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Abstract. A countable discrete group G is said to be Choquet-
Deny if it has a trivial Poisson boundary for every generating prob-
ability measure. We show that a finitely generated group G is
Choquet-Deny if and only if it is virtually nilpotent. For general
countable discrete groups, we show that G is Choquet-Deny if and
only if none of its quotients have the infinite conjugacy class prop-
erty. Moreover, when G is not Choquet-Deny, then there exists a
symmetric, finite entropy generating measure that has a non trivial
Poisson boundary.

1. Introduction

Let G be a countable discrete group. A probability measure µ on
G is generating if its support generates G as a semigroup. A function
f : G → R is µ-harmonic if f(k) =

∑
g∈G µ(g)f(kg) for all k ∈ G.

We say that the measured group (G,µ) is Liouville if all the bounded
µ-harmonic functions are constant; this is equivalent to the triviality
of the Poisson boundary Π(G,µ) [15–17] (also called the Furstenberg-
Poisson boundary; for formal definitions see also, e.g., Furstenberg and
Glasner [14], Bader and Shalom [1], or a survey by Furman [13]).

When G is non-amenable, (G,µ) is not Liouville for every gen-
erating µ [17]. Conversely, when G is amenable, then there exists
some generating µ such that (G,µ) is Liouville, as has been shown by
Kaimanovich and Vershik [26] and Rosenblatt [29]. It is natural to ask
for which groups G it holds that (G,µ) is Liouville for every generating
µ. Such groups are known in the literature as Choquet-Deny groups
(see, e.g., [18–20]). A related term is that of a Liouville group (see,
e.g.,[4, 10]), which usually is taken to mean that (G,µ) is Liouville for
every finitely supported generating µ.

The classical Choquet-Deny Theorem (which was first proved for
Zd by Blackwell [3]) states that abelian groups are Choquet-Deny [5];
the same holds for virtually nilpotent groups [8]. There are many
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examples of amenable groups that are not Choquet-Deny: first exam-
ples of countable discrete groups1 are due to Kaimanovich [24] and
Kaimanovich and Vershik [26], including locally finite groups; Erschler
shows that finitely generated solvable groups that are not virtually
nilpotent are not Choquet-Deny [10], and that even some groups of
intermediate growth are not Choquet-Deny [9]. Kaimanovich and Ver-
shik [26, p. 466] conjecture that “Given an exponential group G, there
exists a symmetric (nonfinitary, in general) measure with nontrivial
boundary.” See Bartholdi and Erschler [2] for additional related results
and further references and discussion.

Our main result is a characterization of the countable discrete Choquet-
Deny groups. Recall that G has the infinite conjugacy class property
(ICC) if each of its non-trivial elements has an infinite conjugacy class.
Theorem 1. A countable discrete group G is Choquet-Deny if and
only if it has no ICC quotients. Moreover, when G does have an ICC
quotient, then there exists a generating, symmetric, finite entropy prob-
ability measure µ on G such that (G,µ) is not Liouville. In particular,
if G is finitely generated, then it is Choquet-Deny if and only if it is
virtually nilpotent.

The case of a group with no ICC quotients is straightforward and has
been previously observed by Jaworski [21] and Jaworski and Raja [22].
We provide a proof for completeness, in §3. Our contribution is there-
fore in the proof of the other direction, which appears in §2.

The implication for finitely generated groups is a consequence of the
fact that in this class, virtually nilpotent groups are precisely those
with no ICC quotients (see [28, Theorem 2] and [7, Theorem 2], and a
self-contained proof in [11]). Since exponential groups are not virtually
nilpotent, Theorem 1 implies that the above mentioned conjecture of
Kaimanovich and Vershik [26] is correct.

A very recent result by three of the authors of this paper shows that
a group is strongly amenable if and only it has no ICC quotients [12].
This implies that a countable discrete G is strongly amenable if and
only if (G,µ) is Liouville for every generating µ, paralleling the above
mentioned characterization of amenability as equivalent to the exis-
tence of such a µ. While the proofs of these two similar results are
different, it is natural to ask whether there is some deeper connection
between strong amenability and the Choquet-Deny property.

The remainder of the paper consists of §2, in which we prove Propo-
sition 2.1, and §3 in which we prove Proposition 3.1. Each proposition

1In the Lie group setting, an example of an amenable group that is not Choquet-
Deny was already known to Furstenberg [15].



3

shows one of the directions of Theorem 1, with the former establishing
the theorem for groups with ICC quotients, and the latter for groups
with no ICC quotients. For the convenience of the reader, we informally
explain in §2.1 the main ideas behind the proof of Proposition 2.1.

Acknowledgments. We would like to thank Anna Erschler and Vadim
Kaimanovich for many useful comments on the first draft of this paper.

2. Groups with ICC quotients

In this section we prove the following proposition. Recall that a
probability measure µ on G is symmetric if µ(g) = µ(g−1) for all g ∈ G.
Its Shannon entropy (or just entropy) is H(µ) = −

∑
g∈G µ(g) log µ(g).

Proposition 2.1. Let G be a countable discrete ICC group with an
ICC quotient. Then there exists a generating, symmetric, finite entropy
probability measure µ on G such that Π(G,µ) is non-trivial.

The main technical effort in the proof of Proposition 2.1 is in the
proof of the following proposition.

Proposition 2.2. Let G be an amenable countable discrete ICC group.
There exists a fully supported, symmetric, finite entropy probability
measure µ on G and an element of the group h ∈ G, such that

lim inf
m→∞

‖hµ∗m − µ∗m‖ > 0.(2.1)

Here µ∗m is the m-fold convolution µ ∗ · · · ∗ µ. We will prove this
Proposition later, and now turn to the proof of Proposition 2.1.

Proof of Proposition 2.1. The case of non-amenable G is known, so as-
sume that G is amenable and has an ICC quotient Q. Applying Propo-
sition 2.2 to Q yields a finite entropy, symmetric measure µ̄ on Q that
is fully supported, and satisfies (2.1) for some h ∈ Q.

Since µ̄ has full support and satisfies (2.1), it follows from [25, The-
orem 2.1] that (Q, µ̄) has a non-trivial Poisson boundary. Let µ be any
symmetric, finite entropy generating probability measure on G that
is projected to µ̄; the existence of such a µ is straightforward. Then
(G,µ) has a non-trivial Poisson boundary. �

Before we turn to the proof of Proposition 2.2, we would like to give
some of the intuition behind it.
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2.1. Ideas behind the proof of Proposition 2.2. In this section we
provide a simplified description of the main components of the construc-
tion in the proof of Proposition 2.2. Note that some of the statements
in this description are imprecise, but still give the correct intuition.

To build our measure µ we fix in a probability measure p on the
natural numbers, construct inductively a sequence g1, g2, . . . of elements
of G, and set µ(gn) = p(n). With foresight, we choose p(n) ∼ n−5/4,
which will guarantee some desirable properties, as we explain below.

For simplicity assume that G is finitely generated by {a1, . . . , ak}. To
construct our sequence g1, g2, . . ., begin by setting g1 = a1, . . . , gk = ak.
This guarantees that µ is generating. To ensure that µ∗m is distant from
hµ∗m for some h and large m, we now explain how we choose h and
gk+1, gk+2, . . . so that, after removing a low probability set, we are left
with disjoint supports for µ∗m and hµ∗m.

Assume that we already picked g1, . . . , gn−1. Choose s1, . . . , sm i.i.d.
from p, and assume that m is such that, with high probability, all the
si’s are at most n. Then, a random choice from µ∗m will be a product
gs1 · · · gsm of elements in {g1, . . . , gn}. Our choice of p guarantees that
with high probability, if gn appears in this product, then it appears
once. In §2.3 we show that p has the properties that we will require.

Assume first, that when picking m i.i.d. draws from µ, there will be a
unique element which is gn and all the rest will be from {g1, . . . , gn−1}.
Namely, two typical draws from µ∗m are of the form gs1 · · · gn · · · gsm−1

and gt1 · · · gn · · · gtm where all the si, ti < n.
For the supports of µ∗m and hµ∗m to be disjoint (after removing a

small probability set), we want to ensure that

h gs1 · · ·︸ ︷︷ ︸
b1

gn · · · gsm−1︸ ︷︷ ︸
b2

6= gt1 · · ·︸ ︷︷ ︸
c1

gn · · · gtm︸ ︷︷ ︸
c2

which is equivalent to

hb1gnb2 6= c1gnc2.

After moving elements around we need to have g−1
n c−1

1 hb1gn 6= c2b
−1
2 .

Let Cn = {g1, g−1
1 . . . , gn, g

−1
n , e, h} and X = (Cn−1)

2m+1. Note that
c−1
1 hb1 ∈ X, and c2b

−1
2 ∈ X. We want gn to satisfy that g−1

n Xgn∩X =
∅. This is impossible in general since the identity might belong to X.
However, using induction on n, we show that with high probability
c−1
1 hb1 6= e, for an appropriate initial choice of h.

We call gn a switching element for X if g−1
n (X \ {e})gn∩X = ∅, and

prove in §2.2 that for any finite set X in an amenable ICC group, there
are infinitely many switching elements.
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The case that gn does not appear in both draws but only in one of
them requires additionally that gn is outside some finite set. Since we
know that there are infinitely many switching elements, this is always
possible. So we will always have a possible choice for gn.

To ensure that the measure µ is symmetric, we in fact pick gn or
g−1
n with equal probability. This imposes additional constraints on the

choice of gn. Most importantly, we will need to verify not only that
g−1
n (X\{e})gn∩X = ∅, but that all the four equations g±1

n (X\{e})g±1
n ∩

X = ∅ are satisfied. We call such elements gn super-switching elements
for X. In §2.2 we prove that like regular switching elements, there are
infinitely many super-switching elements in any amenable ICC group.
Hence we will be able to find our gn, avoiding any finite set.

This completes the description of the basic idea behind our construc-
tion. In the formal proof we need to address some additional technical
challenges. One problem is that for non-finitely generated groups, there
is no guarantee that the sequence g1, g2, . . . generates the whole group.
For that we enumerate all the elements in G by {a1, a2, . . .} and choose
an instead of gn with very small probability.

Now we turn to the formal proof of these ideas.

2.2. Switching Elements. Here we introduce two notions: switching
elements and super-switching elements. We will use these notions in
the proof of Proposition 2.2.

Definition 2.3. Let G be a countable group and X be a finite sym-
metric subset of G.

• We call g ∈ G a switching element for X if for all non-identity
x ∈ X we have g−1xg /∈ X.

• We call g ∈ G a super-switching element for X if for all non-
identity x ∈ X we have g±1xg±1 /∈ X. That is, if gw1xgw2 6∈ X
for all non-trivial x ∈ X and w1, w2 ∈ {−1,+1}.

Note that since X is symmetric, for g ∈ G to be super-switching for
X, we just need to have that g and g−1 are switching for X, and that
gxg /∈ X for all non-identity x ∈ X.

Proposition 2.4. Let G be a countable discrete amenable ICC group
and let X be a finite symmetric subset of G. The set of super-switching
elements for X is infinite.
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Proof of Proposition 2.4. Fix an invariant finitely additive probability
measure d on G.2 For A ⊆ G, we call d(A) the density of A. We will
need the fact that infinite index subgroups have zero density.

Let CG(x) be the centralizer of a non-identity x ∈ X. Then, since X
is finite, there is a finite set of cosets of CG(x) that includes all g ∈ G
such that g−1xg ∈ X. So, non-switching elements for X are in the
union of finitely many cosets of subgroups with infinite index, since G
is ICC. This means that the set of non-switching elements for X has
zero density, and so the set of switching elements for X has density
one, as does the set S of elements g ∈ G such that both g and g−1 are
switching for X.

Let T be the set of all super-switching elements for X. Let A ⊆ G be
the set of involutions {g ∈ G | g2 = e}. If d(A) > 0, then d(A∩S) > 0.
On the other hand, for any g ∈ A ∩ S, since g is switching for X and
g−1 = g, g is super-switching for X. Hence A ∩ S ⊆ T . This shows
that if d(A) > 0, then d(T ) ≥ d(A ∩ S) > 0, and so we are done.

So, we can assume that d(A) = 0. For any x ∈ X \ {e} and y ∈ X,
let Sx,y = {g ∈ S | gxg = y}. Note that

T = S \
⋃

x∈X\{e}
y∈X

Sx,y.

It is thus enough to be shown that each Sx,y has zero density. So assume
for the sake of contradiction that d(Sx,y) > 0. Fix g ∈ Sx,y. We have
the following for all h ∈ g−1Sx,y.

gxg = y = ghxgh =⇒ (xg) = h(xg)h

=⇒ (xg)−1h−1(xg) = h

=⇒ h = (xg)−1h−1(xg)

= (xg)−1[(xg)−1h−1(xg)]−1(xg)

= (xg)−2h(xg)2

=⇒ h is in the centralizer of (xg)2.

So, the centralizer of (xg)2 includes g−1Sx,y, which has a positive den-
sity. So, the centralizer of (xg)2 has finite index. This implies that
(xg)2 = e, since G is ICC, and so only the identity can have a finite
index centralizer. Hence xg ∈ A for all g ∈ Sx,y. So xSx,y ⊆ A. Hence
Sx,y also has zero density, which is a contradiction. �

2The argument in this proof can be reproduced using finitary Følner sequence
arguments that do not use the axiom of choice.
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2.3. A Heavy-Tailed Probability Distribution on N. Here we
state and prove a lemma about the existence of a probability distribu-
tion on N such that infinite i.i.d. samples from this measure have certain
properties. We will use this distribution in the proof of Proposition 2.2.

Lemma 2.5. There exists a probability distribution p on N with finite
Shannon entropy and the following property: for any ε > 0 there exist
constants Kε, Nε ∈ N such that for any natural number m ≥ Kε there
exists an Em

ε ⊆ Nm such that:
(1) p×m(Em

ε ) ≥ 1 − ε, where p×m is the m-fold product measure
p× · · · × p.

(2) For any s = (s1, . . . , sm) ∈ Em
ε , the maximum of {s1, . . . , sKε}

is at most Nε.
(3) For any s = (s1, . . . , sm) ∈ Em

ε and for any Kε ≤ k ≤ m, the
maximum of {s1, . . . , sk} is at least k.

(4) For any s = (s1, . . . , sm) ∈ Em
ε and for any Kε ≤ k ≤ m, the

maximum of {s1, . . . , sk} appears in (s1, . . . , sk) only once.

Proof. Let p be the following probability measure on N: p(n) = cn−5/4,
where 1/c =

∑∞
n=1 n

−5/4. It is straightforward to see that p has finite
entropy.

Let s = (s1, s2, . . .) ∈ N∞ have distribution p×∞; i.e., s is chosen
i.i.d. p. Since each si has distribution p, for each n ∈ N we have:

P [si ≥ n] =
∞∑

m=n

p(m) = c
∞∑

m=n

m−5/4 ≥ c

∫ ∞

n

x−5/4dx = 4cn−1/4.

(2.2)

For k ≥ 1, let
maxk

s :=max{s1, . . . , sk}.

Let Ak be the event that maxk
s < k2. We have:

P [Ak] = P
[
si < k2 ∀i ∈ {1, . . . , k}

]
= (1− P

[
s1 < k2

]
)k

≤ (1− 4c(k2)−1/4)k

≤ e−4ck1/2 .

Since the sum of these probabilities is finite, by Borel-Cantelli we get
that

P [Ak infinitely often] = 0.

This means that we have a random index ind′
s which is almost surely

finite, and for A = {s | maxk
s ≥ k2 ∀k ≥ ind′

s} we have P [A] = 1.
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For k ≥ 1, let
nextks :=min{i > k | si ≥ maxk

s}.

In other words, nextks is the first index i > k for which si is at least as
large as maxk

s . Let Bk be the event that

s
nextind′s+k

s
= maxind′

s+k
s .

This is the event that the first entry after i = ind′
s + k that is at least

as large as maxi
s, is in fact equal to maxi

s. We would like to show that
Bk only happens for finitely many k. To this end, let Ci,j

k be the event
that nextind′

s+k
s = i and maxind′

s+k
s = j, and note that for any i, j ∈ N

P
[
Bk

∣∣Ci,j
k

]
= P [si = j|si ≥ j] ≤ cj−5/4

4cj−1/4
=

1

4j
.

The equality follows from the independence of si from s1, s2, . . . , si−1,
and the inequality is a consequence of (2.2). By the definition of
ind′

s, we have that Ci,j
k can only have positive probability if j ≥ k2.

Therefore, and since the union ∪i,jC
i,j
k has measure one, we have that

P [Bk] ≤ k−2/4. So, again by Borel-Cantelli, we get
P [Bk infinitely often] = 0.

This means that we have a random index ind′′
s which is almost surely

finite, and for B = {s | snextks > maxk
s ∀k ≥ ind′

s + ind′′
s} we have

P [B] = 1.
Let inds = maxind′

s+ind′′
s

s + 1. Note that inds is almost surely finite
and for k ≥ inds we can prove the following properties for s.

(1) Since k > maxind′
s+ind′′

s
s ≥ (ind′

s+ind′′
s)

2 ≥ ind′
s, by the definition

of ind′
s, we have that maxk

s ≥ k2.
(2) We know that maxk

s ≥ k2 > maxind′
s+ind′′

s
s . So we have indices

nextind′
s+ind′′

s
s = i1 < i2 < · · · < il < il+1 = nextks

such that ij ∈ {1, . . . , k} for j = 1, 2, . . . , l, il+1 > k, and
ij = nextij−1

s for j = 2, 3, . . . , l + 1.
Since each ij > ind′

s + ind′′
s , by the definition of ind′′

s , for
j = 1, . . . , l we get that sij = maxij

s = maxij+1−1
s appears in

(s1, . . . , sij+1−1) only once. In particular maxk
s = sil appears in

(s1, . . . , sk) only once.
Fix ε > 0. Since inds is almost surely finite, there are constants Kε ∈

N and Nε ∈ N such that the event Eε = {inds ≤ Kε and maxKε
s ≤ Nε}

has probability at least 1− ε.
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Let m ≥ Kε be a natural number and Em
ε be the projection of Eε to

the first m coordinates. We have:
(1) p×m(Em

ε ) ≥ P [Eε] ≥ 1− ε.
(2) Any (s1, . . . , sm) ∈ Em

ε has an extension s = (s1, s2, . . .) ∈ Eε ⊆
N∞. Since s ∈ Eε, we have maxKε

s ≤ Nε, which means that the
maximum of {s1, . . . , sKε} is at most Nε.

(3) Any (s1, . . . , sm) ∈ Em
ε has an extension s = (s1, s2, . . .) ∈ Eε ⊆

N∞. Since s ∈ Eε, we have Kε ≥ inds. So for Kε ≤ k ≤ m
we have k ≥ inds. The first property we proved for s gives us
maxk

s ≥ k2 ≥ k, i.e., the maximum of {s1, . . . , sk} is at least k.
(4) Any (s1, . . . , sm) ∈ Em

ε has an extension s = (s1, s2, . . .) ∈ Eε ⊆
N∞. Since s ∈ Eε, we have Kε ≥ inds. So for Kε ≤ k ≤ m we
have k ≥ inds. The second property we proved for s gives us
that the maximum of {s1, . . . , sk} appears in (s1, . . . , sk) only
once.

This completes the proof. �

2.4. Proof of Proposition 2.2. Let G = {a1, a2, . . .}; ε > 0; p ∈
P (N), Kε, Nε ∈ N, and Em

ε ⊆ Nm be the probability measure, the
constants, and the events from Lemma 2.5. To simplify notation let
N = Nε and K = Kε. Choose g1, g2, . . . , gN arbitrarily in G. For any
n ≤ N let An = {gn, g−1

n , an, a
−1
n } and Bn = ∪i≤nAi ∪ {e}. Choose

h ∈ G such that h /∈ (BN)
2N , which is a finite set.

For n = N + 1, N + 2, . . . we will define gn inductively and set An =
{gn, g−1

n , an, a
−1
n }, Bn = ∪i≤nAi ∪ {e}. For any n ∈ N let Cn = Bn ∪

{h−1, h}. Note that An, Bn, and Cn are finite and symmetric for any
n ∈ N. Now we explain how we define gN+1, gN+2, . . .. Let n+ 1 > N ,
and assume that g1, . . . , gn ∈ G are defined. Let gn+1 ∈ G be a super-
switching element for (Cn)

2n+1 which is not in (Cn)
8n+1. The existence

of such super-switching element is guaranteed by Proposition 2.4 and
the fact that (Cn)

2n+1 is a finite symmetric subset of G and (Cn)
8n+1

is finite.
For n ∈ N, define a symmetric probability measure µn on An with

µn = ε2−n(
1

2
δan +

1

2
δa−1

n
) + (1− ε2−n)(

1

2
δgn +

1

2
δg−1

n
).

Here δg is the point mass on g ∈ G. Finally, let

µ =
∞∑
n=1

p(n)µn.
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Obviously µ is symmetric and has full support. Since p has finite
entropy and each µn has support of size at most 4, it follows easily
that µ has finite entropy.

We want to show that for µ and h we have

lim inf
m→∞

‖hµ∗m − µ∗m‖ > 0.

Fix m ∈ N larger than K and N . For each n ∈ N define fn :
{1, 2, 3, 4} → An by

fn(1) = an, fn(2) = a−1
n , fn(3) = gn, fn(4) = g−1

n .

Let
Ω = {(s, w) | s ∈ Nm, w ∈ {1, 2, 3, 4}m}.

Let ν : Ω → [0, 1] be defined by

ν(s, w) = p×m(s) µs1(fs1(w1)) µs2(fs2(w2)) . . . µsm(fsm(wm)).

Obviously ν is a probability measure on Ω.
Define r : Ω → G by

r(s, w) = fs1(w1)fs2(w2) . . . fsm(wm).

It is not difficult to see that r∗ν = µ∗m, and so we need to show that
‖hr∗ν − r∗ν‖ is bounded away from zero for large m.

Recall that Em
ε ⊆ Nm is the event given by Lemma 2.5. Fix s ∈ Em

ε .
Define

is,1 = min{j ∈ {1 . . . ,m} | sj > N},
is,2 = min{j > is,1 | sj ≥ sis,1},

...
is,l(s) = min{j > is,l(s)−1 | sj ≥ sis,l(s)−1

} = max{s1, . . . , sm}.

So, is,1 is the index of the first entry of (s1, . . . , sm) which is larger than
N , is,2 is the index of the next entry that is at least as large, etc. Note
that by the second property of Em

ε in Lemma 2.5, we know that

K < is,1 < is,2 < · · · < is,l(s),

and by the fourth property,

N < sis,1 < sis,2 < · · · < sis,l(s) .
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Let W s
ε = {w ∈ {1, 2, 3, 4}m | ∀k ≤ l(s) wis,k = 3, 4}. Note that for

Ωs = {s} × {1, 2, 3, 4}m ⊆ Ω, we have
P [W s

ε |Ωs] = 1− P [¬W s
ε |Ωs]

= 1− P
[
wis,1 = 1, 2; or wis,2 = 1, 2; . . . ; or wis,l(s) = 1, 2

∣∣∣Ωs
]

≥ 1−
l(s)∑
k=1

P
[
wis,k = 1, 2

∣∣Ωs
]

= 1−
l(s)∑
k=1

ε2−sis,k

≥ 1−
∞∑
j=1

ε2−j = 1− ε.

The last inequality is because sis,1 < sis,2 < · · · < sis,l(s) .
Finally, let

Ωε = {(s, w) ∈ Ω | s ∈ Em
ε , w ∈ W s

ε },
and note that

ν(Ωε) ≥ (1− ε)(1− ε) > 1− 2ε.

Claim 2.6. For any α, β ∈ Ωε, we have hr(α) 6= r(β).

We prove this claim after we finish the proof of the Proposition.
Let ν1 be equal to ν conditioned on Ωε, and ν2 be equal to ν condi-

tioned on the complement of Ωε. We have ν = ν(Ωε)ν1+(1−ν(Ωε))ν2,
and by the above claim we know ‖hr∗ν1 − r∗ν1‖ = 2. So
‖hµ∗m − µ∗m‖ = ‖hr∗ν − r∗ν‖

= ‖ν(Ωε)(hr∗ν1 − r∗ν1) + (1− ν(Ωε))(hr∗ν2 − r∗ν2)‖
≥ ν(Ωε) ‖hr∗ν1 − r∗ν1‖ − 2(1− ν(Ωε))

≥ 2(1− 2ε)− 2(2ε) = 2− 8ε,

which is bounded away from zero for ε small enough and all m large
enough. This completes the proof of Proposition 2.2.

Proof of Claim 2.6. Let α = (s, w), β = (t, v) ∈ Ωε. Hence max{K,N} <
m, s ∈ Em

ε , t ∈ Em
ε , w ∈ W s

ε , and v ∈ W t
ε . Assume that hr(α) = r(β).

So, we have
hfs1(w1) · · · fsm(wm) = ft1(v1) · · · ftm(vm).

Let K < i1 < i2 < · · · < il(s) and K < j1 < j2 < · · · < jl(t) be
the indices we defined for s and t in the proof of Proposition 2.2. We
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remind the reader that the unique maximum of (s1, . . . , sm) is attained
at il(s), with a corresponding statement for (t1, . . . , tm) and jl(t). So we
have

h

b1︷ ︸︸ ︷
fs1(w1) · · · fsil(s)−1

(wil(s)−1) fsil(s) (wil(s))

b2︷ ︸︸ ︷
fsil(s)+1

(wil(s)+1) · · · fsm(wm)

= ft1(v1) · · · ftjl(t)−1
(vjl(t)−1)︸ ︷︷ ︸

c1

ftjl(t) (vjl(t)) ftjl(t)+1
(vjl(t)+1) · · · ftm(vm)︸ ︷︷ ︸

c2

.

Let p = sil(s) = max{s1, . . . , sm} and q = tjl(t) = max{t1, . . . , tm}. Since
w ∈ W s

ε and v ∈ W t
ε , we know fsil(s) (wil(s)) = g±1

p and ftjl(t) (vjl(t)) =

g±1
q , so

hb1g
±1
p b2 = c1g

±1
q c2.(2.3)

Since p = max{s1, . . . , sm}, and since m ≥ K, we know that m ≤ p.
So b1, b2 ∈ (Bp−1)

p−1 ⊆ (Cp−1)
p−1. Similarly c1, c2 ∈ (Cq−1)

q−1.
Consider the case that p > q. Then c1, c2, g

±1
q ∈ (Cq)

q ⊆ (Cp−1)
p−1.

Hence g±1
p = [b−1

1 ]h−1[c1g
±1
q c2b

−1
2 ] by (2.3), and so

gp ∈ (Cp−1)
4(p−1){h, h−1}(Cp−1)

4(p−1) ⊆ (Cp−1)
8(p−1)+1,

which is a contradiction with our choice of gp, since p > N . Similarly,
if p < q, we get a contradiction. So we can assume that p = q.

If p = q, then by (2.3) we have
hb1g

±1
p b2 = c1g

±1
p c2,

and c1, c2, b1, b2 ∈ (Cp−1)
p−1. So, for x = c−1

1 hb1 ∈ (Cp−1)
2(p−1)+1 we

have g±1
p xg±1

p = c2b
−1
2 ∈ (Cp−1)

2(p−1) ⊆ (Cp−1)
2(p−1)+1. By the fact that

gp is a super-switching element for (Cp−1)
2(p−1)+1, we get that x is the

identity.
So hb1 = c1, i.e.

hfs1(w1) · · · fsil(s)−1
(wil(s)−1) = ft1(v1) · · · ftjl(t)−1

(vjl(t)−1).

By the exact same argument, we can see this leads to a contradiction
unless

hfs1(w1) · · · fsil(s)−1−1
(wil(s)−1−1) = ft1(v1) · · · ftjl(t)−1−1

(vjl(t)−1−1).

And again, this leads to a contradiction unless
hfs1(w1) · · · fsil(s)−2−1

(wil(s)−2−1) = ft1(v1) · · · ftjl(t)−2−1
(vjl(t)−2−1).

Note that if l(s) 6= l(t), at some point in this process we get that
either all the si’s or all the ti’s are at most N while the other string
has characters strictly greater than N . This leads to a contradiction
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similar to the case p 6= q, which we explained before. So, by continuing
this process, we get a contradiction unless

h

b′︷ ︸︸ ︷
fs1(w1) · · · fsi1−1

(wi1−1) =

c′︷ ︸︸ ︷
ft1(v1) · · · ftj1−1

(vj1−1) .

(1) Recall that s1, . . . , si1−1 ≤ N , which means max{s1, . . . , si1−1} ≤
N .

(2) On the other hand si1 > N and we know that s1, . . . , sK ≤ N .
So, i1 > K =⇒ i1 − 1 ≥ K. So, by the third property of Em

ε

in Lemma 2.5, we get that max{s1, . . . , si1−1} ≥ (i1 − 1).
(3) Combining the last two results we get N ≥ i1 − 1.
(4) Again, since s1, . . . , si1−1 ≤ N , we get that

fs1(w1), . . . , fsi1−1
(wi1−1) ∈ BN .

So,
b′ = fs1(w1) · · · fsi1−1

(wi1−1) ∈ (BN)
i1−1 ⊆ (BN)

N .

A similar argument shows that c′ = ft1(v1) · · · ftj1−1
(vj1−1) ∈ (BN)

N .
But we know that hb′ = c′ =⇒ h = c′b′−1 ∈ (BN)

2N , which is in
contradiction with our choice of h.

�

Remark 2.7. Note that it is possible, by a straightforward modification
of this proof, to allow h to be any non-identity element of G.

3. Groups with no ICC quotients

In this section we prove the following.
Proposition 3.1. Let G be a countable discrete group with no ICC
quotients. Then Π(G,µ) is trivial for any generating measure µ on G.

This claim has appeared previously in the literature [22], and we
provide a proof for completeness. The following theorem is in particular
well known, and in this form is due to Dynkin and Maljutov [8]. We
provide a proof that uses an idea of Margulis [27]. Another proof, using
the uniqueness of the stationary measure on the Poisson boundary,
appears in [23].
Theorem 3.2. Let G be a group and let µ be any generating probability
measure on G. Then the center of G acts trivially on Π(G,µ).
Proof. Let Z denote the center of G. We show that the restriction to
Z of any bounded µ-harmonic on G is constant.

Endow [0, 1]Z with the product topology, and let F ⊂ [0, 1]Z denote
the set of all the restriction to Z of µ-harmonic functions which are
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bounded by 0 and 1. Then F is a compact convex space. The Krein-
Milman Theorem states that F is the closure of the convex hull of its
extremal points. Hence it is enough to show that the extremal points in
F are constant functions, and hence the bounded µ-harmonic functions
are Z-invariant.

Consider the G-action on µ-harmonic functions given by f g(x) =
f(gx), and define the Z-action on F similarly. Let f be an extremal
function in F . So f = f |Z is the restriction to Z of some µ-harmonic
function f . Then for any z ∈ Z we get

f(z) = f(z) =
∑
g

µ(g)f(zg) =
∑
g

µ(g)f(gz) =
∑
g

µ(g)f
g
(z).

Since the equation above holds for any z ∈ Z, we have shown that
f =

∑
g µ(g)f

g|Z . Since f is extremal, and since f g|Z ∈ F , f = f
g|Z for

all g in the support of µ. By applying the same argument to convolution
powers of µ, and since µ is generating, we have that f = f

g|Z for all
g ∈ G, and in particular f = f

z|Z = f z for all z ∈ Z. This means that
f is constant.

�

Let H ≤ G be a subgroup of finite index, and fix some generating µ
on G. It is well known that the subgroup H is µ-recurrent, namely, that
the µ-random walk will hit H with probability 1. We denote the dis-
tribution of the first hit by θ. So θ is a generating measure on H which
is called the µ-hitting measure. The stopping time theorem implies
that the restriction map gives a canonical H-equivariant isomorphism
between bounded µ-harmonic functions on G and bounded θ-harmonic
functions on H. It follows that Π(G,µ) and Π(H, θ) are isomorphic as
H-spaces.
Lemma 3.3. Let G be a countable discrete group, µ be a generating
probability measure on G, and let g ∈ G have finite conjugacy class.
Then g acts trivially on Π(G,µ).
Proof. Let g ∈ G be an element with a finite conjugacy class. Then its
centralizer H = CG(g) is of finite index in G. Denote by θ the hitting
measure on H. So Π(G,µ) and Π(H, θ) are H-isomorphic. Since g in
in the center of H, by Theorem 3.2, it acts trivially on Π(H, θ), and
hence it acts trivially on Π(G,µ). �

In particular, if there exists some generating measure µ such that
the G-action on Π(G,µ) is faithful then G is an ICC group.
Proof of Proposition 3.1. Assume that there exists some µ on G for
which Π(G,µ) is non-trivial. Let N denote the kernel of the action. So
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G/N acts faithfully on Π(G/N, µ̄) where µ̄ is the µ-projected measure
on G/N via G → G/N . By Lemma 3.3, G/N is an ICC group. �

Remark 3.4. More generally, by applying an induction argument and
Lemma 3.3, one can show that the hyper-FC-center [6,28] acts trivially
on Π(G,µ) for every generating µ on G.
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