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roles. We show that a weakening of May’s symmetry assumption allows for a far richer

set of rules that still treat voters equally. We show that such rules can have minimal
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∗Institute of Advanced Studies, Lyon, e-mail: laurent.bartholdi@gmail.com
†California Institute of Technology, e-mail: whanncar@gmail.com
‡California Institute of Technology, e-mail: mjosyula@caltech.edu
§California Institute of Technology, e-mail: tamuz@caltech.edu
¶Princeton University, e-mail: lyariv@princeton.edu
‖We thank Wolfgang Pesendorfer for useful comments. Tamuz gratefully acknowledges financial support

from the Simons Foundation, through grant 419427. Yariv gratefully acknowledges financial support from the

NSF, through grant SES-1629613.

1



1 Introduction

Literally translated to “power of the people”, democracy is commonly associated with two

fundamental tenets: equity among individuals and responsiveness to their choices. May’s

celebrated theorem provides foundation for voting systems satisfying these two restrictions

(May, 1952). Focusing on two-candidate elections, May illustrated that majority rule is

unique among voting rules that treat candidates identically and guarantee symmetry and

responsiveness.

Extensions of May’s original results are bountiful.1 However, what we view as a procedural

equity restriction in his original treatment—often termed anonymity or symmetry—has

remained largely unquestioned.2 This restriction requires that no two individuals can affect

the collective outcome by swapping their votes. Motivated by various real-world voting

systems, this paper focuses on a particular weakening of this restriction. While still capturing

the idea that no voter carries a special role, our equity notion allows for a large spectrum of

voting rules, some of which are used in practice, and some of which we introduce. We analyze

winning coalitions of such equitable voting rules and show that they can comprise a vanishing

fraction of the population, but not less than the square root of its size. Methodologically, we

demonstrate how techniques from group theory can be useful for the analysis of fundamental

questions in social choice.

To illustrate our motivation, consider the stylized example of a representative democracy

rule: m counties each have k residents. Each county selects, using majority rule, one of two

representatives. Then, again using majority rule, the m representatives select one of two

policies (see Figure 1 for the case m = k = 3).

This rule does not satisfy May’s original symmetry restriction: individuals could swap

their votes and change the outcome. In Figure 1, for example, suppose voters {1, 2, 3, 4, 5}
1See, e.g., Cantillon and Rangel (2002), Fey (2004), Goodin and List (2006), and references therein.
2An exception is Packel (1980), who relaxes the symmetry restriction and adds two additional restrictions

to generate a different characterization of majority rule than May’s.
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Figure 1: A representative democracy voting rule. Voters are grouped into three counties:

{1, 2, 3}, {4, 5, 6} and {7, 8, 9}. Each county elects a representative by majority rule, and the

election is decided by majority rule of the representatives.

vote for representatives supporting policy A, while voters {6, 7, 8, 9} vote for representatives

supporting policy B. With the original votes, policy A would win; but swapping voters 5 and

9 would cause policy B to win.

Even though representative democracy rules do not satisfy May’s symmetry assumption,

there certainly is an intuitive sense in which their fundamental characteristics “appear”

equitable. Indeed, variations of these rules were chosen in good faith by many designers of

modern democracies. Such rules are currently in use in France, India, the United Kingdom,

and the United States, among others.

Is there a formal sense in which a representative democracy rule is more equitable than a

dictatorship? More generally, what makes a voting rule equitable? We suggest the following

definition. In an equitable voting rule, for any two voters v and w, there is some permutation

of the full set of voters such that: (i) the permutation sends v to w, and (ii) applying this

permutation to any voting profile leaves the election result unchanged.

In §2.4, we formalize the notion of “roles” in a voting body. For instance, in university

committees there are often two distinct roles: a chair and a standard committee member;
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likewise, in juries, there is often a foreperson, who carries a special role, and several jury

members, who all have the same role. We show that our notion of equity is tantamount to

all agents in the electorate having the same role.

Under our equity definition, representative democracy rules are indeed equitable, but

dictatorships are not. For instance, in the case depicted in Figure 1, voters 1 and 2 play the

same role, since the permutation that swaps them leaves any election result unchanged. But

1 and 4 also play the same role: the permutation that swaps the first county with the second

county also leaves outcomes unchanged.

There is a large variety of equitable rules that are not representative democracy rules.

An example is what we call Cross Committee Consensus (CCC) rules. In these, each voter is

assigned to two committees: a “row committee” and a “column committee” (see Figure 2).

If any row committee and any column committee both exhibit consensus, then their choice

is adopted. Otherwise, majority rule is followed. For instance, suppose a university is

divided into equally-sized departments, and each faculty member sits on one university-wide

committee. CCC corresponds to a policy being accepted if there is a strong unanimous

lobby from a department and from a university-wide committee, with majority rule governing

decisions otherwise. This rule is equitable since each voter is a member of precisely one

committee of each type, and all row (column) committees are interchangeable.

We provide a number of further examples of equitable voting rules, showing the richness

of this class and its versatility in allowing different segments of society—counties, university

departments, etc.—to express their preferences.

In order to characterize more generally the class of equitable voting rules, we focus on

their winning coalitions, the sets of voters that decide the election when in agreement (Reiker,

1962). In majority rule, all winning coalitions include at least half of the population. We

analyze how small winning coalitions can be in equitable voting rules.

Under representative democracy, winning coalitions have to comprise at least a quarter of

the population.3 Much smaller winning coalitions are possible in what we call generalized
3A winning coalition under representative democracy must include support from half the counties, which
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Figure 2: Cross-committee consensus voting rule. The union of a row and a column is a

winning coalition.

representative democracy (GRD) voting rules, where voters are hierarchically divided into

sets that are, in turn, divided into subsets, and so on. For each set, the outcome is given by

majority rule over the decisions of the subsets.4 We show that equitable GRD rules for n

voters can have winning coalitions as small as nlog3 2, or about n0.63, which is a vanishingly

small fraction of the population.5

When the number of voters n is a perfect square, and when committee sizes are taken to

be
√
n, the CCC rule has a winning coalition of size 2

√
n− 1. This is significantly smaller

translates to half of the population in those counties, or one quarter of the entire population.
4These rules have been studied under the name recursive majority in the probability literature (see, e.g.,

Mossel and O’Donnell, 1998).
5For an example of a non-equitable GRD with a small winning coalition, consider voters {1, . . . , 1000} and

assume three counties divide the population into three sets of voters: {{1}, {2}, {3, . . . , 1000}. Then {1, 2} is

a winning coalition. The value log3 2 ≈ 0.63 is the Hausdorff dimension of the Cantor set. As it turns out,

there is a connection between equitable GRD’s that achieve the smallest winning coalitions and the Cantor

set.
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than nlog3 2, for n large enough.

Our main result is that, for any n, there always exist simple equitable voting rules that

have winning coalitions of size ≈ 2
√
n. Conversely, we show that no equitable voting rule can

have winning coalitions of size less than
√
n. Methodologically, the proof utilizes techniques

from group theory and suggests the potential usefulness of such tools for the analysis of

collective choice.

While
√
n accounts for a vanishing fraction of the voter population, we stress that it can

be viewed as “large” in many contexts. While in a department of 100 faculty, 10 members

would need to coordinate to sway a decision one way or the other, in a presidential election

with, say, 140 million voters, coordination between nearly 12, 000 voters would be necessary

to impact outcomes.6

For instance, even under majority rule, if each voter is equally likely to vote for either

of two alternatives, the Central Limit Theorem suggests that a coalition of order
√
n can

control the vote with high probability.

Certainly, beyond equity, another important aspect of voting rules is their susceptibility

to manipulation. For instance, with information on voters’ preferences, representative

democracy rules are sensitive to gerrymandering (McGann et al., 2016). We view the question

of manipulability as distinct from that of equity. It would be interesting to formulate a notion

of non-manipulability, independent of equity, and to understand how these notions interact.

The breadth of equitable voting rules allows for further consideration of various objectives,

such as non-manipulability, when designing institutions.

In the next part of the paper, we explore a stronger notion of equity. We consider

k-equitable voting rules in which every coalition of k voters plays the same role. These are
6Interestingly, rules that give decisive power to minorities of size

√
n appear in other contexts of collective

choice and have been proposed for apportioning representation in the United Nations Parliamentary Assembly,

and for voting in the Council of the European Union, see Życzkowski and Słomczyński (2014). These proposed

rules relied on the Penrose Method (Penrose, 1946), which suggests the vote weight of any representative

should be the square root of the size of the population she represents, when majority rule governs decisions.

Penrose argued that this rule assures equal voting powers among individuals.
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increasingly stringent conditions that interpolate between our equity notion, when k = 1, and

May’s symmetry, when k = n. The analysis of k-equitable rules is delicate, due to group-

and number-theoretical phenomena. There do exist, for arbitrarily large population sizes n,

voting rules that are 2- and 3-equitable, and have winning coalitions as small as
√
n. However,

for “most” sufficiently large values of n, and for any k ≥ 2, the only k-equitable, neutral,

and responsive voting rule is majority. Thus, while equity across individuals allows for a

broad spectrum of voting rules, equity among arbitrary fixed-size coalitions usually places the

restrictions May had suggested. While k-equity is arguably a strong restriction, it is still far

weaker than May’s original symmetry requirement. In that respect, our results here provide

a strengthening of May’s conclusions.

2 The Model

2.1 Voting rules

Let V be a finite set of voters. We denote V = {1, . . . , n} so that n is the number of voters.

Each voter has preferences over alternatives in the set Y = {−1, 1}. We identify the possible

preferences over Y with elements of X = {−1, 0, 1}, where −1 represents a strict preference

for −1 over 1, 1 represents a strict preference for 1 over −1, and 0 represents indifference

between −1 and 1. We denote by Φ = XV the set of voting profiles; that is, Φ is the set of

all functions from the set of voters V to the set of possible preferences X. A voting rule is a

function f : Φ→ X.

An important example is the majority voting rule m : Φ→ X, which is given by

m(φ) =



1 if |φ−1(1)| > |φ−1(−1)|

−1 if |φ−1(1)| < |φ−1(−1)|

0 otherwise.

A vote of 0 can be interpreted as abstention or indifference.
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2.2 May’s Theorem

We now define several properties of voting rules. Following May (1952), we say that a voting

rule f is neutral if f(−φ) = −f(φ). Neutrality implies that both alternatives −1 and 1 are

treated symmetrically: if each individual flips her vote, the final outcome is also flipped.

Again following May (1952), we say that a voting rule f is positively responsive if increased

support for one alternative makes it more likely to be selected. Formally, f is positively

responsive if f(φ) = 1 whenever there exists a voting profile φ′ satisfying the following:

1. f(φ′) = 0 or 1.

2. φ(v) ≥ φ′(v) for all v ∈ V .

3. φ(v0) > φ′(v0) for some v0 ∈ V .

Thus, f(φ) ≥ f(φ′) if φ ≥ φ′ coordinate-wise, and if f(φ) = 0 then any change of φ breaks

the tie.

We now turn to the symmetry between voters. Several group-theoretic concepts will

prove useful for the description and comparison of May’s and our notions. Denote by Sn the

set of permutations of the n voters. Any permutation of the voters can be associated with

a permutation of the set of voting profiles Φ: given a permutation σ ∈ Sn, the associated

permutation on the voting profiles maps φ to φσ, which is given by φσ(v) = φ(σ−1v). The

automorphism group of the voting rule f is given by

Autf = {σ ∈ Sn | ∀φ ∈ Φ, f(φσ) = f(φ)}.

That is, Autf is the set of permutations of the voters that leave election results unchanged,

for every voting profile.

We can interpret a permutation σ as a scheme in which each voter v, instead of casting

her own vote, gets to decide how some other voter w = σ(v) will vote. A permutation σ is

in Autf if applying this scheme never changes the outcome: when each w = σ(v) votes as v

would have, the result is the same as when each player v votes for herself.
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The automorphism group Autf has natural implications for pivotality, or the Shapley-

Shubik and Banzhaf indices of players in simple games, see Dubey and Shapley (1979).

Consider a setting in which all voters choose their votes identically and independently at

random. Given such a distribution, we can consider the probability ηv that a voter v is

pivotal.7 It is easy to see that if there is some σ ∈ Autf that maps v to w, then ηv = ηw,

implying that v and w have the same Banzhaf index. In fact, when there exists σ ∈ Autf that

maps v to w, any statistic associated with a voter that treats other voters identically—the

probability the outcome coincides with voter v’s vote, the probability that voter v and another

voter are pivotal, etc.—would be the same for voters v and w. Hence, in an equitable rule,

all the voters’ Banzhaf indices will be equal.8

May (1952)’s notion of equity, often termed symmetry or anonymity, requires that swapping

the votes of any two voters will not affect the collective outcome. It can be succinctly stated

as Autf = Sn.

May’s Theorem. Majority rule is the unique symmetric, neutral, and positively responsive

voting rule.

Perhaps surprisingly, the requirement of symmetry is stronger than what is needed for

May’s conclusions. As it turns out, a weaker requirement that Autf be restricted to only

even permutations would suffice for his results, see Lemma 3 in the appendix.9 In Theorem 5

below we show that, in fact, a far weaker requirement suffices.
7A voter v is pivotal at a particular voting profile if a change in her vote can affect the outcome under f .
8In a recent follow-up paper to this paper, Bhatnagar (2020) shows that the converse does not hold: there

are rules that are not equitable, but for which the same holds.
9A permutation σ is even if the number of pairs (v, w) such that v < w and σ(v) > σ(w) is even. Put

another way, define a transposition to be a permutation that only switches two elements, leaving the rest

unchanged. A permutation is even if it is the composition of an even number of transpositions.
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2.3 Equitable Voting Rules

As we have already seen, the requirement that Autf includes all permutations, or all even

permutations, precludes many examples of voting rules that “appear” equitable. What makes

a voting rule appear equitable? Our view is that, in an equitable voting rule, ex-ante, all

voters carry the same “role.” We propose the following definition and discuss in the next

section the sense in which it formalizes this view.

Definition 1. A voting rule f is equitable if for every v, w ∈ V there is a σ ∈ Autf such

that σ(v) = w.

In words, a voting rule is equitable if, for any two voters v and w, there is some permutation

of the population that relabels v as w such that, regardless of voters’ preferences, the outcome

is unchanged relative to the original voter labeling.

In group-theoretic terms, f is equitable if and only if the group Autf acts transitively on

the voters.10 Insights from group theory related to the characteristics of transitive groups are

therefore at the heart of our main results. Appendix A contains a short primer on the basic

group theoretical background that is needed for our analysis. 11

2.4 Equity as Role Equivalence

May noted the strong link between anonymity and equality, stating that “This condition

might well be termed anonymity... A more usual label is equality” (May, 1952, page 681).

Are anonymity and equality inherently one and the same? In this section, we formalize this

question in terms of roles. This allows for a natural distinction between May’s symmetry or
10It turns out our equity restriction is effectively the definition of transitivity. The notion of transitive

groups is not directly related to transitivity of relations often considered in Economics.
11Isbell (1960) studied a notion equivalent to our equity notion and considered its implications, combined

with rule neutrality, in a setting in which preferences must be strict, so that tie breaking must also be

equitable. When n is odd, majority is equitable and neutral. Isbell showed that for some even n such rules

exist, while for other even n they do not.
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anonymity condition and our equity notion. In particular, we formalize our motivating idea

that equity corresponds to all voters carrying the same role.

Even though we defined voting rules with respect to a given set of voters, the design of

voting rules is often carried out without a particular group of people in mind; rather, collective

institutions are often designed in the abstract. For example, hiring protocols in university

departments might be specified prior to any specific search. One such protocol might be that

a committee chair decides dictatorially whom to hire, unless indifferent, in which case the

committee decides by majority rule. Under such an abstract rule, the dictatorial privilege is

not assigned to a particular Prof. X, but to an abstract role called “chair.” Later, when a

committee is formed, the role of chair is assigned to some particular faculty member. The

same applies, at least in aspiration, to countries’ election rules, jury decision protocols, etc.

Indeed, historical cases in which laws were written with particular individuals specified or

implied are often not benevolent examples of institution building.

To capture this idea, we introduce abstract voting rules. Recall that we define (non-

abstract) voting rules as functions from XV to X in the context of a particular voter

set V . An abstract voting rule is a map f : XR → X for a set of roles R. Of course,

mathematically, these objects are identical, and so we can speak of abstract voting rules as

being anonymous, equitable, etc. In the above example of the committee, the set of roles

would be R = {C,M2, . . . ,Mn}, where C stands for “chair” and Mi is member i.

The conceptual difference between voters and roles is that voters have preferences and

vote, whereas roles do not. Therefore, for a vote to take place, voters need to be assigned to

roles. Accordingly, given a group of voters V equal in size to R, we call a bijection a : V → R

a role assignment. Given an abstract voting rule f : XR → X, a role assignment a defines

a (non-abstract) voting rule fa : XV → X in the obvious way, via fa(φ) = f(φ ◦ a−1). In

our university committee example, if V = {Alex,Bailey, . . .}, an assignment a that satisfies

a(Alex) = C and a(Bailey) = M7 assigns Alex the role of chair, and Bailey the role of

member 7. Hence, the voting rule fa is a dictatorship of Alex. A different assignment b with

b(Bailey) = C and b(Alex) = M7 results in the voting rule fb in which Bailey is the dictator.
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Note that any assignment c that also assigns c(Bailey) = C results in the same voting rule

as b, even if, say, c(Alex) = M8: fb(φ) = fc(φ) for any voting profile φ. In the context of an

abstract voting rule f , we say that two assignments are equivalent if they lead to the same

voting rule: a and b are equivalent under f if fa = fb.

The next proposition captures a sense in which symmetry is a form of equality:

Proposition 1A. An abstract voting rule f : XR → X is symmetric if and only if all

assignments are equivalent under f .

Thus, symmetry means that assignments do not matter, or that voters are completely

indifferent between assignments: given any voting profile φ and given f , each voter would be

indifferent if given a choice between assignments. Voters do not care which role they have;

moreover, voters do not care which roles other voters have.

We now turn to the interpretation of our equity notion in terms of roles. In the university

committee example, certainly “chair” is a distinguished role. Likewise, it is clear that if we

view the representative democracy example of Figure 1 as an abstract voting rule, no role is

distinguished. Of course, once we assign roles to voters with particular preferences, some

voters may be disadvantaged, and prefer a different assignment ex-post. In that respect, in

the abstract representative democracy rule, all roles are ex-ante identical.

We say that roles r1, r2 ∈ R are equivalent under an abstract voting rule f : XR → X if,

for any voter v and assignment a such that a(v) = r1, there is an assignment b with b(v) = r2

such that fa = fb. That is, roles r1 and r2 are equivalent if, for any voter, it is impossible

to determine whether they are assigned the role of r1 or r2 from the entire mapping from

vote profiles to chosen alternatives. In the university committee example, Mi and Mj are

equivalent, but C is not equivalent to any other role. If a(v) = C, then clearly this can be

determined from fa, but not if a(v) 6= C; in the latter case one can find an assignment b such

that b(v) 6= a(v), but fa = fb, since it is impossible to tell whether a voter has role Mi or Mj .

In the representative democracy example of Figure 1, it is impossible to determine from fa

the role of any given voter v.
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Given this definition of equivalent roles, the next proposition is a sharp characterization

of equity.

Proposition 1B. An abstract voting rule f : XR → X is equitable if and only if all roles are

equivalent under f .

Therefore, while symmetry means that voters are indifferent between assignments, equity

implies that voters are indifferent between roles. Indeed, Proposition 1B implies that, given

an abstract voting rule f , and given any two roles r1, r2, if a voter had to choose between (i)

any assignment in which she had role r1, or (ii) any assignment in which she had role r2, she

would be indifferent. Both would allow her to select the same voting rule fa. Likewise, if the

voter had to choose between roles r1 and r2 knowing that an adversary would get to choose

the rest of the assignment, she would be indifferent.

The following highlights the idea that equity captures indifference between roles.

Proposition 2A. An abstract voting rule f : XR → X is equitable iff there is a set of

assignments A such that

1. fa = fb for all a, b ∈ A, and

2. for each role r ∈ R and voter v ∈ V there is an a ∈ A with a(v) = r.

Thus, there is a menu of assignments that all induce the same voting rule, but allow v to

choose any role.

2.5 Winning Coalitions

One way to describe a voting rule is through its winning coalitions: the sets of individuals

whose consensual vote determines the alternative chosen. Formally, we say that a subset

S ⊆ V is a winning coalition with respect to the voting rule f if, for every voting profile φ

and x ∈ {−1, 1}, φ(v) = x for all v ∈ S implies f(φ) = x.

Note that no two winning coalitions of f can be disjoint. Indeed, suppose thatM,M ′ ⊆ V

are two disjoint winning coalitions. We can then have a profile under which members of M
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vote unanimously for −1 and members of M ′ vote for 1. In such cases, f would not be well

defined. The following lemma illustrates a version of the converse.

Lemma 1. Let W be a collection of subsets of V such that every pair of subsets in W has a

nonempty intersection. Then there is a neutral, positively responsive voting rule for V for

which every set in W is a winning coalition.

Intuitively, the construction underlying Lemma 1 is as follows. First, for any vote profile

in which a subset W ∈ W votes for 1 (or −1) in consensus, we specify the voting rule to also

take the value of 1 (or −1). For any profile in which no W ∈ W votes in consensus, we define

the voting rule to follow majority rule. By definition, the winning coalitions of this voting

rule contain the sets in W . As we show, it is also neutral and positively responsive.

This lemma will allow us to discuss neutral and positive-responsive equitable voting rules

through the restrictions they impose on winning coalitions.

3 Winning Coalitions for Equitable Voting Rules

In this section, we provide bounds on the size of winning coalitions in general equitable voting

rules. We then restrict attention to the special class of equitable voting rules that generalize

representative democracy rules and characterize the size of winning coalitions for those.

3.1 Winning Coalitions of Order
√

n

We first show that for any population size, there always exist equitable voting rules that have

winning coalitions that are of order
√
n.

Theorem 1. For every n there exists a neutral, positively responsive equitable voting rule

with winning coalitions of size 2d
√
n e − 1.

An important implication of this theorem is that, under an equitable voting rule, winning

coalitions can account for a vanishing fraction of the population. Nevertheless,
√
n is arguably

a large number of voters in some contexts. For example, in a majority vote, suppose all voters
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Figure 3: The longest-run voting rule. The set depicted in blue is a winning coalition of size

≈ 2
√
n.

vote for each of {−1, 1} independently with probability one half. A manipulator who wants

to guarantee an outcome with high probability would need to control an order of
√
n of the

votes. This is a consequence of the fact that the standard deviation of the number of voters

who vote 1 is of order
√
n.

The cross committee consensus rule described in the introduction is an example of an

equitable voting rule in which winning coalitions are O(
√
n). Nevertheless, there is an algebraic

subtlety—the construction of that rule relies on n being an integer squared. Certainly, an

analogous construction can be made for any n that can be described as n = k ·m for some

integers k and m by considering some committees to be of size k and others to be of size

m. Such constructions, however, would not necessarily generate voting rules with winning

coalitions of size close to
√
n. We prove Theorem 1 by constructing a simple, related rule

that applies to every n, called the longest-run rule.12

12We thank Elchanan Mossel for suggesting this improvement to a previous construction.
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Identify the set of voters with {0, 1, . . . , n − 1}, and place them along a cycle, as in

Figure 3. Given a voting profile φ, a run is a contiguous block of voters voting identically for

either −1 or 1. Formally, a set of voters W ⊆ V is a run if φ(w) = φ(w′) ∈ {−1, 1} for all

w,w′ ∈ W , and if W = {i, i+ 1, . . . , i+ k} modulo n.

Given a voting profile φ, we say that W is the longest-run if it is a run that is strictly

longer than all other runs. The longest-run voting rule ` is defined as follows: if there

is a longest-run in φ, then `(φ) is the vote cast by the members of this run. Otherwise,

`(φ) = m(φ), where m is the majority rule.

The longest-run rule is equitable, since the group of rotations maps any voter to any voter.

Furthermore, it admits winning coalitions of size ≈ 2
√
n: these include a run of length

√
n,

together with
√
n agents spaced

√
n apart, thus preventing the creation of longer runs. See

Figure 3.

We now offer a counterpart for Theorem 1 that provides a lower bound on the size of

minimal coalitions in equitable voting rules.

Theorem 2. Every winning coalition of an equitable voting rule has size at least
√
n.

The proof of Theorem 2 relies on group-theoretic results described in Appendix A. To gain

some intuition for the bound, suppose, as in the longest-run voting rule above, that voters

are located on a circle and that Autf includes all rotations. These are the permutations of

the form σ(i) = i+ k mod n. We know that two winning coalitions cannot be disjoint. Take,

then, any winning coalition S and denote by S + k the winning coalition that is derived by

adding k (again, modulo n) to the label of each member. It follows that S and S + k must

have a non-empty intersection, or that there are some i, j ∈ S with i− j = k. Therefore, if we

look at all the differences between two elements of S (i.e., expressions of the form i− j, where

i, j ∈ S), they encompass all n rotations. In particular, the cardinality of these differences is

n. On the other hand, the number of such differences is certainly bounded by the number of

ordered pairs of members in S, which is |S|2. It follows that |S|2 ≥ n, generating our bound.
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3.2 Generalized Representative Democracy Rules

As already discussed, voting rules mimicking representative democracy are equitable, if

not symmetric à la May (1952). We now consider a class of equitable voting rules that

generalize representative democracy rules. These capture the flavor of various hierarchical

voting structures that contain more than two layers. For example, voters may belong to

counties, which comprise states, which constitute a country. As we show, these sorts of

hierarchical decision rules are associated with far smaller winning coalitions than n/2, but

still substantially larger than
√
n.

A voting rule f : Φ→ X is a generalized representative democracy (GRD) if the following

hold.

• If V = {v} is a singleton, then f(φ) = φ(v).

• If V is not a singleton, there exists a partition {V1, . . . , Vd} of V into d sets such that

f(φ) = m(f1(φ|V1), f2(φ|V2), . . . , fd(φ|Vd
)),

where each fi : XVi → X is some generalized representative democracy rule, φ|Vi
is φ

restricted to Vi, and m is the majority rule.

Any GRD rule is associated with a rooted tree that captures voters’ hierarchical structure

(as in Figure 4 for the case of d = 3). A GRD voting rule is equitable if, in the induced tree,

the vertices in each level have the same degree.13

The following result characterizes the size of winning coalitions in GRD voting rules.

Theorem 3. If f is an equitable generalized representative democracy rule for n voters, then

a winning coalition must have size at least nlog3 2. Conversely, for arbitrarily large n, there

exist equitable generalized representative democracy voting rules with winning coalitions of

size nlog3 2.
13Intuitively, the permutations required to shift one voter’s role into another require the shift of that voter’s

entire “county” into the target role’s “county”, which can be done only when their numbers coincide.
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There is an intriguing connection between this characterization and the so-called Hausdorff

dimension of the Cantor set, which is log3 2 ≈ 0.63.14 The connection arises from the fact

that GRD rules with the smallest winning coalitions are those in which, at each level, the

subdivision is into three groups. In such rules, to construct a winning coalition, two of the

three top “representatives” need to agree. Then, two of the voters of these representatives

need to agree, and so on recursively. This precisely mimics the classical construction of the

Cantor set.

Figure 4: Generalized representative democracy voting rule. The leafs of the tree (at the

bottom) represent the voters. At each intermediate node the results of the three nodes below

are aggregated by majority.

4 k-Equitable Voting Rules

So far, we have focused on voting rules in which individuals are indifferent between roles.

Naturally, one could extend the notion and contemplate rules that are robust to larger

coalitions of voters changing their roles in the population. This section analyzes such rules for
14The Cantor set can be constructed by starting from, say, the unit interval and iteratively deleting the

open middle third of any sub-interval remaining. That is, in the first iteration we are left with [0, 1/3]∪ [2/3, 1],

in the second iteration we are left with [0, 1/9]∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1], etc. The fractal or Hausdorff

dimension is a measure of “roughness” of a set. See Peitgen et al. (1993) and references therein.
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arbitrary size k of coalitions. With these harsher restrictions on collective-choice procedures,

results similar to May’s reemerge, although with important caveats.

Definition 2. A voting rule is k-equitable for k ≥ 1 if, for every pair of ordered k-tuples

(v1, . . . , vk) and (w1, . . . , wk) (with vi 6= vj and wi 6= wj for all i 6= j), there is a permutation

σ ∈ Autf such that σ(vi) = wi for i = 1, . . . , k.

Intuitively, k-equitable voting rules are ones in which every group of k voters has the

same “joint role” in the election. This restriction is certainly harsher than that imposed for

equitable rules. Indeed, consider the representative democracy example of Figure 1. Suppose

Alex is assigned the role of 1, while Bailey is assigned the role of 2.The implication of 2-equity

is that the pair (Alex, Bailey) could potentially be associated with any pair (i, j). But this is

clearly not true here, since Alex and Bailey are in the same county, and thus it is impossible

to associate them with, e.g., the roles of 1 and 4.15

In terms of roles and abstract voting rules, k-equity admits the following generalization

of Proposition 2A.

Proposition 2B. An abstract voting rule f : XR → X is k-equitable iff there is a set of

assignments A such that

1. fa = fb for all a, b ∈ A.

2. For each set of k roles {r1, . . . , rk} ⊆ R and k voters {v1, . . . , vk} ⊂ V there is an

a ∈ A with a(vi) = ri for i ∈ {1, . . . , k}.

Thus, there is a menu of assignments that all yield the same rule, but that places no

restrictions on which roles a coalition of k voters takes. A perhaps illuminating analogy

would be to think of equity as corresponding to strategy-proofness, and to think of k-equity

as corresponding to strategy-proofness for coalitions of size k. Alternatively, k-equity is

reminiscent of group-envy-freeness notions considered in allocation problems (see, e.g., Varian,
15In group-theoretic terms, f is k-equitable if and only if the group Autf is k-transitive.
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1974). In a sense, k is a parameter that interpolates between equity, corresponding to k = 1,

and May’s symmetry, corresponding to k = n.

We begin by examining 2-equitable rules. Certainly, majority rule is 2-equitable. As can

be easily verified, none of the voting rule examples mentioned so far, other than majority, is

2-equitable. As it turns out, for most population sizes, winning coalitions of size at least n/2

are endemic to 2-equitable voting rules.

We say that almost every natural number satisfies a property P if the subset NP ⊆ N of

the natural numbers that have property P satisfies

lim
n→∞

|NP ∩ {1, . . . , n}|
n

= 1.

Theorem 4. For almost every natural number n, every 2-equitable voting rule for n voters

has no winning coalitions of size less than n/2. In particular, for almost all n, the only

2-equitable, neutral, positively responsive voting rule is majority.

Thus, for almost all n, the assumption of symmetry in May’s Theorem can be substituted

with the much weaker assumption of 2-equity.

The proof of Theorem 4 relies on modern group-theoretical results that were not available

when May’s Theorem was introduced (Cameron et al., 1982). As it turns out, there is a

vanishing share of integers for which there exist 2-transitive groups that are neither the set of

all permutations nor the set of even permutations. We show in Lemma 3 in the appendix

that those latter groups yield winning coalitions of size at least n/2, implying the result.

Theorem 4 states that for most population sizes, 2-equitable rules imply large winning

coalitions. This notably does not hold for all population sizes. In Appendix C, we construct 2-

equitable and 3-equitable voting rules with small winning coalitions, which apply to arbitrarily

large population sizes.

When considering more stringent equity restrictions, results are much starker and conclu-

sions hold for all population sizes.
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Theorem 5. Every 6-equitable voting rule has no winning coalitions of size less than n/2.

In particular, the only 6-equitable, neutral, positively responsive voting rule is majority.16

The proof of Theorem 5 relies on discoveries from the 1980’s and 1990’s that showed that,

for any n, the only 6-transitive groups are the group of all permutations and the group of

even permutations. These results are a consequence of the successful completion of a large

project, involving thousands of papers and hundreds of authors, called the Classification of

Finite Simple Groups, see Aschbacher et al. (2011).

We stress that k-equity is a strong restriction. Nonetheless, for any fixed k, k-equity is a

far weaker restriction than May’s symmetry. In that respect, Theorem 5, like Theorem 4,

offers a strengthening of May’s original result.

5 Towards a Characterization of Equitable Voting Rules

As our examples throughout illustrate, the set of equitable voting rules is broad and does

not admit a simple universal procedural description. Their full characterization would be

as complex as the full classification of finite simple groups alluded to above, and hence is

beyond the scope of this paper.

We start here by classifying the equitable voting rules for electorate sizes of the form

n = p and n = p2 with p a prime. We do so for two reasons. First, these cases are easier to

handle, while still illustrating some of the complexities entailed in the general characterization

of equitable voting rules. To gain some intuition for why these cases are easier, consider

the representative democracy rule. When n = p, the only representative democracy rule is

majority, since there is no way to divide the voters into non-singleton counties of equal size.

In particular, the class of equitable rules for n = p is drastically restricted. The second reason

we focus on these cases is that it allows us to contemplate general voting rules that can be

applied for all electorate sizes n.
16Furthermore, if n > 24, the same conclusions follow from the weaker assumption of 4-equity.
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For our classification, it will be useful to define cyclic voting rules and 2-cyclic voting

rules.

A voting rule f for n voters is said to be cyclic if one can identify the voters with the

set {0, . . . , n − 1} in such a way that the permutation σ : {0, . . . , n − 1} → {0, . . . , n − 1}

given by σ(i) = i+ 1 mod n is an automorphism of f . Intuitively, a voting rule is cyclic if

the voters can be arranged on a circle in such a way that rotating, or shifting all voters one

space to the right—tantamount to an application of σ—does not affect the outcome. An

example of a cyclic voting rule is the longest-run rule described in §3. A perhaps less obvious

example is that of the representative democracy rule; the arrangement on the cycle entails

positioning members of the same county equidistantly along the cycle. In the example of

Figure 4 in which voters {1, 2, . . . , 9} are arranged in counties {{1, 2, 3}, {4, 5, 6, }, {7, 8, 9}},

if we arrange the voters along the cycle by the order (1, 4, 7, 2, 5, 8, 3, 6, 9), then applying σ,

results in the order (4, 7, 2, 5, 8, 3, 6, 9, 1), and so the first county is mapped to the second,

the second is mapped to the third, and the third back to the first. Thus, the voting rule is

unchanged by σ, and hence it is cyclic.

A voting rule f for n = n1 × n2 voters is said to be 2-cyclic if one can identify the voters

with the set {0, . . . , n1 − 1} × {0, . . . , n2 − 1} in such a way that the permutations σ1 and σ2

given by

σ1(i1, i2) = (i1 + 1 mod n1, i2)

σ2(i1, i2) = (i1, i2 + 1 mod n2)

are automorphisms of f . Intuitively, a voting rule is 2-cyclic if one can arrange the voters on

an n1 × n2 grid such that shifting all voters to the right (and wrapping the rightmost ones

back to the left) or shifting all voters up (again wrapping the topmost ones to the bottom)

does not affect the outcome. It is easy to see that the cross committee consensus rule is an

example of such a rule, as is the representative democracy rule.

Proposition 3. Let f : XV → X be an equitable voting rule, and let p be prime. If n = p,

then f is cyclic. If n = p2, then f is either cyclic, or 2-cyclic, or both.
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The generalization to n = pd for d > 2 is more intricate, and is not a straightforward

extension to higher dimensional d-cyclic rules. See our discussion in §B.7.

This proposition has an important implication to the design of simple, equitable voting

rules that are not tailored to particular electorate sizes. Majority rule is one such rule—one

only needs to tally the votes and consider the difference between the number of supporters of

one alternative relative to the other. The longest-run voting rule is another such example. In

fact, any such rule must also work for electorates comprised of a prime number of voters, and

in particular must be cyclic. It would be interesting to understand whether a far larger class

of rules than cyclic voting rules can work for almost all electorate sizes.

6 Conclusions

In this paper we study equity, a notion of procedural fairness that captures equality between

different voters’ roles.

The voting rules that satisfy May’s symmetry axiom admit a simple description: a voting

rule is symmetric, or anonymous, if and only if the outcome depends only on the number

of voters who choose each possible vote. In contrast, the set of equitable voting rules is

much richer, and its complexity is intimately linked to frontier problems in mathematics;

in particular, the classification of finite simple groups. This paper includes a number of

diverse examples, including generalized representative democracy, cross committee consensus,

and a number of additional constructions that appear in the appendix, but the class of all

equitable rules is larger yet. Understanding which equitable rules satisfy different desirable

conditions—non-malleability, inclusiveness, etc.—could be an interesting avenue for future

research.

We believe the approach taken here could potentially be useful for various other contexts.

For example, symmetric games are often thought of as ones in which any permutation of

players’ identities does not affect individual payoffs (e.g., Dasgupta and Maskin, 1986, page

18). As is well known, such finite games have symmetric equilibria. Interestingly, in his
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original treatise on games, Nash took an approach to symmetry that is similar to ours,

studying the automorphism group of the game. He showed that equity, analogously defined

for games, suffices for the existence of symmetric equilibria: that is, it suffices that for every

two players v and w there is an automorphism of the game that maps v to w (Nash, 1951,

page 289).17 It would be interesting to explore further the consequences of equity so defined

in more general strategic interactions.

17Theorem 2 in Nash (1951) states that “Any finite game has a symmetric equilibrium point.” Now,

Nash’s definition of a symmetric equilibrium is a strategy profile s such that si = sj whenever there is an

automorphism χ of the game with χ(i) = j. In particular, for there to be a symmetric strategy in the sense we

usually consider, where all players use the same strategy, it suffices for there to be a transitive automorphism

group, i.e. one in which for every i, j there is an automorphism χ with χ(i) = j.
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A A Primer on Finite Groups

This section contains what is essentially a condensed first chapter of a book on finite groups

(see, e.g., Rotman, 2012), and is provided for the benefit of readers who are not familiar with

the topic. The terms and results covered here suffice to prove the main results of this paper.

Denote by N = {1, . . . , n}. A permutation of N is a bijection g : N → N . The inverse of a

permutation g is denoted by g−1 (so g−1(g(i)) = i), and the composition of two permutations

g and h is simply gh; i.e., if k = gh then k(i) = g(h(i)).

A group—for our purposes—will be a non-empty set of permutations that (1) contains

g−1 whenever it contains g, and (2) contains gh whenever it contains both g and h. It follows

from this definition that every group must include the trivial, identity permutation e that

satisfies e(i) = i for all i.

Groups often appear as sets of permutations that preserve some invariant. In our case,

Autf is the group of permutations of the voters that preserves every outcome of f . It is easy

to see that Autf is indeed a group.

A subgroup H of G is simply a subset of G that is also a group. Given g ∈ G, we denote

gH = {gh ∈ G : h ∈ H}.

The sets gH are in general not subgroups, and are called the left cosets of H (the right cosets

are of the form Hg). It is easy to verify that all left cosets are disjoint, and that each has the

same size as H. It follows that the size of G is divisible by the size of H.

Given an element i ∈ N , we denote by Gi the set of permutations that fix i. That is,

g ∈ Gi if g(i) = i. Gi is a subgroup of G. It is called the stabilizer of i.

The G-orbit of i ∈ N is the set of j ∈ N such that j = g(i) for some g ∈ G, and is denoted

by Gi. As it turns out, if j is in the orbit of i then the set of g ∈ G such that g(i) = j is a

coset of the stabilizer Gi. It follows that there is a bijection between the orbit Gi and the

cosets of Gi. This is called the Orbit-Stabilizer Theorem.

Recall that G is transitive if for all i, j there is a g ∈ G such that g(i) = j. This is

equivalent to there existing only a single G-orbit, or that j is in the orbit of i for every i, j.
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Therefore, if G is transitive, the orbit Gi is of size n, and since we can identify this orbit with

the cosets of Gi, there are n such cosets. Since they are all the same size as Gi, and since

they form a partition of G, each coset of Gi must be of size |G|/n. We will use this fact in

the proof of Theorem 2.

B Proofs

B.1 Proofs of Propositions 1A, 1B, 2A and 2B

Proof of Proposition 1A. We begin by showing that if f is anonymous, then all assignments

are equivalent under f .

Assume that f is symmetric, and let a and b be two assignments. Define σ = b ◦ a−1.

Then, by definition of symmetry, for every φ ∈ XV ,

fa(φ) = f(φ ◦ a−1) = f((φ ◦ a−1)σ) = f(φ ◦ a−1 ◦ σ−1) = f(φ ◦ a−1 ◦ (a ◦ b−1)) = f(φ ◦ b−1) = fb(φ)

and hence a and b are equivalent. Since a and b were arbitrary, it follows that all assignments

are equivalent under f .

Conversely, suppose that all assignments are equivalent under f . We need to show that

for any σ ∈ S(R) and any φ ∈ XR, f(φ) = f(φσ). Fix σ and φ, let a be any assignment, and

let b = σ ◦ a. Then since a and b are equivalent,

f(φ) = f((φ ◦ a) ◦ a−1) = fa(φ ◦ a) = fb(φ ◦ a) = f(φ ◦ (a ◦ b−1)) = f(φ ◦ σ−1) = f(φσ).

Since σ and φ were arbitrary, it follows that f is symmetric.

In analogy with the notion of equivalence of roles given in Section 2.4, say that two k-tuples

of roles r and s are equivalent if there is a k-tuple v of voters and a pair of assignments a

and b such that fa = fb, a(v) = r, and b(v) = s. Proposition 1B then follows from the next

proposition by setting k to 1:

Proposition 3. An abstract voting rule f : XR → X is k-equitable if and only if all k-tuples

of roles are equivalent under f .
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Proof. Fix an assignment a. The rule f is k-equitable if and only if fa is k-equitable, which

holds if and only if for every pair of k-tuples (v1, . . . , vk) and (w1, . . . , wk) of voters there is a

σ ∈ S(V ) such that σ((v1, . . . , vk)) = (w1, . . . , wk) and for all φ ∈ XV , fa(φ) = fa(φσ). Since

fa(φσ) = f((φ ◦ σ−1) ◦ a−1)

= f(φ ◦ (a ◦ σ)−1)

= fa◦σ(φ),

it follows that f is k-equitable if and only if for every pair of k-tuples (v1, . . . , vk) and

(w1, . . . , wk) of voters there is a σ ∈ S(V ) such that σ((v1, . . . , vk)) = (w1, . . . , wk) and

fa = fa◦σ.

Now, this holds if and only if for every pair of k-tuples (r1, . . . , rk) and (s1, . . . , sk) of roles

there is a σ ∈ S(V ) such that σ(a−1(r1, . . . , rk)) = a−1(s1, . . . , sk) and fa = fa◦σ. But this

holds if and only if for every such pair of k-tuples of roles, there is a σ ∈ S(V ) and a k-tuple

of voters (v1, . . . , vk) such that fa = fa◦σ, a((v1, . . . , vk)) = (r1, . . . , rk), (a ◦σ)((v1, . . . , vk)) =

(s1, . . . , sk), which holds if and only if every pair of k-tuples of roles is equivalent under f .

We now prove Proposition 2B. Proposition 2A then follows directly by setting k to 1.

Proof of Proposition 2B. We first show that if f is k-equitable, then there is a set A as above.

Assume f is k-equitable. Fix an assignment a, and let

A = {b an assignment s.t. fa = fb}.

(1) is immediate from the definition of A. To see that (2) holds, note that for any k-

tuple of roles (r1, . . . , rk) and any k-tuple of voters (v1, . . . , vk), it follows from a result

analogous to Proposition 3 that since f is k-equitable, there are assignments c and d such

that c((v1, . . . , vk)) = (r1, . . . , rk), d((v1, . . . , vk)) = a((v1, . . . , vk)), and fc = fd. Now,

fc = fd implies that for all φ ∈ XV , fc(φ) = fd(φ), which implies that for all φ ∈ XV ,
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fc(φ ◦ (a−1 ◦ d)) = fd(φ ◦ (a−1 ◦ d)). It follows that, for all φ ∈ XV ,

fc◦d−1◦a(φ) = f(φ ◦ (c ◦ d−1 ◦ a)−1)

= f((φ ◦ (a−1 ◦ d)) ◦ c−1)

= fc(φ ◦ (a−1 ◦ d))

= fd(φ ◦ (a−1 ◦ d))

= f((φ ◦ (a−1 ◦ d)) ◦ d−1)

= f(φ ◦ a−1)

= fa(φ),

and hence fc◦d−1◦a = fa. But this implies that c◦d−1◦a ∈ A. Since (c◦d−1◦a)((v1, . . . , vk)) =

c(d−1(a((v1, . . . , vk)))) = c((v1, . . . , vk)) = (r1, . . . , rk), (2) then follows.

We now show that if there is a set A as above, then f is k-equitable.

Assume there is such an A. By a result analogous to Proposition 3, it is sufficient to show

that all k-tuples of roles are equivalent under f . But this follows immediately from (2) and

the definition of equivalence of k-tuples of roles.

B.2 Proof of Lemma 1

Proof of Lemma 1. Let f be the voting rule defined as follows. For a voting profile φ, if there

is a set W ∈ W such that φ(w) = 1 for all w ∈ W , then f(φ) = 1, and similarly, if there is a

set W ∈ W such that φ(w) = −1 for all w ∈ W , then f(φ) = −1. This is well-defined, since

if there are two such sets W , they must agree because they intersect. If there are no such

sets, then f(φ) is determined by majority.

That f is neutral follows immediately from the symmetry in the definition of f when

some W ∈ W agrees on either 1 or −1 and the fact that majority is neutral. To see that f is

positively responsive, suppose that f(φ) ∈ {0, 1}, φ′(x) ≥ φ(x) for all x ∈ V , and φ′(y) > φ(y)

for some y ∈ V . Since f(φ) 6= −1, there is no set W ∈ W such that φ(x) = −1 for all x ∈ W ,

hence the same is true for φ′. If there is some set W ∈ W such that φ′(x) = 1 for all x ∈ W ,
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then f(φ′) = 1. If not, then the same is true of φ, and hence by positive responsiveness of

majority, f(φ′) = 1.

Finally, it is immediate from the definition of f that every W ∈ W is a winning coalition.

B.3 Proof of Theorem 1

Proof of Theorem 1. The longest-run voting rule is equitable, since any rotation of the cycle

is an automorphism. That is, for every k, the map σ : V → V defined by σ(i) = i+ k mod n

leaves the outcome unchanged. Furthermore, for every pair of voters i, j, if we set k = i− j,

then σ(i) = j.

For every V of size n, we claim that the longest-run rule ` : XV → X has winning

coalitions of size 2d
√
n e − 1.

Let

W = {0, . . . , d
√
n e − 1} ∪ {w : w mod d

√
n e = 0}.

Any run that is disjoint from W is of length at most d
√
n e − 1 since the second set in

the definition of W is comprised of voters who are at most d
√
n e apart. However, the first

set is a contiguous block of length d
√
n e. Hence, if all w ∈ W vote identically in {−1, 1},

the longest run will be a subset of w, and hence the outcome will be the vote cast by all

members of W . It then follows that W is a winning coalition.

Finally,

|W | = |{0, . . . , d
√
n e − 1}|+ |{w : w mod d

√
n e = 0}| − |{0}|

= d
√
n e+ |{w : w mod d

√
n e = 0}| − 1

≤ 2d
√
n e − 1.

Since every superset of a winning coalition is again a winning coalition, the result follows.
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B.4 Proof of Theorem 2

Readers who are not familiar with the theory of finite groups are encouraged to read §A

before reading this proof.

Recall that the group of all permutations of a set of size n is denoted by Sn.

The next lemma shows that if a group G acts transitively on {1, . . . , n}, then any set S

that intersects all of its translates (i.e., sets of the form gS for g ∈ G) must be of size at least
√
n. The proof of the theorem will apply this lemma to a winning coalition S.

Lemma 2. Let G ⊂ Sn be transitive, and suppose that S ⊆ V is such that for all g ∈ G,

gS ∩ S 6= ∅. Then |S| ≥
√
n.

Proof. For any v, w ∈ V , define Γv,w = {g ∈ G : g(v) = w}. Then Γv,w is a left coset of the

stabilizer of v. Hence, and since the action is transitive, it follows from the Orbit-Stabilizer

Theorem that |Γv,w| = |G|
n
. If gS ∩ S 6= ∅ for all g ∈ G, then for any g ∈ G, there exists

v, w ∈ S such that g(v) = w, hence

⋃
v,w∈S

Γv,w = G.

So

|G| =
∣∣∣∣∣⋃
v,w

Γv,w
∣∣∣∣∣ ≤∑

v,w

|Γv,w| = |S|2
|G|
n
,

and we conclude that |S| ≥
√
n.

Our lower bound (Theorem 2) is an immediate corollary of this claim.

Proof of Theorem 2. Let f be an equitable voting rule for the voter set V . Suppose that

W ⊆ V is a winning coalition for f . Then, for every σ ∈ Autf , it must be the case that

σ(W ) ∩W 6= ∅ (otherwise, f would not be well-defined). Hence, it follows from Lemma 2

that |W | ≥
√
n.
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B.5 Proof of Theorem 3

Proof of Theorem 3. Define C(n) to be the smallest size of any winning coalition in any

generalized representative democracy rule for n voters. We want to show that C(n) ≥ nlog3 2.

If n = 1, a winning coalition must be of size 1, which is ≥ 1log3 2.

If n > 1, any generalized voting rule f is of the form f(φ) = m(f1(φ|V1), f2(φ|V2), . . . , fd(φ|Vd
)).

Because the voting rule is equitable, the functions fi are all isomorphic, and so have minimal

winning coalitions of the same size. A minimal winning coalition for f would then need to

include a strict majority of these, which is of size at least d+1
2 . Therefore,18

C(n) ≥ min
d|n

d+ 1
2 · C (n/d) . (1)

Assume by induction that C(m) ≥ mlog3 2 for all m < n. Then for d|n,
d+ 1

2 · C (n/d) ≥ d+ 1
2 ·

(
n

d

)log3 2
= nlog3 2 · d+ 1

2 · d− log3 2.

Denote h(d) = d+1
2 · d

− log3 2, so that
d+ 1

2 C(n/d) ≥ nlog3 2h(d).

Note that h(d) ≥ 1. To see this, observe that h(3) = 1, and

h′(d) =
d− log 6/ log 3(d log 3

2 − log 2)
2 log 3 > 0

for d ≥ 3, and so h(d) ≥ 1 for d ≥ 3.

We have thus shown that
d+ 1

2 C(n/d) ≥ nlog3 2,

and so by (1), C(n) ≥ nlog3 2.

To see that C(n) = nlog3 2 for arbitrarily large n, consider the following GRD rule (see

Figure 4). Take n to be a power of 3, and let f be defined recursively by partitioning at each

level into three sets {V1, V2, V3} of equal size. A simple calculation shows that the winning

coalition recursively consisting of the winning coalitions of any two of {V1, V2, V3} (e.g., V1

and V3, as in Figure 4), is of size nlog3 2.
18Here and below d|n denotes that d is a divisor of n.
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The construction of small winning coalitions in the last part of the proof mimics the

construction of the Cantor set.

B.6 Proof of Theorems 4 and 5

The group of all even permutations is called the alternating group and is denoted An.

Lemma 3. Let f be a voting rule for n voters. If Autf is either Sn or An then every winning

coalition for f has size at least n/2.

Proof. Suppose W ⊆ V is a winning coalition for f with |W | = k < n/2. Label the voters

V with labels 1, . . . , n such that W = {1, . . . , k}, and let π be the permutation of V given

by π(i) = n+ 1− i for i = 1, . . . , n. If bn/2c is odd, let π be the map above composed with

the map that exchanges 1 and 2. It follows that π is in the alternating group, and hence

π ∈ Autf . However, π(W ) ∩W = ∅ since k < n+ 1− k, contradicting the assumption W is

a winning coalition.

Proof of Theorem 4. Denote by η(n) the number of positive integers m ≤ n for which there

is no 2-transitive group action on a set of m elements except for Sm and Am. It follows from

the main theorem in Cameron et al. (1982) that n− η(n) is at most 3n/ log(n) for all n large

enough. Since

lim
n→∞

3n/ log(n)
n

= 0,

it follows that

lim
n→∞

η(n)
n

= lim
n→∞

1− n− η(n)
n

= 1,

and so the claim follows from Lemma 3.

Proof of Theorem 5. The only 4- or 5-transitive finite groups aside from the alternating and

symmetric groups are the Mathieu groups, with the largest action on a set of size 24 (Dixon

and Mortimer, 1996). Hence, for n > 24, every 4- or 5-transitive voting rule must have
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either Sn or An as an automorphism group. Furthermore, the only 6-transitive groups are Sn
or An (again, see Dixon and Mortimer, 1996). Hence, the result follows immediately from

Lemma 3.

B.7 Proof of Proposition 3

This proposition’s proof follows directly from group theory results that are classical, but that

are not covered in our primer in §A, and which we now review briefly.

Let G be a group. The order of G is simply its size. The order of g ∈ G is the smallest

n such that gn is the identity. Given a prime p, we say that a group P is a p-group if the

orders of all of its elements are equal to powers of p. We assume for the remainder of this

section that p is prime.

Let G be a finite group with |G| = pd ·m, where d ≥ 1, and m is not divisible by p. Sylow

(1872) proved that, in this case, G has a subgroup P that is a p-group of order pd. Such

groups are called Sylow p-groups in his honor. The following lemma states an important and

well-known fact (see, e.g., Wielandt, 2014, Theorem 3.4’) regarding Sylow p-groups.

Lemma 4. Let G act transitively on a set V of size n = pd for some d ≥ 1. Any Sylow

p-subgroup of G acts transitively on V .

Proof. Since the order of G is divisible by the size of V , |G| = pd+` ·m for some ` ≥ 0 and m

not divisible by p. Let P be a Sylow p-subgroup, so that |P | = pd+`.

For any i ∈ V , the size of the P -orbit Pi divides |P | = pd+`, and so is equal to pd−a

for some a ≥ 0. Now, the size of the stabilizers Pi and Gi is |Pi| = |P |/|Pi| = p`+a and

|Gi| = p` ·m. Since Pi is a subgroup of Gi, |Pi| divides |Gi|, and so a = 0, |Pi| = pd = n, and

P acts transitively on V .

The center of a group is the collection of all of its elements that commute with all the

group elements: {g ∈ G : gh = hg for all h ∈ G}. This is easily seen to also be a subgroup

of G.

Lemma 5. Every non-trivial p-group has a non-trivial center.
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For a proof, see Theorem 6.5 in Lang (2002). Here and below, a non-trivial group is a

group of order larger than 1.

Let G be a group that acts transitively on a set V , and let Z be the center of G. Denote

by G/Z the set of left cosets of Z, and let V̂ be the set of Z-orbits of V . If v, w ∈ V are

in the same Z-orbit, then g(v) and g(w) are also in the same Z-orbit, since if z(v) = w

then z(g(v)) = g(z(v)) = g(w). Hence, each g ∈ G induces a permutation on V̂ . Note that

g, h ∈ G induce the same permutation on V̂ if they are in the same element of G/Z. Hence,

we can think of G/Z as a group of permutations of V̂ . This group must act transitively on V̂

since G acts transitively on V . Furthermore, if a subgroup of G/Z acts transitively on V̂ ,

then the union of the cosets it includes is a subgroup of G that acts transitively on V .

Lemma 6. Let G be a group acting transitively on a set V of size pd, for some d ≥ 1. There

exists a p-subgroup R of G of size pd acting transitively on V with trivial stabilizers.

Proof. Let P denote a Sylow p-subgroup of G. By Lemma 4, the action of P on V is also

transitive.

Let Z denote the center of P . Since P is non-trivial, by Lemma 5, Z is non-trivial. We

claim that the Z action on V has trivial stabilizers. To see this, assume that h(v) = v for

some v, and choose any w ∈ V . Since P acts transitively, there is some g ∈ P such that

g(v) = w. Since h commutes with g,

h(w) = h(g(v)) = g(h(v)) = g(v) = w,

and so, since w was arbitrary, h is the identity. Hence, Zv = {e} for every v ∈ V . Note that

by the Orbit-Stabilizer Theorem, this implies that each Z orbit is equal in size to Z.

If the action of Z is also transitive, we are done, since we can take R = Z.

Finally, consider the case that Z does not act transitively.

In this case P ′ = P/Z acts transitively on V̂ , the set of the Z-orbits of V . By induction,

P ′ has a subgroup Z ′ which acts transitively with trivial stabilizers on V̂ , and hence has size

|V̂ |. Note that since the action of Z has trivial stabilizers, every Z-orbit has size |Z|, and so
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|V̂ | = |V |/|Z| = pd/|Z|. Thus, taking R to be the union of the cosets in P/Z that comprise

Z ′, R acts transitively on V . Finally, since this subgroup has size |Z ′| · |Z| = pd = |V |, it

follows that the action of R has trivial stabilizers.

A group is said to be abelian if all of its elements commute: gh = hg for all g, h ∈ G. Note

that the center of every group is abelian by definition. The structure of abelian groups is

simple and well understood: Kronecker’s Theorem (Kronecker, 1870; Stillwell, 2012, Theorem

5.2.2) states that every abelian group is a product of cycles of prime powers. That is, if G

is an abelian group of permutations of a set V—and assuming without loss of generality

that no element of V is fixed by all elements of G—then there is a way to identify V with∏m
i=1{0, . . . , ni− 1}, with each ni a prime power, so that G is generated by permutations19 of

the form

σk(i1, . . . , im) = (i1, . . . , ik−1, ik + 1 mod nk, ik+1, . . . , im).

As is also well known, every group of order p or p2 is abelian (Netto, 1892, page 148).

From these facts follows the next lemma.

Lemma 7. Let R be a group of order p or p2, acting transitively on a set V . In the former

case, we can identify V with {0, . . . , p− 1} so that R is generated by

σ(i) = i+ 1 mod p.

In the latter case, we can either identify V with {0, . . . , p2 − 1} so that R is generated by

σ(i) = i+ 1 mod p2,

or else we can identify V with {0, . . . , p− 1}2, so that R is generated by

σ1(i1, i2) = (i1 + 1 mod p, i2)

σ1(i1, i2) = (i1, i2 + 1 mod p).
19A group is said to be generated by a set S of permutations if it includes precisely those permutations

that can be constructed by composing permutations in S.
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Hence, if R is a subgroup of the automorphism group of a voting rule f , then this rule is

cyclic if n = p, and is either cyclic, 2-cyclic or both if n = p2.

Proof of Proposition 3. By Lemma 6, Autf has a p-subgroup R of order n that acts transi-

tively on V . The claim now follows immediately from Lemma 7.

When n = pd, with d > 2, this proof fails since the group R is no longer necessarily

abelian. Non-abelian groups do not have cyclic structure, and thus voting rules for which

this group R is not abelian will not be cyclic, 2-cyclic, or higher-dimensional cyclic. We

conjecture that such equitable voting rules do indeed exist.

C 2-Equitable and 3-Equitable Rules

In this section we construct 2-equitable and 3-equitable rules with small winning coalitions

that apply to arbitrarily large population sizes. This construction is rather technically

involved and uses finite vector spaces. To glean some intuition, we first explain an analogous

construction using standard vector spaces and assuming a continuum of voters.

Suppose voters are identified with the set of one-dimensional subspaces of R3: i.e., each

voter is identified with a line that passes through the origin. Now suppose winning coalitions

are the two-dimensional subspaces: if all voters on a plane agree, that is the election outcome,

otherwise the election is undecided.20 Clearly, the winning coalitions are much smaller than the

electorate (or indeed of “half of the voters”) in the sense that they have a smaller dimension.

Invertible linear transformations of R3 permute the one-dimensional subspaces, and the

two-dimensional subspaces, and so constitute automorphisms of this voting rule. Equity

follows since for any two non-zero vectors v and u, we can find some invertible linear

transformation that maps v to u. Moreover, the voting rule is also 2-equitable—given a pair

of distinct voters (v1, v2), and given another such pair (u1, u2), we can find some invertible
20This rule is well defined since every pair of two-dimensional subspaces intersects, and so no two winning

coalitions are disjoint.
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Figure 5: Every three co-linear points form a winning coalition, as well as the three points

on the circle (marked in blue). This voting rule is 2-equitable.

linear transformation that maps the former to the latter. Thus, every pair of voters plays

the same role.

In Theorem 6 below we construct 2-equitable voting rules for finite sets of voters, using

finite vector spaces instead of R3. Figure 5 shows a 2-equitable voting rule constructed in

this way, for 7 voters. In the figure, every three co-linear nodes form a winning coalition, as

well as the three nodes on the circle.21 In this construction, the size of the winning coalition

is exactly
√
n (rounded up to the nearest integer), which matches the lower bound of

√
n in

Theorem 2.

Theorem 6. Let the set of voters be of size n = q2 + q + 1, for prime q. Then there is a

2-equitable voting rule with a winning coalition of size exactly equal to
√
n, rounded up to the

nearest integer.

More generally, a similar statement holds when n = q2 + q + 1 and q = pk for some k ≥ 1

and p prime. The example in Figure 5 corresponds to the case q = 2.
21Figure 5 depicts what is commonly referred to as a Fano plane in finite geometry. It is the finite projective

plane of order 2.
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Proof. Let Fq denote the finite field with q elements.22

Given a positive integer m, Fmq is a vector space, where the scalars take values in Fq: it

satisfies all the axioms that (say) R3 satisfies, but for scalars that are in Fq instead of R.

Indeed, much of the standard theory of linear algebra of Rm applies in this finite setting, and

we will make use of it here.

In particular, we will make use of GL(m, q), the group of invertible, m × m matrices

with entries in Fq. Here, again, the product of two matrices is calculated as usual, but

addition and multiplication are taken modulo q. Since Fmq is finite, each matrix in GL(m, q)

corresponds to a permutation of Fmq . As in the case of matrix multiplication on Rm, these

permutations preserve the 1-dimensional and 2-dimensional subspaces. Moreover, this group

acts 2-transitively on the 1-dimensional subspaces, as any two non-colinear vectors (u, v)

can be completed to a basis of Fmq , and likewise starting from (u′, v′); then any basis can be

carried by an invertible matrix to any other basis.

With this established, we are ready to identify our set of voters with the set of 1-dimensional

subspaces of F3
q. For each 2-dimensional subspace U of F3

q, define the set SU of 1-dimensional

subspaces (i.e., voters) contained in U . Let W be the collection of all such sets SU , and

define, using Lemma 1, a voting rule f in which the sets SU are winning coalitions. We need

to verify that any two winning coalitions SU and SU ′ are non-disjoint. This simply follows

from the fact that every pair of 2-dimensional subspaces intersects in some 1-dimensional

subspace, and so it follows that each pair of such winning coalitions will have exactly one

voter in common.23

A simple calculation shows that the winning coalitions are of size q + 1. Since
√
n ≤

q + 1 ≤
√
n+ 1, the claim follows.

To construct 3-equitable rules we will need the following lemma. It allows us to show,
22Fq is the set {0, 1, . . . , q− 1}, equipped with the operations of addition and multiplication modulo q. The

primality of q is required to make multiplication invertible.
23This is the reason that the winning coalitions of this rule are so small and proving a tight match to the

lower bound.
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using the probabilistic method, that for small automorphism groups we can construct voting

rules with small winning coalitions. This is useful for proving that there exist 3-equitable

voting rules with small winning coalitions.

Lemma 8. Let G be a group of m permutations of {1, . . . , n}. Then there is a neutral and

positively responsive voting rule f such that G is a subgroup of Autf , and f has winning

coalitions of size at most 2
√
n logm+ 2.

We use this lemma to prove our theorem illustrating the existence of 3-equitable rules

with small winning coalitions for arbitrarily large voter populations. We then return to prove

the lemma.

Theorem 7. For n such that n− 1 is a prime power, there is a 3-equitable voting rule with

a winning coalition of size at most 6
√
n log n.

Proof. For n such that n − 1 is the power of some prime there is a 3-transitive group of

permutations of {1, . . . , n} that is of size m < n3.24 Hence, by Lemma 8, there is a 3-equitable

voting rule for n (i.e., a rule with a 3-transitive automorphism group) with a winning coalition

of size at most 2
√
n log(n3) = 6

√
n log n.

It is natural to conjecture that this probabilistic construction is not optimal, and that

there exist 3-equitable rules with winning coalitions of size O(
√
n).

The heart of Lemma 8 is the following group-theoretic claim, which states that when

G is small then we can find a small set S such that gS and S are non-disjoint for every

g ∈ G. These sets gS will be the winning coalitions used to prove Lemma 8. The proof of

this proposition uses the probabilistic method: we choose S at random from some distribution,

and show that, with positive probability, it has the desired property. This proves that there

exists a deterministic S with the desired property.
24The group PGL(2, n − 1) acts 3-transitively on the projective line over the field Fn−1, and is of size

n(n− 1)(n− 2) < n3.
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Proposition 4. Let a group G of m > 2 permutations of {1, . . . , n}. Then there exists a set

S ⊆ {1, . . . , n} with |S| ≤ 2
√
n logm+ 2 such that ∀g ∈ G we have gS ∩ S 6= ∅.

Proof. To prove this, we will choose S at random, and prove that it has the desired properties

with positive probability. Let ` = d
√
n log |G|e. Let S = S1 ∪ S2, where S1 is any subset of

X of size `, and S2 is the union of ` elements of X, chosen independently from the uniform

distribution. Hence S includes at most 2` ≤ 2
√
n log |G|+ 2 elements.

We now show that P(∀g ∈ G : gS ∩ S 6= ∅) > 0, and hence there is some set S with the

desired property. Note that for any particular g ∈ G, the distribution of gS2 is identical to

the distribution of S2. Hence

P(gS ∩ S = ∅) ≤ P(gS2 ∩ S1 = ∅)

= P(S2 ∩ S1 = ∅)

=
(
n− `
n

)`
≤ e−`

2/n

≤ e−(logm)2
.

Thus, the probability that there is some g ∈ G for which gS ∩ S = ∅ is, by taking a union

bound, at most

me−(log |G|)2
,

which is strictly less than 1 for m > 2.

We are finally ready to prove Lemma 8.

Proof of Lemma 8. Let S be the subset of {1, . . . , n} given by Proposition 4. Let W be the

collection of sets of the form gS, where g ∈ G. This is a collection of pairwise non-disjoint

sets, since if gS and hS intersect then so do h−1gS and S, which is impossible by the defining

property of S. Since |S| = 2
√
n logm+ 2 the claim follows from Lemma 1.
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