.e.
a subgroup determined by prescribing that some fixed subset of the matrix entries are all
zero. As there are only finitely many such subgroups, it will follow that almost surely, H is
a matrix entry subgroup of V that is a normal subgroup of P . A quick computation with
elementary matrices shows that the only such subgroups are the VE described above.

Let H0 and H be the identity component and Zariski closure of H, respectively, recalling
that the Zariski closure of a subgroup is the smallest connected Lie subgroup of V containing
it. (See [17, Chapter II].) Then H0 and H are both R-invariant random subgroups of V .
Let h0 and h be the associated Lie algebras, which are R-invariant random subspaces of the
Lie algebra v of V . One can identify v with the set of all strictly upper triangular block
matrices, where the ijth entry is an element of L(Sj, Si). If we identify L(Sj, Si) with the
subspace of v consisting of matrices that are nonzero at most in the ijth entry, then

v = ⊕i<jL(Sj, Si).
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The action R � v leaves all the factors L(Sj, Si) invariant. Given k < l, let A be the
matrix that has a 2I in the kkth entry and a 1

2
I in the llth entry, and is otherwise equal

to the identity matrix. Then the matrix 1
detA

A lies in R, and acts by conjugation on each

L(Sj, Si) as the scalar matrix
λij

detA
I , where

λij =


4 (i, j) = (k, l)

2 i = k, j 6= l or j = l, i 6= k
1
2

i = l or j = k, and i 6= j

1 otherwise.

(8)

Applying Lemma 2.4 to the direct sum v = ⊕i<jL(Sj, Si), considered together with the
actions of all the matrices A obtained by varying k, l, we see that almost surely, both h0

and h are direct sums of subspaces of the factors L(Sj, Si). However, the only R-invariant
random subspaces of a fixed factor L(Sj, Si) are the zero subspace and the entire L(Sj, Si).
(This follows immediately from Lemma 2.5, since one can embed SL(Si)× SL(Sj) ↪→ R by
taking (A,B) to the element of R that has A ∈ L(Si, Si) in the ii entry and B ∈ L(Sj, Sj)
in the jj entry, and is otherwise equal to the identity matrix.) Hence, h0 and h are almost
always direct sums of the factors L(Sj, Si) themselves, rather than subspaces thereof. In
other words, H0 and H are matrix entry subgroups almost surely.

Now H0 ⊂ H ⊂ H, so if H0 = H, then H is a matrix entry subgroup as desired. So, after
restricting the law of H, we may assume that almost surely H0 and H are fixed matrix entry
subgroups and that H0 ( H. As H is an IRS of P , H0 is a normal subgroup of P . We can
then project H to a P -invariant random subgroup H/H0 of the quotient group H/H0. Since
V is a nilpotent Lie group, the sub-quotient group H/H0 is as well. Every Zariski dense
subgroup of a nilpotent Lie group is a lattice (c.f. [17, Theorem 2.3]), so the P -invariant
random subgroup H/H0 < H/H0 is a lattice almost surely. Lemma 2.2 then implies that
the P action on H/H0 preserves Haar measure.

But if D is the set of matrix entries that in H are free to take on any value, and in H0

are prescribed to be zero, there is a diffeomorphism

H/H0 −→ ⊕(i,j)∈DL(Sj, Si)

that takes a matrix in H to the list of its D-entries. If Lebesgue measures are chosen on
the Euclidean spaces L(Sj, Si), the resulting product measure pulls back to a Haar measure
on H/H0. So, one can witness that the action R � H/H0 does not preserve Haar measure
as follows. Let imin be the minimum i such that there is some (i, j) ∈ D, and imax be the
maximum i such that there is some (j, i) ∈ D, and define A ∈ R by letting

Aii =


21/ dim(Simin

)I i = imin

2−1/dim(Simax )I i = imax

I otherwise.

This A acts diagonally on ⊕(i,j)∈DL(Si, Sj), and the action is scalar in each factor. Moreover,
there are no entries of D directly above the imin diagonal entry, and no entries to the right
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of the imax diagonal entry, so the eigenvalues of the action of A on ⊕(i,j)∈DL(Si, Sj) are 1,
21/ dim(Simin

) an 21/ dim(Simax ). Hence, A cannot preserve Lebesgue measure.

Now suppose that H is an ergodic IRS of P = V o R. Lemma 3.1 implies that there
is some E such that H ∩ V = VE almost surely. Applying Theorem 2.6 to the transverse
IRS that is the projection of H to (V/VE)ab o R, where ( · )ab is abelianization, we see that
prH ⊂ R almost surely acts trivially on (V/VE)ab. But if A is the set of super diagonal
entries in our block matrices that do not lie in E, there is an isomorphism

(V/VE)ab −→ ⊕(i,j)∈AL(Si, Sj)

that comes from taking a matrix in V to its list of A-entries. It follows that a matrix in R acts
trivially on (V/VE)ab if and only if it acts trivially on V/VE: triviality of the (V/VE)ab-action
is enough to force the conditions on diagonal entries indicated in the matrix (1) from the
introduction. Hence, prH almost surely lies in the kernel KE of the V/VE-action as desired.

We now know that H ∩V = VE and prH ⊂ KE almost surely. We would like to conclude
that H has the form VE o K for some IRS K < KE. Note that this is not immediately
obvious—the diagonal in R2 is a normal subgroup that intersects the first factor trivially,
but does not split as a product of subgroups of the two factors. By Theorem 2.7, we know
that the centralizer Z(prH) ⊂ R acts precompactly on X ⊂ V/VE, where X is the Zariski
closure in V/VE of the projections of all first coordinates of elements (v,M) ∈ H. If X = {VE},
we are done, since then the first coordinates of all (v,M) ∈ H lie in VE = H ∩V and H must
have the form VE oK for some IRS K < KE.

So, we may assume that XVE ) VE. Picking a matrix B in the difference, there is some
entry (i, j) 6∈ E in which B is nonzero. The centralizer Z(prH) contains all elements of
R all of whose diagonal entries are scalars, so in particular it contains the matrix whose
eigenvalues λ are listed in (8) above. The action of this matrix on B scales the (i, j) entry
by 4, so Z(prH) does not act pre-compactly on X, and we have a contradiction.

4 IRSs of special affine groups

Using Theorems 2.6 and 2.7, it is now fairly easy to prove the results on IRSs of special
affine groups stated in the introduction.

Proof of Theorem 1.1. Let H be a nontrivial ergodic IRS of Rd o SLd(R). Suppose that
H ∩ Rd = {0} almost surely. As the action SLd(R) � Rd is faithful, Theorem 2.6 implies
that H is trivial. So, H ∩ Rd is almost surely some nontrivial subgroup of Rd.

In order to prove H ∩ Rd is either a lattice or Rd, it suffices to prove that the Zariski
closure of H ∩ Rd is almost surely Rd. If not, we get for some 1 ≤ k ≤ d − 1, a SLd(R)-
invariant probability measure on the Grassmannian of k-dimensional subspaces of Rd. In
the terminology of Furstenberg [12], SLd(R) is a m.a.p. group, so this measure must be
concentrated on SLd(R)-invariant points. (Apply [12, Lemma 3] to the kth exterior power of
Rd.) However, no nontrivial subspaces of Rd are SLd(R)-invariant.
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Now suppose H ∩ Rd is a lattice (almost surely). Let µ denote the law of H. By
decomposing µ over the map H 7→ H ∩ Rd, we can write µ =

∫
µΛ dν(Λ) where ν is the

pushforward of µ under H 7→ H ∩Rd and µΛ is concentrated on the set of subgroups H such
that H ∩Rd = Λ. By ergodicity ν is supported on the set of lattices of some fixed covolume
c > 0. Moreover ν is SLd(R) invariant since the map H 7→ H ∩ Rd is equivariant. Since
SLd(R) acts transitively on this set of lattices, it follows that ν must be the Haar measure.

By equivariance, we must have µgΛ = g∗µΛ for g ∈ SLd(R) and ν-a.e. Λ. Because SLd(R)
acts transitively on the set of lattices with fixed covolume, we can assume without loss of
generality that µgΛ = g∗µΛ holds for every g ∈ SLd(R) and lattice Λ.

We claim that µΛ-a.e. H is contained in ΛoSL(Λ). First let (v,M) ∈ H. For any w ∈ Λ
we have that (w, I) ∈ H, and so

(v,M)(w, I)(v,M)−1 = (Mw, I) ∈ H ∩ Rd = Λ.

Because w ∈ Λ is arbitrary, M ∈ SL(Λ). Next observe that the law of H is invariant under
conjugation by ΛoSL(Λ). So if there exists M ∈ SL(Λ) such that SH(M) 6= Λ with positive
probability then MHM−1∩Rd 6= Λ with positive probability. This contradiction shows that
SH(M) = Λ almost surely which implies H ≤ Λ o SL(Λ). Thus µΛ is the law of an IRS of
Λ o SL(Λ). This IRS must be ergodic because µ is ergodic.

Proof of Theorem 1.2. Let H be a non-trivial, ergodic IRS of G = ZdoSLd(Z). Then H∩Zd
is a random subgroup of Zd whose law is invariant to the SLd(Z) action. Note that since
the action SLd(Z) � Zd is faithful, Theorem 2.6 implies that H ∩ Zd 6= {0}. Since there are
only countably many subgroups of Zd, the distribution of H ∩ Zd must be concentrated on
a single, finite SLd(Z)-orbit. So, H ∩ Zd is almost surely finite index in Zd.

Let O = {M(H ∩ Zd) : M ∈ SLd(Z)} be the orbit of H ∩ Zd under the SLd(Z) action.
Now, the intersection of the groups in this orbit is also finite index in Zd, and is furthermore
SLd(Z)-invariant, and so must equal nZd for some n ∈ N.

Recall that Gn = (nZd)oΓ(n), and let Hn = H∩Gn, a finite index subgroup of H. Using
the cocycle notation of §2.1, for any M ∈ prHn it holds that SH(M) = SH(I) := H∩Zd, since
otherwise SH(M) is a non-trivial coset of SH(I), and its intersection with nZd, a subgroup
of SH(I), is trivial, thus excluding M from prHn. It follows that Hn = (nZd) o (prHn).
This completes the proof of Theorem 1.2.
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