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Abstract—In the classic herding model, agents receive private
signals about an underlying binary state of nature, and act
sequentially to choose one of two possible actions, after observing
the actions of their predecessors.

We investigate what types of behaviors lead to asymptotic
learning, where agents will eventually converge to the right action
in probability. It is known that for rational agents and bounded
signals, there will not be asymptotic learning.

Does it help if the agents can be cooperative rather than act
selfishly? This is simple to achieve if the agents are allowed
to use randomized protocols. In this paper, we provide the first
deterministic protocol under which asymptotic learning occurs. In
addition, our protocol has the advantage of being much simpler
than previous protocols.

I. INTRODUCTION

When making decisions, we often have some amount of
information which we have learned on our own, but we also
look to what choices other people have made in the past. In
sequential learning models, there is a sequence of agents N =
{1, 2, . . .} who are interested in learning an unknown state
of the world θ ∈ {0, 1}. Each agent i receives a signal si
that depends on the state, takes an action ai ∈ {0, 1}, and
receives a utility of 1 if the action matches the state, and
utility 0 otherwise. Each agent also observes the actions of
her predecessors before choosing her own.

The classical result of [1], [2] is that from some point
on, rational agents will disregard their own private signal
and emulate the actions of their predecessors, resulting in a
herd in which almost all the information is lost. In particular,
asymptotic learning does not occur: the probability that the
ith agent chooses the correct action does not tend to one, as it
would if the agents could observe the signals (rather than the
actions) of their predecessors.

A natural question is whether non-selfish agents can co-
ordinate on a protocol in which they do not always choose
the action that is optimal given their information, but where
asymptotic learning does occur. Achieving this with proba-
bilistic protocols is straightforward [3], [4]: for example [3],
one could have the ith agent choose an action that reveals her
private signal with probability 1/i, and choose her optimal
action with probability 1− 1/i.

In this paper, we show that asymptotic learning can also be
achieved using a deterministic protocol.

Theorem I.1. There is a deterministic protocol that achieves
asymptotic learning.

At the heart of the problem is a trade-off between optimiza-
tion and communication. In order for asymptotic learning to
occur, agents must rely more and more on the information
provided by their predecessors’ actions, since their own private
signals have a uniformly bounded amount of information.
However, if agents rely too much on previous observations,
they will pass too little information on through their own
actions. The question of whether there are any deterministic
protocols under which asymptotic learning occurs is essen-
tially the following: are there any deterministic protocols
which can strike the right balance between agents taking
optimal actions and agents using their actions to communicate
their private information to their successors?

Our work raises some potentially interesting questions: in
what reasonable economic settings do selfish agents naturally
coordinate and achieve asymptotic learning in equilibrium?
And how could one incentivize them to do so in other settings?

A. Related Work

The classical sequential learning papers [1], [2] have been
followed by a large literature in Economics (see, e.g., [3],
[5]–[7], as well as Chamley’s book [8]) and engineering (see,
e.g., [4], [9]). Smith and Sørensen [5] showed that when
private signals are unbounded (i.e., there is no limit to how
strong an indication a private signal can give) then agents do
learn the state in the sequential setting; this observation has
motivated us—and others—to understand under what other
conditions learning can be achieved. As far as we know, [4] is
the only other paper that studies related algorithmic questions.
In particular, in [4] it is shown how agents with bounded
memory who observe only some of their predecessors can
achieve asymptotic learning using a randomized protocol.

Finally, in [10], the authors study a particular family of pro-
tocols involving randomness for achieving asymptotic learn-
ing, and demonstrate that the fastest rate of learning possible in
this family is O(1/n). These protocols differ in two important
ways from the protocol presented here. First, the protocol itself
is not deterministic; each agent uses a randomization device to
decide whether or not to reveal her signal. Second, the devices
used by different individuals are independent, so that whether



one agent reveals is entirely uncorrelated with whether any
other agent reveals. Given these differences, it is not clear
that their model is directly comparable to ours. However, the
rate achieved in [10] provides a benchmark for comparison,
which suggests that the learning rate we achieve is close to
optimal.

II. MODEL

There is a countably infinite set of agents indexed by i ∈
N, acting sequentially and trying to learn the hidden state of
nature θ. In this paper, we focus on the most basic setting
where both the underlying state and the private signals are
binary.

The state of nature θ is a random variable which takes values
in {0, 1}. There are two Bernoulli distributions D0 and D1

with parameters q0 and q1, respectively. The agents know the
distributions D0 and D1. Each agent i receives a private signal
si ∈ {0, 1}. The signals are i.i.d conditioned on θ, drawn from
the distribution Dθ. We are interested in the case where the
private signals are bounded, that is, both signals are possible
regardless of the state. We assume without loss of generality
that 0 < q0 < q1 < 1. A simple example is that there is a
60/40 biased coin, but it is known if the bias is towards heads
or tails. Each agent observes a flip of this coin, and together
they want to distinguish which coin it is.

The agents act sequentially with each agent i choosing
an action ai ∈ {0, 1}. Before making her choice, agent
i can observe her own signal si, as well as the actions
{a1, . . . , ai−1} of the previous agents, but crucially not the
private signals of others. We say that there is asymptotic
learning if the actions of the agents converge to the true state
θ in probability.

Definition II.1 (Asymptotic Learning). Let pi = Pr[ai = θ]
be the probability of agent i choosing the correct action. There
is asymptotic learning if and only if lim infi→∞ pi = 1.

We want to investigate whether asymptotic learning is pos-
sible when the agents must act deterministically. Formally, the
agents can agree on a protocol Π = {fi}i∈N, i.e., a sequence
of functions where fi : {0, 1}i → {0, 1} describes the
(deterministic) strategy of agent i, mapping all the information
she sees to the action she takes: ai = fi(a1, . . . , ai−1, si).
Note that when we fix a deterministic protocol, the probability
pi of agent i chooses correctly is only over the randomness in
the signals s1, . . . , si drawn from Dθ.

III. OUR DETERMINISTIC PROTOCOL

Before describing our protocol we state two important
observations.

Fix a deterministic protocol Π.
Fact 1. Suppose that for some ϵ > 0, infinitely many agents

disregard the information provided by their predecessors and
act only based on their private signals with probability at least
ϵ. Then learning does not occur under Π.

Fact 2. Suppose that there is a nonzero probability that
only finitely many agents take an action which depends on

their private signal (and not just their predecessors’ actions).
Then asymptotic learning does not occur under Π.

The intuition behind Fact 1 is that whenever an agents relies
on her own signal, she has a constant probability of choosing
an incorrect action. Fact 2 is a consequence of the observation
that if only finitely many agents rely on their own signals
then an outside observer cannot learn the state with probability
tending to one, and hence neither can the agents.

Thus, in any protocol that achieves asymptotic learning,
infinitely many agents must rely on their signals, but the
probability that agent i relies on her signal must vanish as
i tends to infinity. This is easily achieved using a randomized
protocol, by asking agent i to act according to her signal with
(diminishing) probability 1/i. Since 1/i is not summable, by
the Borel-Cantelli lemma there will almost surely be infinitely
many agents who reveal their signal.

Our deterministic protocol follows the same intuition. We
want infinitely many agents to reveal their signals, but each
individual agent to reveal with diminishing probabilities. Our
algorithm can be viewed as derandomizing the random pro-
tocol described above, using the randomness in the agents’
private signals. The actions of the revealing agents (which are
equal to their private signals) are observed by other agents
to learn about θ, and are simultaneously used as randomness
to select the next revealing agent. It is worth noting that even
though the sequence of revealing agents is random, each agent
(who observes the entire history of actions) knows exactly
which subset of predecessors revealed their private signals.
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Fig. 1. An example of how our deterministic protocol selects the revealing
agents. We assign the agents to nodes on a complete binary tree level by level,
the private signal of the revealing agents are labelled on their nodes.

Formally, let tk denote the index of the k-th revealing agent.
We define t1 = 1, and for k > 1,

tk =

k−1∑
j=1

atj · 2j−1 + 2k−1.

The definition of tk partitions the agents into groups of size
2j and picks exactly one agent in each group: t1 ∈ {1}, t2 ∈
{2, 3}, . . . , tk ∈ {2k−1, . . . , 2k − 1}. The actions of all the
revealing agents (atk−1

, . . . , at1) can be viewed as a number
represented in binary, which decides the index of the next
revealing agent tk. Equivalently, upon arranging the agents
in a binary tree so that each level k consists of agents 2k−1

through 2k − 1, the next revealing agent will be either the left
or right child of the most recent revealing agent, depending
on the action that the most recent revealing agent takes, as



illustrated in Figure 1. We define the strategy of each agent
depending on if she is revealing or not. For a given i, let k
be the unique integer with 2k−1 ≤ i < 2k. Then

fi(a1, · · · , ai−1, si) =

{
gk(at1 , . . . , atk−1

, si) if i ̸= tk,

si if i = tk

where

gk(x1, . . . , xk) =

{
0 if 1

k

∑k
j=1 xj ≤ q0+q1

2 ,

1 if 1
k

∑k
j=1 xj >

q0+q1
2 .

Theorem I.1 is a direct corollary of Lemma III.1.

Lemma III.1. Let q0, q1 denote the parameters of the
Bernoulli distributions D0 and D1 respectively. We assume
that ϵ < q0 < q1 < 1 − ϵ and q1 − q0 > 2ϵ for some
constant ϵ > 0. The protocol {fi}i∈N defined above satisfies
pn ≥ 1− 2n−ϵ2 for all n ∈ N.

Lemma III.1 follows immediately from Lemmas III.2
and III.3. We defer the proof of Lemma III.1 to the end of
this section.

Lemma III.2. The probability of agent n being a revealing
agent is at most n−ϵ.

Proof. Fix an index i with 2k−1 ≤ i < 2k, i.e., agent i is
on the kth level of the binary tree. If agent i is selected as a
revealing agent, we must have tk = i. This happens if and only
if the private signals of the first k−1 revealing agents form the
binary representation of the number (i−2k−1). In other words,
there is a unique path from the root of the tree to agent i and
we must always take the correct edges to reach i. Observe that
the private signals of the first k−1 revealing agents are drawn
i.i.d. from Dθ. Since ϵ < q0 < q1 < 1− ϵ, each private signal
matches the binary representation of i with probability at most
1−ϵ. Therefore, we conclude that the probability agent n with
n ≥ 2k−1 is on the paths is at most

(1−ϵ)k−1 ≤ e−ϵ(k−1) =
(
2k−1

)−ϵ log2(e) ≤ n−ϵ log2(e) ≤ n−ϵ.

where first step uses that 1− x ≤ e−x for all x ∈ R.

Lemma III.3. When agent n is not a revealing agent, she
answers correctly with probability at least 1− n−ϵ2 .

Proof. Fix an index n with 2k−1 ≤ n < 2k. Agent n has
access to the actions of the revealing agents t1, . . . , tk−1 since
tk < 2k−1. Because these agents reveal their private signals,
agent i has at least k i.i.d. samples from Dθ (including her own
signal). She can simply take the average of these samples and
check if the empirical mean is closer to q0 or q1 to guess the
hidden state θ. Note that most of the agents are not revealing,
and they are acting rationally.

Let q̄ = q0+q1
2 . Since we assumed that q1 − q0 ≥ 2ϵ, we

have that |q̄ − qθ| ≥ ϵ. Therefore, as long as the empirical
mean of the k samples has additive error less than ϵ, agent i

will be able to guess θ correctly. By standard application of
Chernoff-Hoeffding bounds, we have

Pr

∣∣∣∣∣∣1k
k−1∑

j=1

atj + si

− qθ

∣∣∣∣∣∣ ≥ ϵ

 ≤ e−2kϵ2 ≤ n−ϵ2 .

We are now ready to prove Lemma III.1.

Proof of Lemma III.1. We prove the protocol {fi}i∈N defined
as above satisfies pn ≥ 1−2n−ϵ2 . The claim then follows from
the assumption that ϵ > 0 is a constant.

Agent n can pick the wrong action due to one of the two
reasons:

1) Agent n is revealing, and her private signal is different
from θ. The probability of this event is upper bounded
by the probability that agent n is revealing, which is
n−ϵ by Lemma III.2.

2) The agent is not revealing, but the previous information
leads to the wrong conclusion on θ. By Lemma III.3,
this happens with probability at most n−ϵ2 .

We conclude the proof by taking a union bound over these
two cases.

IV. AN IMPROVED PROTOCOL

In this section we describe a slightly more complicated
deterministic protocol which achieves the theoretically optimal
learning rate for random protocols from [10]. This protocol
shares the essential structure with the previous protocol, but
is slightly modified to remove some of the inefficiencies in
the previous protocol and allow for an improvement on the
asymptotic rate.

The new protocol will differ from the previous protocol in
the following ways.

First, rather than a single agent revealing from each group,
k agents from the interval 2k−1, . . . , 2k − 1 will reveal. The
revealing agents will be tk, tk+1, . . . , tk+k−1 if tk+k−1 <
2k and tk, . . . , 2

k − 1, 2k−1, . . . , 2k−1 + k − 1 − (2k − tk)
otherwise. Intuitively, the revealing agents will be the block
of k agents starting with tk if the agents 2k−1, . . . , 2k − 1 are
arranged cyclically.



Similar to the previous protocol, tk will be calculated from
tk−1 according to the recursive formula

tk = tk−1 − 2(k−1)−1 + bk−1 + 2k−1

where bk is the parity of the number of revealing agents in
the kth block that take action 1.

As before, all agents that are not revealing can recover
which agents before them were revealing, and will take the
action corresponding to whichever signal has appeared more
often among their own signal and the signals of the revealing
agents.

Proposition IV.1. Under this protocol, pn = O(log n)/n.

Proof. As in the proof of Lemma III.1, we will bound the
probability of taking the wrong action by separately bounding
the probability of not being revealing and taking the wrong
action and the probability of being revealing and taking the
wrong action.

Fix ϵ as in Lemma III.1.
Consider agent n, where 2k−1 ≤ n < 2k. Suppose this

agent is not revealing. Then she will, at a minimium, see
the signals of the 1 + · · · + k − 2 = (k−1)(k−2)

2 previous
revealing agents, in addition to her own signal. Hence, by a
Chernoff-Hoeffding bound (as in the proof of Lemma III.1),
the probability that she takes the wrong action will be bounded
above (for sufficiently large k) by:

exp (−(k − 1)(k − 2)ϵ2) ≤ exp (−1

4
k2ϵ2)

≤ exp (−1

8
(log (n))2ϵ2)

= 2(log (e))(− 1
8 (log (n))2ϵ2)

=

(
1

n

)( 1
8 ϵ

2 log (e)) log (n)

.

Hence, this gives an upper bound for the probability that agent
n is not revealing and makes a mistake. Now, to bound the
probability that agent n is revealing and makes a mistake,
it will be sufficient to bound the probability that agent n is
revealing.

First, note that the probability that bk is 1 converges
exponentially (in k) to 1

2 . Hence, a simple calculation shows
that the probability of that tk = n is bounded above by d/n
for some fixed constant d. Hence, the probability that agent n
is revealing is bounded above by kd/n = d log (n)/n.

Thus, the probability that agent n takes the wrong action is
bounded above by(

1

n

)( 1
8 ϵ

2 log (e)) log (n)

+ d log (n)/n

which is bounded above by

2d log (n)/n

for all sufficiently large n.
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