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Abstract

We study the set of possible joint posterior belief distributions of a group of agents who
share a common prior regarding a binary state, and who observe some information structure.
Our main result is that, for two agents, a quantitative version of Aumann’s Agreement Theorem
provides a necessary and sufficient condition for feasibility. For any number of agents, a “no
trade” condition provides a characterization. We use this characterization to study information
structures in which agents’ posteriors are independent. We study a class of persuasion problems
with multiple receivers, and explore the extreme points of the set of feasible distributions.

1 Introduction
The question of whether agents’ observed behavior is compatible with rationality is fundamental
and pervasive in microeconomics. A particularly interesting case is that of beliefs: when are agents’
beliefs compatible with Bayes’ Law?

Consider a single agent who has a prior belief regarding an uncertain event, and who updates to a
posterior belief after receiving some information. An analyst observes the prior and the distribution
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of posteriors, but not the information structure. When is the distribution of posterior beliefs
feasible? That is, when is it compatible with Bayesian updating according to some information
structure? Feasibility in this case corresponds to what is known as the martingale condition: the
expectation of the posterior must equal the prior. This fundamental result is known as the Splitting
Lemma (see Blackwell, 1951; Aumann and Maschler, 1995), and is a key tool in the theories of
Bayesian persuasion (Kamenica and Gentzkow, 2011) and of games with incomplete information
(Aumann and Maschler, 1995).

Thus, in the case of a single agent, the analyst can readily determine feasibility. We ask the
same question, but regarding groups of more than one agent. In particular, we consider a group
of agents for which one can observe a common prior regarding a binary state, as well as a joint
distribution of posteriors. This distribution is said to be feasible if it is the result of Bayesian
updating induced by some joint information structure observed by the agents. Is there also in this
case a simple characterization of feasibility, that does not require the analyst to test the infinitely
many possible information structures?

Clearly, feasibility implies that each agent’s posterior distribution must satisfy the martingale
condition. An additional important obstruction to feasibility is given by Aumann’s seminal Agree-
ment Theorem (Aumann, 1976). Aumann showed that rational agents cannot agree to disagree on
posteriors: when posteriors are common knowledge then they cannot be unequal. This implies that
feasibility is precluded if, for example, agent 1 has posterior 1/5 whenever agent 2 has posterior
2/5, and likewise agent 2 has posterior 2/5 whenever agent 1 has posterior 1/5.

There are, as we show, examples of distributions that are not feasible, even though they do not
involve agents who agree to disagree as above. Thus the Agreement Theorem does not provide
a necessary and sufficient condition for feasibility. Our first main result is a quantitative version
of the Agreement Theorem; a relaxation that constrains beliefs to be approximately equal when
they are approximately common knowledge. In our second main result we show that for two agents
these constraints provide a necessary and sufficient condition for feasibility. This condition is not
as simple as the martingale condition, and yet is an intrinsic property of the distribution that can
be checked directly. For example, this condition can be used to easily verify or refute feasibility for
finitely supported distributions.

For more than two agents, we show in our third main result that a “no trade” condition gives
a necessary and sufficient condition for feasibility. To derive this condition we introduce—as an
analytic tool—a mediator who trades a good of uncertain value with the agents. When an agent
trades, it is at a price that reflects her expected value, and thus the agents do not gain or lose in
expectation. This implies that the mediator likewise does not turn a profit, and so by bounding
the mediator’s profit by zero we attain an obviously necessary condition for feasibility. We show
that this condition is also sufficient.
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We apply these characterizations to study independent joint posterior belief distributions: these
are induced by information structures in which each agent receives non-trivial information regarding
the state, and yet gains no information about the other’s posterior.

A natural related question is what we call social Bayesian persuasion. This is a class of Bayesian
persuasion problems that includes a single sender and multiple receivers. First, the sender chooses
an information structure to be revealed to the agents. Then, each receiver chooses an action.
Finally, both the sender and the receivers receive payoffs. The key assumption is that each receiver’s
utility depends only on the unknown state and her own action, as is common in the social learning
literature; we therefore describe these persuasion problems as social. Thus, we can assume that each
receiver’s action depends only on her own posterior. The sender’s utility depends on the actions
of the receivers, and so the sender’s problem is to choose an optimal feasible joint posterior belief
distribution.

As an example of a social Bayesian persuasion problem, we study the problem of a “polarizing”
sender who wishes to maximize the difference between two receivers’ posteriors. This example high-
lights the limitations imposed by feasibility, as the sender cannot hope to always achieve complete
polarization in which one receiver has posterior 0 and the other posterior 1; such joint posterior
distributions are precluded by the Agreement Theorem. We solve this problem in some particular
regimes, and show that non-trivial solutions exist in others, depending on the details of how the
difference between posteriors is quantified.

A related question is how anti-correlated feasible posteriors can be. While they can clearly be
perfectly correlated, by the Agreement Theorem they cannot be perfectly anti-correlated. This
question can be phrased as a social Bayesian persuasion problem, which we solve. For the uniform
prior we show that the covariance between posterior has to be at least −1/32, and construct a
feasible distribution, supported on four points, that achieves this bound.

The question of social Bayesian persuasion is closely tied to the study of the extreme points of
the set of feasible distributions, as the sender’s optimum is always achieved at an extreme point.
In the single agent case, the well known concavification argument of Aumann and Maschler (1995)
and Kamenica and Gentzkow (2011) shows that every extreme point of the set of feasible posterior
distributions has support of size at most two. In contrast, we show that for two or more agents there
exist extreme points with countably infinite support. In the other direction, we show that every
extreme point is supported on a set that is small, in the sense of having zero Lebesgue measure.
To this end, we use a classical result of Lindenstrauss (1965) regarding extreme points of the set of
measures with given marginals.

This work leaves open a number of interesting questions. In particular, we leave for future studies
the extension of our work beyond the setting of a binary state and common priors. Likewise, the
study of the extreme feasible distributions is far from complete. For example, we do not have a
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simple characterization of extreme points. We also do not know if there are non-atomic extreme
points.

Related literature. Mathevet et al. (2019) study Bayesian persuasion with multiple receivers
and finite signals. They find an implicit characterization of feasibility: considering the entire belief
hierarchy, they show that feasibility is equivalent to consistency of the hierarchy. Our condition
is explicit—i.e., formulated directly in terms of the joint distribution of first-order beliefs. Cer-
tain compatibility questions for belief hierarchies (without application to feasibility of joint belief
distribution or Bayesian persuasion) were recently addressed by Brooks et al. (2019).

Very recently and independently, Ziegler (2020) considered an information design setting with
two receivers, and derived a necessary condition for feasibility. his condition is sufficient for the
case of binary signals. We further discuss Ziegler’s condition in §B.

Our characterization of feasible distributions in Theorem 2 is based on the classic results of
Kellerer (1961) regarding the existence of dominated measures with given marginals. In the eco-
nomic literature, such tools were applied by Gershkov et al. (2013) and Gershkov et al. (2018). See
also the discussion in Hart and Reny (2015). Our feasibility condition shares some similarity with
the condition of feasibility for reduced-form auctions (Border, 1991).

A related question to ours is the common prior problem studied in the literature on interactive
epistemology. Concretely, an Aumann knowledge partition model with finite state space and agents
is considered. Each agent has a partition over the state space and to each partition element
corresponds a posterior probability that is supported on that partition element. The question is
whether there exists a common prior: a single probability distribution over the state space that gives
rise to all the posterior distributions by means of conditional probability. Samet (1998) provides a
simple characterization for the existence of a common prior using a hyperplane separation argument.
Feinberg (2000) shows that a common prior exists if and only if agents cannot agree to disagree.

There is a fundamental distinction between the common prior problem and ours. While in the
common prior problem the conditional probability is given and therefore the full belief hierarchy at
every state can be inferred, in our case only the unconditional posterior is considered, and the belief
hierarchy is not specified. Indeed, a given posterior belief distribution does not pin down uniquely
the belief hierarchy. For this reason, our notion of a trading scheme uses a mediator rather than
incorporating higher-order beliefs.1

The remainder of the paper is organized as follows. In §2 we introduce the formal problem. In
1In the notation introduced in our model section below, the common prior problem can be phrased as follows. Fix

a signal space Si for each agent i, and denote Ω =
∏

i Si. Say we are given, for each agent i and signal realization
si, a conditional distribution Qsi (·) supported on the subset of Ω in which agent i’s signal is si. When does there
exist a single probability measure P on Ω such that for P-almost every si it holds that Qsi (·) = P(·|si)?
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§3 we present our main results. Applications are presented in §4. The proof of our main result
appears in §5. In §6 we study social Bayesian persuasion and the extreme feasible beliefs. In §7
we study implementations of a given, feasible posterior distribution. Further proofs are provided
in the Appendix.

2 Model
Information structures and posterior beliefs. We consider a binary state space Ω = {ℓ, h},
and a set of n agents N = {1, 2, . . . , n}. An information structure I = ((Si)i∈N ,P) consists of
signal sets Si (each equipped with a sigma-algebra Σi, which we suppress) for each agent i, and a
distribution P ∈ ∆(Ω× S1 × · · · × Sn). Let ω, s1, . . . , sn be the random variables corresponding to
the n+ 1 coordinates of the underlying space Ω× S1 × · · · × Sn. When it is unambiguous, we also
use si to denote a generic element of Si.

The prior probability of the high state is denoted by p = P(ω = h). Throughout the paper we
assume that p ∈ (0, 1), i.e., we exclude the degenerate cases of p = 0 and p = 1.

All n agents initially have prior p regarding the state ω. Then, each agent i observes the signal
si. The posterior belief xi attributed to the high state by agent i after receiving the signal si is

xi = P(ω = h | si).

We denote by PI the joint distribution of posterior beliefs induced by the information structure
I. This probability measure on [0, 1]N is the joint distribution of (x1, x2, . . . , xn). I.e., for each
measurable B ⊂ [0, 1]N ,

PI(B) = P
(
(x1, . . . , xn) ∈ B

)
.

We similarly denote the conditional joint distributions of posterior beliefs by P ℓ
I and Ph

I ; these
are the joint distributions of (x1, . . . , xn), conditioned on the state ω.

For a probability measure P ∈ ∆([0, 1]N ) and for i ∈ N , we denote by Pi the marginal distri-
bution, i.e., the distribution of the projection on the ith coordinate.

Feasible joint posterior beliefs. When is a given distribution on [0, 1]N equal to the distribution
of posterior beliefs induced by some information structure? This is the main question we study in
this paper. The following definition captures this notion formally.

Definition 1. Given p ∈ (0, 1), we say that a distribution P ∈ ∆([0, 1]N ) is p-feasible if there exists
some information structure I with prior p such that P = PI .2

2Equivalently, P ∈ ∆([0, 1]n) is p-feasible if there is a standard Borel probability space (Ω,F ,P), a set A ∈ F with
P(A) = p, and n sub-sigma-algebras F1, . . . ,Fn ⊆ F such that P is the joint distribution of (P(A|F1), . . . ,P(A|Fn)).
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When p is understood from the context we will simply use the term “feasible” rather than
p-feasible.

The single agent case. Before tackling the question of feasibility for n agents, it is instructive
to review the well-understood case of a single agent.

The so-called martingale condition states that the average posterior belief of a feasible posterior
distribution is equal to the prior. Formally, given a p-feasible distribution P ∈ ∆([0, 1]), it must be
the case that ∫ 1

0

xdP (x) = p.

The necessity of this condition for p-feasibility follows from the law of iterated expectation. For the
single agent case, the martingale condition is necessary and sufficient for P to be p-feasible. This
result is known as the Splitting Lemma.

3 Joint feasible beliefs
The two agent case and the Agreement Theorem. In the two agent case the martingale con-
dition is not sufficient for feasibility. An additional obstruction to feasibility is given by Aumann’s
celebrated Agreement Theorem (Aumann, 1976). We here provide a rephrasing of this theorem in
a form that will be useful for us later.

Theorem A (Aumann). Let ((Si)i,P) be an information structure, and let B1 ⊆ S1 and B2 ⊆ S2

be subsets of possible signal realizations for agents 1 and 2, respectively. If

P(s1 ∈ B1, s2 ̸∈ B2) = P(s2 ∈ B2, s1 ̸∈ B1) = 0 (1)

then
E(x1 · 1s1∈B1) = E(x2 · 1s2∈B2).

To understand why this is a reformulation of the Agreement Theorem, note that condition (1)
implies that

P(s1 ∈ B1, s2 ∈ B2) = P(s1 ∈ B1) = P(s2 ∈ B2),

and thus that the event {s1 ∈ B1, s2 ∈ B2} is self evident: it is common knowledge whenever it
occurs. Thus, this form of the agreement theorem states that if agents have common knowledge of
the event {s1 ∈ B1, s2 ∈ B2} then their average beliefs on this event must coincide. The original
theorem follows by choosing B1 and B2 such that x1 is constant on B1 and x2 is constant on B2.
The statement of Theorem A is close in form to that of the No Trade Theorem of Milgrom and
Stokey (1982), which provides the same obstruction to feasibility; we discuss this further below.
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Using Theorem A it is easy to construct examples of distributions that are not feasible, even
though they satisfy the martingale condition. For example, consider the prior p = 1/2 and the
distribution P = 1

2δ0,1 +
1
2δ1,0, where δx1,x2

denotes the point mass at (x1, x2). Clearly P satisfies
the martingale condition. Nevertheless, it is not feasible, since under this distribution agents “agree
to disagree,” when agent 1 attributes probability 1 to the high state and agent 2 considers the
probability of this state to be 0. Indeed, assume towards a contradiction that it is equal to PI ,
for some information structure I = ((Si)i, P). Then the events B1 = {s ∈ S1 : x1(s) = 1} and
B2 = {s ∈ S2 : x2(s) = 0} satisfy the common knowledge condition (1). But

P(ω = h | s1 ∈ B1) = 1 ̸= 0 = P(ω = h | s2 ∈ B2),

in contradiction to Theorem A.
This example can be extended to a more general necessary condition for feasibility of a joint

posterior distribution.

Corollary A. Let P ∈ ∆([0, 1]2) be feasible for some p, and let A1 and A2 be measurable subsets
of [0, 1]. Denote complements by Ai = [0, 1] \Ai. If

P (A1 ×A2) = P (A1 ×A2) = 0 (2)

then ∫
A1

x dP1(x) =

∫
A2

xdP2(x). (3)

Corollary A is a recasting of Theorem A into a direct condition for feasibility: condition (2)
states that the event A1 × A2 is self evident: it has the same probability as A1 and the same
probability as A2. And each of the two integrals in (3) is equal to the average belief of agent
i conditioned on Ai, times the probability of Ai. Hence Corollary A follows immediately from
Theorem A, by setting Bi = {si : xi(s(i)) ∈ Ai} for i = 1, 2. The advantage of this formulation is
that it takes the form of a direct condition on P .

A quantitative Agreement Theorem. While Aumann’s Agreement Theorem provides an ob-
struction to feasibility, a joint posterior distribution can be infeasible even when it does not imply
that agents agree to disagree. A larger set of necessary conditions follows from our first main result,
which is a quantitative version of the Agreement Theorem:

Theorem 1. Let ((Si)i,P) be an information structure, and let B1 ⊆ S1 and B2 ⊆ S2 be sets of
possible signal realizations for agents 1 and 2, respectively. Then

P(s1 ∈ B1, s2 ̸∈ B2) ≥ E(x1 · 1s1∈B1)− E(x2 · 1s2∈B2) ≥ −P(s2 ∈ B2, s1 ̸∈ B1).
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Proof. By the law of total expectations, we have that

E(xi · 1si∈Bi) = E(P(ω = h|si) · 1si∈Bi) = P(ω = h, si ∈ Bi).

We thus need to show that

P(s1 ∈ B1, s2 ̸∈ B2) ≥ P(ω = h, s1 ∈ B1)− P(ω = h, s2 ∈ B2) ≥ −P(s2 ∈ B2, s1 ̸∈ B1).

We show the first inequality; the second follows by an identical argument. Indeed, this inequality
holds since, more generally, for any three events A,B,C it holds that

P(A ∩B) ≥ P(C ∩A)− P(C ∩B),

which, in turn, follows from the fact that (A ∩B) ∪ (C ∩B) ⊇ C ∩A.

A comparison to the Agreement Theorem (Theorem A) is illustrative. In Theorem A the com-
mon knowledge assumption (1) implies equality of average posteriors. Here (1) has been removed,
and we instead bound the difference in the average posteriors by the extent to which (1) is vio-
lated. Thus, one can think of Theorem 1 as quantifying the extent to which approximate common
knowledge implies approximate agreement.3 The Agreement Theorem becomes the special case in
which (1) holds.

In analogy to Corollary A, we use Theorem 1 to derive further necessary conditions for feasibility.

Corollary 1. Let P ∈ ∆([0, 1]2) be p-feasible for some p, and let A1 and A2 be measurable subsets
of [0, 1]. Then

P (A1 ×A2) ≥
∫
A1

x dP1(x)−
∫
A2

x dP2(x) ≥ −P (A1 ×A2). (4)

Corollary 1 admits a simple interpretation in terms of the No Trade Theorem (Milgrom and
Stokey, 1982). Consider three risk-neutral agents: two traders and a mediator. Trader 2 owns
a good with an unknown quality ω ∈ {0, 1}. The mediator also owns a copy of the same good.
The two traders receive private information regarding the quality of the good, with a joint belief
distribution P ∈ ∆([0, 1]2). The mediator knows P and the realized pair (x1, x2).

Let A1, A2 ⊆ [0, 1] be any measurable sets and consider the following trading scheme: The
mediator buys the good from trader 2 whenever x2 ∈ A2 at a price of x2. The mediator sells one
copy of good to trader 1 whenever x1 ∈ A1 at a price of x1. Thus the mediator may need to use
her copy of the good, in case she sells but does not buy.

3An alternative approach to quantitative extensions of the Agreement Theorem is by the concept of common
p-beliefs (Monderer and Samet, 1989). Neeman (1996) shows that when posteriors are common p-belief then they
cannot differ by more that 1 − p. However, we are not aware of any formal connection between this extension and
our Theorem 2.
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We argue that the mediator’s expected profit is at least∫
A1

xdP1(x)−
∫
A2

xdP2(x)− P (A1 ×A2).

The first two addends correspond to the expected transfer between each trader and the mediator.
The last addend corresponds to the event that the mediator has to sell his own good to trader 1

since trader 2’s belief x2 is not in A2 and trader 1’s belief is in A1. In this case the mediator loses
at most 1.

Clearly, the mediator does not provide any additional information to the two players and so their
expected profit is zero. Thus the mediator’s expected profit is also zero, and so we have arrived at
the left inequality of (4). The right inequality follows by symmetry.

A characterization of feasible distributions for two agents. Our second main result is
a simple characterization of feasibility joint posterior beliefs for two agents. It states that the
necessary condition of Corollary 1 is also sufficient.

Theorem 2. A probability measure P ∈ ∆([0, 1]2) is p-feasible for some p if and only if

P (A1 ×A2) ≥
∫
A1

xdP1(x)−
∫
A2

xdP2(x) ≥ −P (A1 ×A2)

for all measurable A1, A2 ⊆ [0, 1]. (5)

It follows from Theorem 2 and the single agent martingale condition that when (5) holds then
P is p-feasible for

p =

∫ 1

0

x dP1(x) =

∫ 1

0

x dP2(x).

The necessity of (5) is Corollary 1. The sufficiency requires another argument, which uses a
theorem of Kellerer (1961). We present the complete proof of Theorem 2 in §5.

It is natural to wonder if (5) can be relaxed to a simpler sufficient condition, and in particular
if it suffices to check it on A1, A2 that are intervals. As we show in §B, restricting (5) to intervals
results in a condition that is not sufficient: we construct a measure that is not feasible, but satisfies
(4) for all intervals A1, A2. The constructed measure demonstrates that the condition derived by
Ziegler (2020) for feasibility is necessary but insufficient.

More than two agents. Beyond the two agent case, Theorem 2 provides a necessary condition for
feasibility, as the joint belief distribution of each pair of agents must clearly satisfy (5). However, for
three agents or more, this condition is not sufficient: we construct below an example of three agents
whose beliefs satisfy (5) for each pair of agents, and yet are not feasible. The violation of feasibility

9



stems from a violation of the No Trade Theorem, in a manner similar to the one illustrated above
for two agents. We use this approach to provide a necessary and sufficient condition for feasibility
for an arbitrary number of agents.

A trading scheme consists of n measurable functions ai : [0, 1] → [−1, 1], i = 1, . . . , n. Given
agent i’s posterior xi, a mediator sells ai(xi) units of the good to agent i for the price of xi per
unit, so that the total transfer is ai(xi)xi.

Clearly, each agent’s expected profit is zero, since she is buying or selling the good at her
expected value. Hence the mediator’s expected profit is also zero. We argue that∫

[0,1]n

(
n∑

i=1

ai(xi)xi −max

{
0,

n∑
i=1

ai(xi)

})
dP (x1, . . . , xn) (6)

is a lower bound on the mediator’s profit. Indeed, the first addend in the integral is the total
transfer to the mediator. The second is equal to the total number of units of the good that the
mediator needs to contribute to the transaction, in case the total amount that she sells exceeds
the total amount that she buys. Since each unit is worth at most 1, she loses at most

∑
ai(xi),

whenever this sum is positive. Thus, since the mediator’s profit is zero, it follows that (6) cannot
be positive if P is feasible.

Our characterization shows that this condition is also sufficient for feasibility. Its proof is given
in §D.

Theorem 3. A probability measure P ∈ ∆([0, 1]n) is p-feasible for some p if and only if for every
trading scheme (a1, . . . , an)∫

[0,1]n

(
n∑

i=1

ai(xi)xi −max

{
0,

n∑
i=1

ai(xi)

})
dP (x1, . . . , xn) ≤ 0. (7)

We end this section with an example that shows that Theorem 3 provides additional obstructions
for feasibility when n ≥ 3, beyond the pairwise condition implied by Theorem 2. Consider three
agents whose beliefs (x1, x2, x3) are distributed uniformly and independently on [0, 1]. That is, let
their joint belief distribution P ∈ ∆([0, 1]3) be the Lebesgue measure. By Proposition 2 below, the
agents pairwise satisfy the condition of Theorem 2. We argue that this is nevertheless not a feasible
distribution.

To see this, consider the trading scheme given by

a1(x) = a2(x) = a3(x) = 1x≥2/3 − 1x≤1/3.

Thus, each agent buys a unit whenever her belief is above 2/3, and sells when it is below 1/3. A
simple calculation shows that condition (7) of Theorem 3 is violated.4

4We thank Eric Neyman for alerting us to an error in a previous version of this example.
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4 Applications
Identically Distributed Binary Signals. As a first application of Theorem 2 we consider a
setting with prior p = 1/2, and two agents who each receive a binary signal that equals the state
with some probability r > 1/2. We ask: what joint distributions are feasible?

The canonical setting is the one in which signals are independent, conditioned on the state. Note
that they are not unconditionally independent: while each agent has each posterior with probability
1/2, conditioned on the first agent acquiring a high posterior, the second agent is more likely to also
have a high posterior than a low one. In this case the induced belief distribution is

P =
r2 + (1− r)2

2
[δr,r + δ1−r,1−r] + r(1− r) [δ1−r,r + δr,1−r] .

Another simple case is the one in which both agents observe the same signal, in which case the
posteriors are of course perfectly correlated, and the distribution is

P =
1

2
δr,r +

1

2
δ1−r,1−r,

as in the signal agent case. In both of these cases P is feasible, since we derive it from a joint signal
distribution.

The case in which agents’ posteriors are perfectly anti-correlated, i.e.,

P =
1

2
δr,1−r +

1

2
δ1−r,r

is precluded by the Agreement Theorem and its Corollary A, as agents here agree to disagree on
their posteriors.

More generally, we can consider the case in which conditioned on an agent’s posterior, the other
agent has the same posterior with probability c. That is,

P =
c

2
δr,r +

c

2
δ1−r,1−r +

1− c

2
δ1−r,r +

1− c

2
δr,1−r. (8)

In this case there is never common knowledge of beliefs, as long as c < 1. The natural question
is: to what extent can the signals be anti-correlated? Can they for example be (unconditionally)
independent, so that after observing a signal, the probability that an agent assigns to the other
agent’s posterior is still uniform over {r, 1−r}? A common intuition suggests that this is impossible,
since even if signals are independent given the state, the induced unconditional distribution of
posteriors inherits the dependence on the state and thus the posteriors must be dependent; on
the other hand, if the conditional distribution of signals is the same in both states, they convey
no information and thus the posterior just equals the prior. Perhaps surprisingly, this intuition is
wrong, and posteriors can be independent and even anti-correlated.
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Proposition 1. A joint belief distribution P as given in (8) is 1/2-feasible if and only if c ≥ 2r− 1.

This proposition follows directly from Theorem 2: one only needs to check the sets Ai = {r}
and Ai = {1 − r}. More generally, for finitely supported P only finitely many conditions need be
checked.

Proposition 1 implies that indeed too much anti-correlation is infeasible, especially as the signals
become more informative. Nevertheless, it is possible that the agents posteriors are independent of
each other (i.e., c = 1/2) as long as r ≤ 3/4. Moreover, for r < 3/4, the posteriors can be negatively
correlated; for example, P is feasible for c = 1/3 and r = 2/3. In this case, posteriors are either
1/3 or 2/3, each obtained with probability 1/2. When an agent has the high posterior, she assigns
probability 2/3 to the event the the other agent has the low posterior.

Unconditionally independent signals. As another application of Theorem 2 we further explore
independent joint posterior belief distributions. To motivate this application consider a sender (e.g.,
a consulting agency) who wants to reveal some information to receivers (its clients). However, there
is an additional concern: none of the receivers must be able to form any non-trivial guess about
the information received by their counterpart. This can be motivated either by privacy concerns
or by the desire to avoid complicated strategic reasoning on receivers’ side. For example, consider
the case that the receivers are two firms competing on the same market and plan to use the
received information to adjust their strategies. If their posteriors are not independent, they might
engage in a complicated reasoning involving higher order beliefs, as in Weinstein and Yildiz (2007).
Another motivation for studying independent joint beliefs comes from mechanism design, where
these distributions arise endogenously (see, e.g., Bergemann et al., 2017; Brooks and Du, 2019).

We already saw above that identically distributed binary signals can be independent for prior
p = 1/2 as long as r ≤ 3/4. As a second example, let P be the uniform distribution on the unit
square. We verify that it is 1/2-feasible. It clearly satisfies the martingale condition so it remains
to check that

P (A1 ×A2) ≥
∫
A1

x dP1(x)−
∫
A2

x dP2(x).

The other inequality of (5) will follow by symmetry.
Let 1−a be the Lebesgue measure of A1 and b of A2. Then the left hand side equals (1−a)(1−b)

and the right hand-side is maximized when A1 is pushed as much as possible towards high values
of the integrand (i.e., A1 = [a, 1]) and A2 is pushed towards low values (A2 = [0, b]). We get the
following inequality

(1− a)(1− b) ≥
∫ 1

a

xdx−
∫ b

0

x dx =
1

2

(
1− a2 − b2

)
.
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Simplifying the expression, we get (a+ b− 1)2 ≥ 0, which holds for any a and b. Thus the uniform
distribution is 1/2-feasible. In §7, we describe an information structure that induces this distribution
of beliefs.

We generalize this example to study the conditions for 1/2-feasibility of more general product
distributions. The next proposition provides a necessary and sufficient condition for feasibility of a
large class of such distributions, and shows that the uniform distribution is, in fact, an important
edge case. We say that a distribution ν ∈ ∆([0, 1]) is symmetric around 1/2 if its cumulative
distribution function F (a) = ν([0, a]) satisfies F (a) = 1 − F (1 − a) for all a ∈ [0, 1]. Recall that
µ ∈ ∆([0, 1]) is a mean preserving spread of µ′ ∈ ∆([0, 1]) if there exist random variables x, x′ such
that x ∼ µ, x′ ∼ µ′ and E(x|x′) = x′.5

Proposition 2. Let P = ν×ν, where ν ∈ ∆([0, 1]) is symmetric around 1/2. Then P is 1/2-feasible
if and only if the uniform distribution on [0, 1] is a mean preserving spread of ν.

In particular, among symmetric, 1/2-feasible product distributions, the uniform is maximal in
the convex order.6

The proof of Theorem 2 is relegated to §A. The “if” direction is a consequence of the following,
more general lemma.

Lemma 1. Let P = µ1 × · · · ×µn ∈ ∆([0, 1]n) be p-feasible, and let P ′ = µ′
1 × · · · ×µ′

n, where each
µi is a mean preserving spread of µ′

i. Then P ′ is also p-feasible.

An intuition behind this lemma is given by Blackwell’s Theorem (Blackwell, 1951, Theorem
12): Given an information structure that induces P , one can apply an independent garbling to each
coordinate to arrive at a structure that induces P ′. Our proof does not invoke Blackwell’s Theorem,
but instead uses our Theorem 3.

Using Proposition 2, we show in §E that Gaussian signals may induce independent beliefs,
provided that that they are not too informative. Let ν be the belief distribution induced by a
signal which, conditioned on the state, is a unit variance Gaussian with mean ±d. Then ν × ν

is 1/2-feasible if and only if d lies between the 1
4 -quantile and 3

4 -quantile of the standard normal
distribution.

5Equivalently,
∫
f(x) dµ(x) ≥

∫
f(x) dµ′(x) for every bounded convex f . Another equivalent condition is that

both have the same expectation, and
∫ y
0 F (x) dx ≤

∫ y
0 F ′(x) dx for all y ∈ [0, 1], where F and F ′ are the cumulative

distribution functions of µ and µ′, respectively. See (Blackwell, 1953).
6We note that the symmetry assumption cannot be dropped. Indeed, the uniform distribution is not a mean-

preserving spread of the non-symmetric distribution ν = a · δ1−a + (1− a) · δ1 with a = 1√
2

, but nevertheless ν × ν

is feasible. Feasibility can checked via Theorem 2 or directly by constructing the information structure: both agents
have two signals S1 = S2 = {s, s}; if the state is ω = h, then the pair of signals is (s, s) with probability 2(1 − a)2

and (s, s) or (s, s) with probabilities 1
2
− (1 − a)2; if the state is ω = ℓ, the signals are always (s, s). The uniform

distribution is not a mean-preserving spread of ν since
∫ 1

1
2

(
x− 1

2

)
dν(x) = 1

2
− 1

2
√
2
>

∫ 1
1
2

(
x− 1

2

)
dx = 1

8
.

13



Interestingly, product distributions with a given marginal cease being feasible once the number
of agents becomes large enough, as demonstrated in the following proposition.

Proposition 3. For every probability measure ν ∈ ∆([0, 1]) that differs from a Dirac measure, for
sufficiently large n the product distribution νn ∈ ∆([0, 1]n) is not feasible.

The proof, that is relegated to §A, uses our Theorem 3. We show that with sufficiently large
number of agents, a mediator can implement a strictly beneficial trading scheme, i.e. one that
violates Theorem 3. In fact, we show that the product distribution νn is infeasible whenever
⌊n
2 ⌋ >

1
8

( ∫ 1

m
xdν(x)−

∫m

0
x dν(x)

)−2, where m is the median of the marginal distribution ν.

5 Proof of Theorem 2
In this section we present the proof of Theorem 2. We begin with the following simple lemma,
which gives a direct revelation principle for joint belief distributions. Similar statements recently
appeared in the literature (e.g., Ziegler, 2020; Arieli et al., 2020). For the convenience of the reader,
the proof is included in the Appendix.

Lemma 2. Let P ∈ ∆([0, 1]n) be a p-feasible belief distribution. Then there exist P ℓ, Ph ∈ ∆([0, 1]n)

such that P = (1− p) · P ℓ + p · Ph and for every i ∈ {1, . . . , n} the marginal distributions Ph
i and

Pi satisfy

dPh
i (x) =

x

p
dPi(x). (9)

In particular, every feasible belief distribution can be induced by an information structure in which,
for each i, the belief xi is equal to the signal si.

The next lemma gives a necessary and sufficient condition for feasibility in terms of the existence
of a dominated measure with given marginals.

Lemma 3. For n ≥ 2 agents, a distribution P ∈ ∆([0, 1]n) is p-feasible if and only if there exists
a probability measure Q ∈ ∆([0, 1]n) such that

1. Q is dominated by 1
pP , i.e. Q(A) ≤ 1

pP (A) for any measurable A ⊆ [0, 1]n, and

2. for every i ∈ {1, . . . , n} the marginal distribution Qi is given by

dQi(x) =
x

p
dPi(x). (10)

Proof. If P is feasible, then by Lemma 2 there is a pair P ℓ, Ph ∈ ∆([0, 1]n) such that P =

(1 − p)P ℓ + p · Ph and such that (9) holds. Picking Q = Ph, it follows from (9) that Q ≤ 1
pP
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and that Q the desired marginals. In the opposite direction: if there is Q satisfying the theorem
hypothesis, then let Ph = Q and P ℓ = P−p·Q

1−p . Consider the information structure I in which
ω = h with probability p, and (s1, . . . , sn) is chosen from Ph conditioned on ω = h, and from P ℓ

conditioned on ω = ℓ. It follows from (10) that P is the joint posterior distribution induced by I,
and is hence p-feasible.

Lemma 3 reduces the question of feasibility to the question of the existence of a dominated
measure with given marginals. This is a well-studied question in the case n = 2. When the
dominating measure is proportional to the Lebesgue measure, Lorentz (1949) provided the answer
in terms of first-order stochastic dominance of marginals. The discrete analog of this result for
matrices is known as the Gale-Ryser Theorem (Gale et al., 1957; Ryser, 1957). The condition for
general dominating measures was derived by Kellerer (1961, Satz 4.2); the formulation below is due
to Strassen (1965, Theorem 6).

Theorem B (Kellerer, Strassen). Fix P ∈ ∆([0, 1]2), 0 < p ≤ 1, and M1, M2 ∈ ∆([0, 1]). Then
the following are equivalent:

1. There exists a probability measure Q ∈ ∆([0, 1]2) that is dominated by 1
pP , and which has

marginals Qi = Mi.

2. For every measurable B1, B2 ⊂ [0, 1] it holds that
1

p
P (B1 ×B2) ≥ M1(B1) +M2(B2)− 1. (11)

As we now show, Theorem 2 is a consequence of Kellerer’s Theorem and Lemma 3.7

Proof of Theorem 2. When P is p-feasible, (5) follows immediately from Corollary 1. To prove the
other direction, we assume that P satisfies (5), and prove that P is p-feasible for some p. To this end
we will use Kellerer’s Theorem to show that there exists a Q ∈ ∆([0, 1]2) satisfying the conditions
of Lemma 3.

Assume then that P satisfies (5), i.e. for every measurable A1, A2 ⊆ [0, 1] it holds that

P (A1 ×A2) ≥
∫
A1

xdP1(x)−
∫
A2

xdP2(x) ≥ P (A1 ×A2). (12)

Applying this to A1 = A2 = [0, 1] yields∫ 1

0

x dP1(x) =

∫ 1

0

x dP2(x).

7We are grateful to Kim Border and Luciano Pomatto for introducing us to Kellerer’s theorem. Our original proof
was more involved: it was based on interpreting the infinite-dimensional linear program for Q from Lemma 3 as a
condition that there is a feasible flow of magnitude 1 in an auxiliary network (as in Gale et al. (1957), but with a
continuum of edges) and then using max-flow/min-cut duality for infinite networks (see Neumann, 1985).
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We accordingly set p =
∫ 1

0
x dP1(x), and define the measures M1, M2 ∈ ∆([0, 1]) by dMi(x) =

x
pdPi(x). Given any two measurable subsets B1, B2 ⊆ [0, 1], let A1 = B1 and A2 = B2. Applying
the left hand inequality of (12) to A1 = B1 and A2 = B2 yields

P (B1 ×B2) ≥
∫
B1

xdP1(x)−
∫
B2

x dP2(x).

Since dMi(x) =
x
pdPi(x) we can write this as

P (B1 ×B2) ≥ p ·M1(B1)− p ·M2(B2),

dividing by p and substituting M2(B2) = 1−M2(B2) yields.

1

p
P (B1 ×B2) ≥ M1(B1) +M2(B2)− 1.

Thus condition (11) holds, and we can directly apply Kellerer’s theorem to conclude that there
exists a measure Q that satisfies the conditions of Lemma 3, as condition (10) is simply Qi = Mi.
Hence P is p-feasible.

6 Social Bayesian Persuasion and Extreme Feasible Joint
Posterior Belief Distributions

Social Bayesian persuasion. In this section we consider a sender who sends information re-
garding an underlying state to a group of n receivers. The sender’s utility depends on the actions
of the receivers. We assume that each receiver’s utility depends only on the state and her own
action, as is common in the social learning literature, and thus we call this setting social Bayesian
persuasion.

Formally, a social Bayesian persuasion problem is given by B = (N, p, (Ai)i∈N , (ui)i∈N , us).
As above, ω ∈ {ℓ, h} is a binary state regarding which n = |N | receivers have a common prior
p ∈ (0, 1). Each receiver i ∈ N has to choose an action ai from a compact metric set of actions
Ai. Her utility ui(ω, ai) depends only on the state and her action. A single sender has utility
us(a1, . . . , an) which depends on the receivers’ actions.

The sender chooses an information structure I = ((Si)i∈N , P) with prior p, and each receiver i
observes a private signal si ∈ Si and then chooses an action ai.

In equilibrium, the action
ãi ∈ argmax

ai∈Ai

E(ui(ω, ai) | si)

is chosen by i to maximize her expected utility conditioned on her information si. Note that since
ui depends only on ω and ai, it follows that given the information structure I, receiver i’s posterior
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xi = P(ω = h | si) is a sufficient statistic for her utility, i.e.,

max
ai∈Ai

E(ui(ω, ai) | si) = max
ai∈Ai

E(ui(ω, ai) | xi),

and so a receiver does not decrease her expected utility by discarding her private signal, retaining
only the posterior. We accordingly consider the equilibrium refinement in which receivers choose
their actions using only their posteriors:8

ãi ∈ argmax
ai∈Ai

E(ui(ω, ai) | xi).

The information structure I is chosen to maximize the expectation of us. We assume that ui and
us are upper-semicontinuous, to ensure the existence of equilibria. The value V (B) is the sender’s
expected equilibrium utility in the social Bayesian persuasion problem B.

A crucial feature is the assumption that ui does not depend on the other agents’ actions. The
case in which externalities are allowed is the general problem of Bayesian mechanism design, which
is beyond the scope of this paper. In contrast, in social Bayesian persuasion the receivers have no
strategic incentives. This implies that their higher order beliefs are irrelevant to the sender, who
in turn is solely interested in their posterior beliefs. This is captured by the following proposition,
which states that for every social Bayesian persuasion problem there is an indirect utility function
that the sender maximizes by choosing the receivers’ posteriors. Of course, the posterior distribution
must be feasible.

Denote by PN
p the set of p-feasible P ∈ ∆([0, 1]N ).

Proposition 4. For every social Bayesian persuasion problem B = (N, p, (Ai)i, (ui)i, us) there is
an indirect utility function v : [0, 1]N → R such that the value V (B) is given by

V (B) = max
P∈Pn

p

∫
v(x1, . . . , xn) dP (x1, . . . , xn).

Example: Polarizing receivers. In §4 we showed that joint belief distributions can be anti-
correlated, and explored the extent to which identically distributed binary signals can be anti-
correlated. For general signal distributions, this question can be formalized using a social Bayesian
persuasion approach.

Consider a sender whose indirect utility for the posteriors of two receivers is

v(x1, x2) = |x1 − x2|a,

for some parameter a > 0. Informally, the sender wishes to maximize the polarization between
receivers, or the discrepancy between their posteriors.

For the case a = 2 we solve the sender’s problem completely.
8No pun intended.
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Proposition 5. Let V be the two receiver social Bayesian persuasion problem where the sender’s
indirect utility is

v(x1, x2) = (x1 − x2)
2

and the prior is p ∈ (0, 1). Then V (B) = (1− p)p.

In this case of a = 2, the optimum can be achieved by completely informing one agent, and
leaving the other completely uninformed. E.g., by letting s1 = ω and s2 = 0. We show in §A that
when p = 1/2, the same policy is also optimal for all a < 2.

For a ≥ 3, it is no longer true that it is optimal to reveal the state to one receiver and leave the
other uninformed, which yields utility 2−a to the sender. For example, the posterior distribution

P =
1

4
δ0,2/3 +

1

4
δ2/3,0 +

1

2
δ2/3,2/3 (13)

can be easily verified to be 1/2-feasible using (5), and yields utility 1
2

(
2
3

)a, which for a = 3 (for
example) is larger than 2−a.

Another approach to quantifying the extent to which beliefs can be anti-correlated is by di-
rectly minimizing their covariance. This question admits a simple, non-trivial solution, as the next
proposition shows: for the prior p = 1/2, the smallest possible covariance between posterior beliefs
is −1/32, and is achieved on a distribution supported on four points.

Proposition 6. Let V be the two receiver social Bayesian persuasion problem where the prior is
p = 1/2 and the sender’s indirect utility is

v(x1, x2) = −(x1 − p) · (x2 − p).

Then V (B) = 1/32, and is achieved by

P =
1

8
δ3/4,0 +

3

8
δ3/4,1/2 +

1

8
δ1/4,1 +

3

8
δ1/4,1/2.

The distribution P is depicted in Figure 1.
The proofs of Propositions 5 and 6 are presented in §A. They do not rely on our characterization

of feasible beliefs, and instead use the fact that conditional expectations are orthogonal projections
in the Hilbert space of square-integrable random variables. This technique exploits the quadratic
form of these persuasion problems. A natural avenue for future research is the extension of these
techniques—or the development of new techniques—to tackle non-quadratic problems.

Extreme feasible joint posterior belief distributions. In Proposition 8 in the Appendix we
show that the set PN

p of p-feasible joint posterior belief distributions is a convex, compact subset of
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Figure 1: An optimal distribution of the social Bayesian persuasion problem given by the indirect
utility v(x1, x2) = −(x1 − p) · (x2 − p) and prior p = 1/2; see Proposition 6. For p = 1/2, this
distribution achieves the lowest possible covariance between posterior beliefs: −1/32. Blue points
describe the distribution of posteriors conditional on ω = 0. Red points describe the distribution
of posteriors conditional on ω = 1.

∆([0, 1]N ), when the latter is naturally equipped with the weak* topology. This is a consequence
of Lemma 3. Together with Proposition 4, this fact implies that V (B) is always achieved at an
extreme point of the set of p-feasible distributions PN

p . It is thus natural to study this set.
In the single agent case the concavification argument of Aumann and Maschler (1995) and

Kamenica and Gentzkow (2011) implies that every extreme point is a distribution with support
of size at most 2. This is not true for 2 or more agents. For example, the posterior distribution
with support of size 3 defined in (13) is extreme in P2

1/2, since its restriction to any support of
smaller cardinality is not feasible, as it cannot satisfy the martingale condition. The next theorem
shows that there in fact exist extreme points with countably infinite support. It also states that
the support cannot be too large, in the sense that every extreme point is supported on a set of zero
Lebesgue measure.

Theorem 4. Let |N | ≥ 2. Then

1. For every p ∈ (0, 1) there exists an extreme point in PN
p whose support has an infinite countable

number of points.

2. For every extreme P ∈ PN
p there exists a measurable A ⊆ [0, 1]N such that P (A) = 1, and the

Lebesgue measure of A is zero.

To prove the first part of Theorem 4 we explicitly construct an extreme feasible belief distribution
with countably infinite support; see §A. The construction is a variant of Rubinstein’s e-mail game
(Rubinstein, 1989). Unlike Rubinstein’s email game, no agent in our construction is fully informed
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Figure 2: An extreme point of P2
1/2 with infinite countable support. The numbers near the points

indicate their probabilities. Conditional on ω = ℓ the pair of posteriors belongs to the set of blue
points. Conditional on ω = h the pair of posteriors belongs to the set of red points.

about the state. The resulting belief distribution for two agents is depicted in Figure 2. Interestingly,
it is possible to modify our construction in a way that places the beliefs closer and closer to the
diagonal. This results in a sequence of extreme points that converge to a distribution that is
supported on the diagonal, and has support size larger than two. Every extreme point that is
supported on the diagonal is supported on at most two points, since this reduces to the single agent
case. Therefore, for two agents or more, the set of extreme points is not closed within the set of
feasible distributions. This demonstrates another distinction from the single agent case where the
set of extreme points is closed.

The proof of the second part of Theorem 4 relies on the classic result of Lindenstrauss (1965)
regarding extreme points of the set of joint distributions with given marginals.

Theorem 4 leaves a natural question open: Are there any non-atomic extreme points? Or
conversely, does every extreme point have countable support?

7 Implementing feasible distributions
Assume we are given a feasible distribution P ∈ ∆([0, 1]n). A natural question is: Which informa-
tion structures induce P? And, relatedly, which conditional posterior belief distributions (P ℓ, Ph)

are compatible with P?
By Lemma 3, P is feasible if and only if there exists a distribution Q ∈ ∆([0, 1]n) such that
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Q ≤ 1
pP and dQi(x) =

x
pdPi(x) for all agents i. Note that this is a linear program, which in general

is infinite-dimensional.
Given a solution Q, define Ph = Q and P ℓ = P−p·Q

1−p . Then the distribution of posteriors P is
induced by the information structure in which the signals have joint distribution Pω conditional
on ω (see Lemma 2 and its proof); in this case, we say that P is implemented by the pair (P ℓ, Ph),
which are also the conditional distributions of the beliefs. Thus, to find an information structure
that induces P , it suffices to solve the above mentioned linear program.

When P has finite support, this linear program has finite dimension, and thus a solution can
be numerically calculated by simply applying a linear program solver. In the general, infinite
dimensional case, we do not expect that simple, closed-form solutions always exist. An exception
is the single agent case, in which an implementing pair is given by (see Lemma 2)

dP ℓ(x) =
1− x

1− p
dP (x) dPh(x) =

x

p
dP (x).

We make two observations about the single agent case. First, there is a unique pair of conditional
belief distributions (P ℓ, Ph) that implements P : every information structure that induces P will
have the same conditional distributions of beliefs. Second, the two distributions P ℓ, Ph have the
Radon–Nikodym derivative dPh

dP ℓ (x) =
1−p
p

x
1−x , and so are mutually absolutely continuous, unless

there is an atom on 0 or on 1. As we now discuss, neither of these two properties hold in general
beyond the single agent case.

We consider the case that the number of agents is n ≥ 2, and that P ∈ ∆([0, 1]n) is a fea-
sible distribution that admits a density. In this case, the next proposition shows that P can be
implemented by (P ℓ, Ph) that are very far from being mutually absolutely continuous: they are
supported on disjoint sets.9

Proposition 7. Let n ≥ 2, and let P ∈ ∆([0, 1]n) be p-feasible for some p. Assume that P admits
a density. Then there exists a subset D ⊂ [0, 1]n, such that P can implemented by (P ℓ, Ph) with
the property that Ph is supported on D and P ℓ is supported on the complement D. Furthermore,
restricted to D and D respectively, P ℓ = 1

1−pP , and Ph = 1
pP .

Proof. Let R be a measure on [0, 1]n. For a subset D ⊆ [0, 1]n we denote by R
∣∣
D

the restriction of
R to this subset, i.e., R

∣∣
D
(A) = R(D ∩A) for any measurable set A.

In Theorem 3 in Gutmann et al. (1991) it was shown that for any absolutely continuous, finite
measure R on [0, 1]n and every measure Q ≤ R, there exists a measurable set D such that R

∣∣
D

and
Q have identical marginals.

Apply this result to R = 1
pP and Q ≤ 1

pP , which solves the linear program of Lemma 3. Then
there is a D ⊂ [0, 1]n such that Q and 1

pP
∣∣
D

have the same marginals. Let Q′ = 1
pP
∣∣
D
. Then Q′

9These pairs are also easily seen to be extreme points among the convex set of pairs that implement P .
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Figure 3: The implementation (P ℓ, Ph) of the uniform distribution on [c, 1 − c]2. Darker/lighter
colors indicate higher/lower densities.

is also a solution to the linear program of Lemma 3: Q′ ≤ 1
pP and dQi(x) =

x
pdPi(x). Hence, P is

implemented by Ph = Q′ = 1
pP
∣∣
D

and P ℓ = P−p·Q′

1−p = 1
1−pP |D, which proves the claim.

When n ≥ 2, an implementation is not always unique, in contrast to the single agent case. To
see this, consider the case of n = 2, and P equal to the uniform distribution US on the square
S = [c, 1− c]2 with c ∈ [0, 1/2). It is 1/2-feasible since the marginals are second-order dominated by
the uniform distribution on [0, 1] (see Proposition 2). For this example, there is a Q that solves the
linear program of Lemma 3, and is a convex combination of US and the uniform distribution UT

on the upper-triangle T = S ∩ {x1 + x2 ≥ 1}. It is easy to check that

Q =
1− c

1 + c
· UT +

2c

1 + c
· US

has the correct marginals and satisfies Q ≤ 2 ·US . The corresponding pair of distributions (P ℓ, Ph)

is illustrated in Figure 3.
Note that in this implementation the two distributions (P ℓ, Ph) do not have disjoint supports.

Hence Proposition 7 implies that another implementation exists. This is illustrated in Figure 4.
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Figure 4: An implementation of the uniform distribution on [c, 1 − c]2 in which P ℓ (depicted in
blue) and Ph (depicted in red) have disjoint supports. We denote c∗ = 2c(1− c).
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A Missing Claims and Proofs
Proof of Lemma 1. To prove the lemma we assume that P ′ is not p-feasible and show that P is not
p-feasible.

Let (x1, x
′
1, . . . , xn, x

′
n) be random variables such that (i) each pair (xi, x

′
i) is independent of the

rest, (ii) xi has distribution µi and x′
i has distribution µ′

i, and (iii) E(xi|x′
i) = x′

i, which is possible
since µi is a mean preserving spread of µ′

i.
By this definition, P is the joint distribution of (x1, . . . , xn) and P ′ is the joint distribution of

(x′
1, . . . , x

′
n). Hence, by Theorem 3, in order to prove our claim it suffices to find a trading scheme

(a1, . . . , an) such that

E

(
n∑

i=1

ai(xi)xi −max

{
0,

n∑
i=1

ai(xi)

})
> 0, (14)
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which would violate (7).
Since P ′ is not p-feasible, it follows from Theorem 3 that there exists a trading scheme (a′1, . . . , a′n)

such that

E

(
n∑

i=1

a′i(x
′
i)x

′
i −max

{
0,

n∑
i=1

a′i(x
′
i)

})
> 0. (15)

Define ai by10

ai(xi) = E(a′i(x′
i)|xi).

It follows from the definition of ai, from the law of iterated expectation, and from E(xi|x′
i) = x′

i

that

E(ai(xi) · xi) = E (E(a′i(x′
i)|xi) · xi)

= E (E(a′i(x′
i) · xi|xi))

= E (a′i(x
′
i) · xi)

= E (E(a′i(x′
i) · xi|x′

i))

= E (a′i(x
′
i) · E(xi|x′

i))

= E (a′i(x
′
i) · x′

i) . (16)

In addition, we have

E

(
−max

{
0,

n∑
i=1

ai(xi)

})
= E

(
−max

{
0,

n∑
i=1

E(a′i(x′
i)|xi)

})

= E

(
−max

{
0,E

(
n∑

i=1

a′i(x
′
i)

∣∣∣∣∣x1, . . . , xn

)})

≥ E

(
E

(
−max

{
0,

n∑
i=1

a′i(x
′
i)

}∣∣∣∣∣x1, . . . , xn

))

= E

(
−max

{
0,

n∑
i=1

a′i(x
′
i)

})
(17)

where the first equality holds by the definition of ai, the second equality holds since (x1, . . . , xn)

are independent, the third (in)equality follows from Jensen’s inequality since the function x 7→
−max{0, x} is concave, and the last equality is again the law of iterated expectation.

10This only defines ai µi-almost everywhere, which is sufficient for our needs; the rest of the definition can be
completed using any version of the conditional expectation.
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Together, (16) and (17) imply that the left hand side of (14) is at least as large as that of (15).
Since the latter is positive, we conclude that

E

(
n∑

i=1

ai(xi)xi −max

{
0,

n∑
i=1

ai(xi)

})
≥ E

(
n∑

i=1

a′i(x
′
i)x

′
i −max

{
0,

n∑
i=1

a′i(x
′
i)

})
> 0,

as desired.

Proof of Proposition 2. Assume that the uniform distribution is a mean preserving spread of ν (or,
equivalently, that ν is a mean preserving contraction of the uniform distribution). As shown before
the statement of the proposition, the uniform distribution is 1/2-feasible. Hence P is 1/2-feasible by
Lemma 1.

Conversely, let ν be a probability measure that is symmetric around 1/2, and assume that ν is not
a mean preserving contraction of the uniform distribution. We show that ν × ν is not 1/2-feasible.

Let F (x) = ν([0, x]) be the cumulative distribution function of ν. Since the uniform distribution
is not a mean-preserving spread of ν, there must be y ∈ [0, 1] such that

H(y) =

∫ y

0

F (x) dx−
∫ y

0

xdx =

∫ y

0

F (x) dx− y2

2
> 0.

Note that H is continuous, and furthermore differentiable. Since ν is symmetric and
∫ 1

0
F (x) dx =

1/2, the function H is also symmetric around 1/2: H(y) = H(1− y).
The function H vanishes at the end-points of the interval, and, as we noted above, is positive

somewhere on [0, 1]. Hence, it must have a global maximum y ∈ (0, 1/2]. By construction, H(y) > 0.
Since H is differentiable, we also have the first-order condition H ′(y) = F (y)− y = 0.

Let z = 1
F (y)

∫ y

0
x dν(x). We claim that z < y

2 . To see this note that

z =
1

F (y)

∫ y

0

xdF (x) =
1

F (y)

[
yF (y)−

∫ y

0

F (x) dx

]
< y − y2

2F (y)
= y − y

2
=

y

2
.

The second equality follows from integration by parts, the third equality holds since
∫ y

0
F (x) dx >

y2

2 , and the forth inequality follows since F (y) = y.
Let A1 = [1 − y, 1] and A2 = [0, y]. Let P = ν × ν. Note that by symmetry ν([y, 1]) =

1 − F (y) = 1 − y and by independence P (A1 × A2) = y(1 − y). In addition, by construction,∫
A1

xdP (x) = 1
2 −

∫ y

0
xdP (x) = 1

2 − yz, and
∫
A2

xdP (x) = yz. Therefore∫
A1

xdP (x)−
∫
A2

x dP (x)−P (A1 ×A2) =
1

2
− yz− yz− y(1− z) =

1

2
− 2yz− y+ y2 >

1

2
− y ≥ 0,

where the second inequality follows since z < 1/2. Therefore, Theorem 2 implies that P = ν × ν is
not feasible.
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Proof of Proposition 3 . Let m ∈ (0, 1) be the median of ν. We first prove the proposition for the
case where ν has no atom at m. We assume for simplicity that the number of agents is even; i.e.,
n = 2k (otherwise, we simply ignore the last agent).

We consider the trading scheme (a1, . . . , a2k) given by

ai(x) = 1x<m

for i ∈ {1, . . . , k}, and

ai(x) = −1x>m

for i ∈ {k+1, . . . , 2k}. We argue that for large enough n (i.e., large enough k) this trading scheme
violates the condition of Theorem 3.

Let B1 ∼ Bin(k, 1
2 ) denote the random variable of the number of agents i = 1, ..., k whose

posterior is in [0,m) (i.e., those that sell the product). Let B2 ∼ Bin(k, 1
2 ) denote the random

variable of the number of agents i = k + 1, ..., 2k whose posterior is in (m, 1] (i.e., those that buy
the product). Since νn is a product distribution we have that B1 is independent of B2.

Note also that
∑n

i=1 ai(xi) = B2 − B1, and so we have that the lower bound to the mediator’s
profit given by (7) equals

k

∫ 1

m

xdν(x)− k

∫ m

0

x dν(x)− E
(
max{0, B2 −B1}

)
.

We observe that E
(
max{0, B2 − B1}

)
≤
√

k
8 : We have E

(
B2 − B1

)
= 0 and E

(
(B2 − B1)

2
)
= k

2 .

Jensen’s inequality implies that E
(
|B2−B1|

)
≤
√

k
2 and by symmetry we deduce that E

(
max{B2−

B1, 0}
)
≤ 1

2

√
k
2 .

It follows that for k > 1
8

( ∫ 1

m
xdν −

∫m

0
xdν

)−2 this lower bound on the mediator’s profit is
positive, and thus by Theorem 3 the belief distribution νn is not feasible.

In case the distribution ν has an atom at m, the only needed change is to choose ai(m) so that
the expected number of units that each agent buys or sells is 1/2; the same calculation applies in
this case.

Proof of Lemma 2. Let I0 = ((Si)i∈N , P) be an information structure with prior p that induces P .
By the law of total expectation,

xi = P(ω = h | si) = P(ω = h | xi)

almost everywhere. Hence, if we define a new information structure I ′ for which the signals are
s′i = xi and the beliefs are, accordingly, x′

i = P(ω = h | s′i), we will have that

x′
i = s′i,
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and so we proved the second part of the claim.
Denote by P ℓ and Ph be the conditional distributions of (x′

1, . . . , x
′
n), conditioned on ω = ℓ and

ω = h, respectively. Then clearly P = (1− p) · P ℓ + p · Ph.
Finally, (9) holds, since by Bayes’ law and the fact that x′

i = s′i,

x′
i = P(ω = h | x′

i) = p · dP
h
i

dPi
(x′

i).

Proof of Proposition 4. Let B = (N, p, (Ai)i, (ui)i, us) be a social Bayesian persuasion problem.
By our equilibrium refinement assumption, there is for each receiver i a map αi : [0, 1] → Ai such
that in equilibrium receiver i chooses action ãi = αi(xi) when their posterior is xi. Hence, if we set

v(x1, . . . , xn) = us(α1(x1), . . . , αn(xn)),

Then, given an information structure chosen by the sender,

E(us(ã1, . . . , ãn)) = E(us(α1(x1), . . . , αn(xn))) = E(v(x1, . . . , xn)).

Thus, if we denote by P the posterior belief distribution induced by the chosen information struc-
ture, we have shown that the sender’s expected utility is∫

v(x1, . . . , xn) dP (x1, . . . , xn).

Since the sender, by choosing the information structure, can choose any p-feasible distribution, we
arrive at the desired conclusion.

Proof of Proposition 5. We first show that every information structure I = (S1, S2,P) with prior p
chosen by the sender yields utility at most (1− p)p.

This proof uses the fact conditional expectations are orthogonal projections in the Hilbert space
of square-integrable random variables. We now review this fact.

For the probability space (Ω× S1 × S2, P) denote by L2 the Hilbert space of square-integrable
random variables, equipped with the usual inner product (X, Y ) = E(X · Y ) and corresponding
norm ∥X∥ =

√
E(X2).

Given a sub-sigma-algebra G ⊆ F , denote by L2(G) ⊆ L2 the closed subspace of G-measurable,
sqaure-integrable random variables. Recall that the map X 7→ E(X | G) is simply the orthogonal
projection L2 → L2(G).

The following is an elementary lemma regarding Hilbert spaces. We will, of course, apply it to
L2.
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Lemma 4. Let u be a vector in a Hilbert space U , and let w be an orthogonal projection of u to a
closed subspace W ⊆ U . Then w lies on a sphere of radius 1

2∥u∥ around 1
2u, i.e. ∥w− 1

2u∥ = 1
2∥u∥.

Proof. Since w is an orthogonal projection of u, we can write u = w + w′, where w and w′ are
orthogonal. This orthogonality implies that ∥w − w′∥ = ∥w + w′∥ = ∥u∥. It follows that∥∥∥w − 1

2
u
∥∥∥ =

∥∥∥w − 1

2
(w + w′)

∥∥∥ =
∥∥∥1
2
w − 1

2
w′
∥∥∥ =

1

2
∥w − w′∥ =

1

2
∥u∥.

Let X = 1ω=h be the indicator of the event that the state is high. Hence xi = E(X | Fi), where
Fi = σ(si) is the sigma-algebra generated by the private signal si. Denote X̂ = X/p − 1. Hence
P(X̂ = 1/p − 1) = p, P(X̂ = −1) = 1 − p, and ∥X̂∥2 = (1 − p)/p. Denote X̂i = xi/p − 1, so that
X̂i = E(X̂ | Fi). Since X̂i is the projection of X̂ to the subspace L2(Fi), it follows from Lemma 4
that

∥X̂i − X̂/2∥ =
1

2

√
1− p

p
.

Therefore, by the triangle inequality, ∥X̂1 − X̂2∥ ≤
√
(1− p)/p, and since X̂i = xi/p − 1 we get

that ∥x1/p− x2/p∥ ≤
√
(1− p)/p, or

E((x1/p− x2/p)
2) ≤ 1− p

p
.

Thus

E((x1 − x2)
2) ≤ (1− p)p.

To finish the proof of Proposition 5, we note that a simple calculation shows that the sender can
achieve the expected utility (1− p)p by completely informing one agent, and giving no information
to the other. That is, by inducing the joint posterior distribution

P = p · δ1,p + (1− p)δ0,p.

Remark on the polarizing social Bayesian persuasion problem with a < 2 and p = 1/2.
For the social Bayesian persuasion problem Ba given by v(x1, x2) = |x1−x2|a and symmetric prior
p = 1/2, we argue that P = 1

2δ1, 12 +
1
2δ0, 12 is the optimal posterior distribution for all a ∈ (0, 2); thus

the value V (Ba) of the problem equals 1
2a . To prove this, it is enough to check the upper bound

V (Ba) ≤ 1
2a .
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Consider an arbitrary 1/2-feasible policy P ′. Hölder’s inequality implies∫
v(x1, x2) dP

′ =

∫
v(x1, x2) · 1 dP ′ ≤

(∫
(v(x1, x2))

q
dP ′
) 1

q

·
(∫

1q
′
dP ′
) 1

q′

where q, q′ > 0 and 1
q + 1

q′ = 1. Picking q = 2
a and taking supremum over P ′ on both sides, we get

V (Ba) ≤
(
V (B2)

) a
2 . By Proposition 5, V (B2) =

1
4 and we obtain the required upper bound.

Proof of Proposition 6. It is immediate to check that the expected utility for the distribution P

given in the theorem statement is 1/32. It thus remains to prove that no other distribution can
achieve higher expected utility.

We retain the notation used in the proof of Proposition 4. Let (x1, x2) be the posterior beliefs
of two agents induced by some information structure. Since the prior is p = 1/2, X̂i = 2xi − 1, and
so

E(v(x1, x2)) = −E((x1 − 1/2) · (x2 − 1/2)) = −1

4
E(X̂1 · X̂2).

We recall that (·, ·) denotes the inner product in the Hilbert space L2. Thus we can write

E(v(x1, x2)) = −1

4
(X̂1, X̂2). (18)

By Lemma 4, the vectors X̂1, X̂2 ∈ L2 lie on a sphere of radius 1
2∥X̂∥ around 1

2X̂ ∈ L2. Note that
since p = 1/2, ∥X̂∥ = 1. Since {X̂, X̂1, X̂2} span a subspace that is (at most) three dimensional,
the question is reduced to the following elementary question in three dimensional geometry: given
a vector w ∈ R3, what is the minimum of the inner product (u1, u2), as u1, u2 ∈ R3 range over the
sphere of radius ∥w∥ around w? Lemma 5 states that the minimum is − 1

2∥w∥
2. Hence by (18)

E(v(x1, x2)) ≤
1

32
.

Lemma 5. Let w ∈ R3. Then

min
{
(u1, u2) : ∥w − u1∥ = ∥w − u2∥ = ∥w∥

}
= −1

2
∥w∥2.

The proof is left as an exercise to the reader. Alternatively, this problem can be solved symbol-
ically using the Mathematica command

Minimize[{x1*y1 + x2*y2 + x3*y3,
(x1 - 1)^2 + (x2)^2 + (x3)^2 == 1 && (y1 - 1)^2 + (y2)^2 + (y3)^2 == 1},
{x1, x2, x3, y1, y2, y3}]
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w

u1

u2

Figure 5: Lemma 5 states that −1/2 is the smallest possible inner product between two vectors that
lie on a unit sphere which intersects the origin. The depicted u1 and u2 achieve this minimum.

Proof of Theorem 4. We start by constructing an extreme point of P2
p with infinite support. There-

after, we extend this construction for N ≥ 2 receivers.
Consider the following information structure. Let S1 = S2 = {1, 2, . . .}. Choose at random a

number K, which is distributed geometrically with parameter r that depends on the state: When
ω = ℓ, r = 2/3, and when ω = h, r = 1/2. The signals (s1, s2) that the agents receive are equal to
(K,K) when ω = ℓ, and to (K + 1,K) when ω = h.

A simple calculation shows that when an agent 1 observes a signal s1 = k her posterior x1(k) = tk

and when agent 2 observes s2 = k, her posterior is x1(k) = wk, where tk and wk are given by

tk =

{
2−k+1p

2−k+1p+2·3−k(1−p)
, k ≥ 2

0, k = 1
, wk =

2−kp

2−kp+ 2 · 3−k(1− p)
, k ≥ 1.

The induced conditional distributions of (x1, x2) are

P ℓ =

∞∑
k=1

2 · 3−k · δ(tk, wk)

Ph =

∞∑
k=1

2−k · δ(tk+1, wk).

Note that P ℓ and Ph have disjoint supports; see Figure 2.
Hence the induced (unconditional) distribution is P = (1− p) · P ℓ + p · Ph. It satisfies the pair

of identities

tk · P
({(

tk, wk

)})
= (1− tk) · P

({(
tk, wk−1

)})
, k ≥ 2, (19)

wk · P
({(

tk, wk

)})
= (1− wk) · P

({(
tk+1, wk

)})
, k ≥ 1, (20)
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which we use below.
We first argue that (P ℓ, Ph) is the unique implementation of P .11

By Lemma 2, for any pair (Qℓ, Qh) implementing a feasible distribution Q, the marginals satisfy
dQh

i (x) =
x
pdQi(x) for each agent i ∈ N . Since Qℓ = Q−p·Qh

1−p , we get the complimentary equation
dQℓ

i(x) =
1−x
1−pdQi(x). Combining the two equations, we obtain

x

p
· dQℓ

i(x) =
1− x

1− p
· dQh

i (x) for i ∈ N . (21)

Let (P̂ ℓ, P̂h) be an implementation of P . The identity (21), applied to i = 1 and x = tk, gives
the following equation

t1
p
P̂ ℓ
({(

t1, w1

)})
=

1− t1
1− p

P̂h
({(

t1, w1

)})
(22)

for k = 1, and the following family of equations for k ≥ 2:

tk
p

(
P̂ ℓ
({(

tk, wk

)})
+ P̂ ℓ

({(
tk, wk−1

)}))
=

1− tk
1− p

(
P̂h
({(

tk, wk

)})
+ P̂h

({(
tk, wk−1

)}))
. (23)

Similarly, for i = 2 and x2 = wk, we get

wk

p

(
P̂ ℓ
({(

tk, wk

)})
+ P̂ ℓ

({(
tk+1, wk

)}))
=

1− wk

1− p

(
P̂h
({(

tk, wk

)})
+ P̂h

({(
tk+1, wk

)}))
. (24)

We now show that these equations and the condition P = (1−p)P̂ ℓ+p·P̂h completely determine the
pair (P̂ ℓ, P̂h). Since t1 = 0, equation (22) results in P̂h({(t1, w1)}) = 0 and hence the entire mass
1

1−pP ({(t1, w1)}) of the point (t1, w1) must be assigned to P̂ ℓ. Given this, the equality (24) implies
the entire mass 1

pP ({(t2, w1)}) of the point (t2, w1) must be assigned to P̂h. Indeed, expressing
P̂ ℓ({(tk, wk)}) and P̂h({(tk+1, wk)}) through P and taking into account that P̂h({(tk, wk)}) = 0

for k = 1, we rewrite (24) as

wk

p

(
1

1− p
P
({(

tk, wk

)})
+ P̂ ℓ

({(
tk+1, wk

)}))
=

1− wk

1− p

(
P
({(

tk+1, wk

)})
− (1− p)P̂ ℓ

({(
tk+1, wk

)})
p

)
(25)

for k = 1. This equality and the identity (20) lead to P̂ ℓ({(t2, w1)}) = 0.
11See §7 for the definition of an implementation, as well as an example that shows that feasible distributions may

have multiple implementations.
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Next, a similar argument demonstrates that the entire mass 1
1−pP

({(
t2, w2

)})
of the point

(t2, w2) must be assigned to P̂ ℓ. Indeed, we know that P̂ ℓ({(tk, wk−1)}) = 0 for k = 2, which
allows us to rewrite (23) as

tk
p

P
({(

tk, wk

)}
− p · P̂h

({(
tk, wk

)}))
1− p


=

1− tk
1− p

(
P̂h
({(

tk, wk

)})
+

1

p
P
({(

tk, wk−1

)}))
(26)

for k = 2. Combining this equality with identity (19), we get P̂h
({(

t2, w2

)})
= 0. We proceed

inductively: knowing that P̂h
({(

tk, wk

)})
= 0, we deduce equality (25) and infer using (20) that

P̂ ℓ
({(

tk+1, wk

)})
= 0; from this, we derive equality (26) and, with the help of (19), see that

P̂h
({(

tk+1, wk+1

)})
= 0, and so on. Thus P̂ ℓ coincides with 1

1−pP restricted to {(tk, wk) : k ≥ 1}
and P̂h coincides with 1

pP restricted to {(tk+1, wk) : k ≥ 1}, and so P̂ ℓ = P ℓ, P̂h = Ph. Hence P

has a unique implementation.
Given a convex combination P = αQ+(1−α)Q̂, where Q and Q̂ are both feasible and α ∈ (0, 1),

our goal is to show that Q = P . Let (Qℓ, Qh) and (Q̂ℓ, Q̂h) be some pairs of conditional probability
distributions that implement Q and Q̂, respectively. The pair (αQℓ + (1 − α)Q̂ℓ, αQh + (1 −
α)Q̂h) implements P . From the uniqueness of P ’s implementation we deduce that supp (Qℓ) ⊂
supp (P ℓ) and supp (Qh) ⊂ supp (Ph), and thus Qℓ({(tk+1, wk)}) = Qh({(tk, wk)}) = 0. Therefore,
condition (21) implies

tk
p

·Qℓ
({(

tk, wk

)})
=

1− tk
1− p

·Qh
({(

tk, wk−1

)})
, k ≥ 2

wk

p
·Qℓ

({(
tk, wk

)})
=

1− wk

1− p
·Qh

({(
tk+1, wk

)})
, k ≥ 1.

This family of equations uniquely determines the weights of each point (tk, wk) and (tk+1, wk),
k ≥ 1, up to a multiplicative factor, which is pinned down by the condition that Q is a probability
measure. Hence in the decomposition P = αQ + (1 − α)Q̂, the distribution Q is unique. Thus Q

must be equal to P and hence P is an extreme point.
This construction extends to N ≥ 2, by sending no information to the remaining N − 2 agents.

The resulting distribution over posteriors is an extreme point due to the same arguments.
Now we check the singularity of the extreme points of PN

p with respect to the Lebesgue measure
λ on the unit cube [0, 1]N . The proof relies on the classical theorem of Lindenstrauss (1965),
which states that all extreme points of the set of all probability measures with given marginals are
singular. Lindenstrauss (1965) proved this result for n = 2 and Shortt (1986) extended it to general
n. In §C (Theorem 5), we include an alternative proof for n ≥ 2 closely following the original proof
of Lindenstrauss. Here we show how to apply this result to our problem.
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By Lemma 2, any p-feasible distribution P can be represented as (1− p)P ℓ + p · Ph, where the
marginals of the pair (P ℓ, Ph) satisfy the identity

x

p
dP ℓ

i (x) =

(
1− x

p

)
dPh

i (x). (27)

Denote by HN
p the set of all pairs satisfying (27). The set of p-feasible distributions PN

p is, therefore,
the image of the convex set HN

p under the linear map (P ℓ, Ph) → (1− p)P ℓ + p ·Ph. The extreme
points of PN

p are hence all contained in the image of the extreme points of HN
p .

So it is enough to check that in any extreme pair (P ℓ, Ph), both measures are necessary singular
with respect to λ. We check singularity of P ℓ; the argument for Ph is analogous. We assume towards
a contradiction that P ℓ is not singular. Then by Theorem 5, P ℓ is not an extreme point among
measures with the same marginals and thus can be represented as P ℓ = 1

2Q + 1
2Q

′, where Q and
Q′ have the same marginals as P ℓ and Q ̸= Q′. This induces the representation of (P ℓ, Ph) as the
average of

(
Q, Ph

)
and

(
Q′, Ph

)
, where both pairs satisfy (27). Contradiction.

Proposition 8. The set of p-feasible posterior distributions is a convex, weak* compact subset of
∆([0, 1]n).

Proof. Pick a pair of feasible distributions P, P ′ ∈ PN
p and consider the corresponding Q, Q′ ∈

∆
(
[0, 1]N

)
that satisfy the conditions of Lemma 3 for P and P ′, respectively. For a convex combi-

nation P ′′ = αP + (1 − α)P ′, the conditions of the lemma are satisfied by Q′′ = αQ + (1 − α)Q′.
Thus P ′′ also belongs to PN

p , and so we have shown that the set of feasible distributions is convex.
To verify the weak* compactness of PN

p , consider a sequence of p-feasible distributions P (k)

weakly converging to some P (∞) ∈ ∆
(
[0, 1]N

)
, as k → ∞. To prove weak* compactness we show

that the limit distribution P (∞) is also feasible. For each P (k), select some Q(k) from Lemma 3. The
set of all probability distributions on [0, 1]N is weak* compact and, therefore, there is a subsequence
Q(km) weakly converging to some Q(∞) ∈ ∆

(
[0, 1]N

)
.

The conditions of Lemma 3 can be rewritten in an equivalent integrated form. Condition (1)

becomes ∫
f(x1, . . . , xn)

(
1

p
dP (x1, . . . , xn)− dQ(x1, . . . , xn)

)
≥ 0 (28)

for any non-negative continuous function f on the unit cube. Condition (2) is equivalent to∫
g(xi)

(
xi

p
dP (x1, . . . , xn)− dQ(x1, . . . , xn)

)
= 0 (29)

for any agent i ∈ N and any continuous g of arbitrary sign on the unit interval.
With this reformulation it is immediate that both conditions are closed, and hence withstand

the weak* limit. Therefore, since P (km), Q(km) satisfy the conditions (28) and (29), the limiting
pair P (∞), Q(∞) satisfies them as well. We deduce that P (∞) is feasible.
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B Checking on Intervals is not Sufficient
In this section we show that restricting the condition (5) to intervals A1, A2 provides a condition
that—while clearly necessary—is not sufficient for feasibility.

To see this, consider the following distribution P , depicted in Figure 6. It is parameterized
by small ε > 0 and is supported on four points: two “heavy” points,

(
1
4 − ε

4 ,
1
2

)
and

(
3
4 ,

1
2

)
with

probabilities 1−ε
2 and 1/2, respectively, and two “light” points,

(
1
2 − ε

4 , 0
)
and

(
1
2 − ε

4 , 1
)
, each with

probability ε
4 . Thus

P =
1− ε

2
δ 1−ε

4 , 12
+

1

2
δ 3

4 ,
1
2
+

ε

4

(
δ1/2−ε/4,0 + δ1/2−ε/4,1

)
(30)

1
2

1
2

9
20

1
2

1
40

1
40

Figure 6: The distribution defined in (30), for ε = 1/10. The heavy points are large and blue, and
the light points are small and red.

This distribution satisfies the martingale condition with prior 1/2; however, it is not 1/2-feasible.
To see that, pick A1 =

{
1−ε
4 , 3

4

}
and A2 =

{
1
2

}
, then A1×A2 has zero P -measure and the condition

(5) is violated:

0 ≥ 1− ε

4
· 1− ε

2
+

3

4
· 1
2
− 1

2

(
1− ε

2
+

1

2

)
=

ε2

8
.

We now check that none of the inequalities (5) is violated for intervals A1, A2. Since P satisfies
the martingale condition, it suffices to check the left inequality12

P (A1 ×A2) ≥
∫
A1

x dP1(x)−
∫
A2

x dP2(x). (31)

12Using the martingale condition
∫
A1

xdP1(x) +
∫
A1

x dP1(x) = p the right inequality in (5) follows from the left
by a simple calculation.
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Since P has finite support, different choices of A1, A2 yield the same inequality if each set contains
the same points of the support of P1 and P2, respectively. Thus, we need to check that (31) is
satisfied if A1 is a subset of

{
1−ε
4 , 1

2 − ε
4 ,

3
4

}
and A2, a subset of

{
0, 1

2 , 1
}
, except the cases of

A1 =
{

1−ε
4 , 3

4

}
and A2 = {0, 1}, which exclude the middle points and do not correspond to any

interval.
We consider the following cases:

• Inequality (31) holds if one of the sets Ai is empty or contains the whole support of Pi, as it
then boils down to the martingale condition, which we already verified.

• Consider the case when A1 ×A2 contains exactly one heavy point; by the interval constraint,
if it contains two, then A1 contains the support of P1, which is the case we already considered.
In this case, P (A1×A2) ≥ 1−ε

2 . On the other hand, the integral
∫
A1

xdP1(x) does not exceed
1
2 −

3
4 ·

1
2 = 1

8 if A1 excludes the rightmost heavy point and it does not exceed 1
2 −

1−ε
4

1−ε
2 . We

see that for ε small enough (e.g., ε = 1
10 ), condition (31) is satisfied regardless of the choice

of A2, since 1−ε
2 ≥ max

{
1
8 ,

1
2 − 1−ε

4
1−ε
2

}
.

• Consider the remaining case, in which there are no heavy points in A1×A2, and both A1 and
A2 are nonempty strict subsets of the supports. This can only be possible if A2 contains 1/2

or A1 =
{

1
2 − ε

4

}
. In the former case,

∫
A2

xdP2(x) ≥ 1
2 − ε

4 , which for small ε ( 1
10 suffices)

exceeds
∫
A1

xdP1(x) for any A1 excluding at least one of the heavy points (see the bounds
above). Hence, the right-hand side of (31) is negative and the inequality is satisfied. Consider
the remaining case of A1 =

{
1
2 − ε

4

}
and A2 either {0} or {1}. The left-hand side of (31)

equals ε
4 and

∫
A1

x dP1(x) =
(
1
2 − ε

4

)
· ε
2 ≤ ε

4 . Thus (31) is satisfied on all intervals.

This example also demonstrates that the condition of Ziegler (2020) (Theorem 1) is not sufficient
for feasibility. Using our notation his condition can be written as follows:

max

{∫ a

0

x dP1(x) +

∫ b

0

x dP2(x)− p,

∫ a

0

(1− x) dP1(x) +

∫ b

0

(1− x) dP2(x)− (1− p)

}
≤

≤ P ([0, a]× [0, b]) ≤

≤ min

{∫ a

0

(1− x) dP1(x) +

∫ b

0

x dP2(x),

∫ a

0

x dP1(x) +

∫ b

0

(1− x) dP2(x)

}
.

for every a, b ∈ [0, 1]

Simple computations show that for every given a, b ∈ [0, 1] this condition is equivalent to four of our
conditions (see Equation 5) for all possible combinations of A1 = [0, a] or A1 = [a, 1] and A2 = [0, b]

or A2 = [b, 1].
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The condition for feasibility in Ziegler (2020) is essentially the same condition as our condition
(5), but restricted to interval subsets A1, A2 ⊂ [0, 1], where each interval has a boundary point
either at 0 or at 1. If the marginals P1 and P2 are supported on at most two points, such intervals
exhaust all possible non-trivial sets in Equation 5; in this case, Ziegler’s condition is necessary and
sufficient for feasibility. However, the example above demonstrates that this condition becomes
insufficient if the support contains at least 3 points.

C Singularity of extreme measures with given marginals
In this section we formulate an extension of a celebrated result of Lindenstrauss (1965) regarding
extreme points of the set of measures with given marginals. The extension is two-fold: the classic
result assumes n = 2 and uniform marginals and we get rid of both assumptions. This extension can
also be deduced from a more general statement by Shortt (1986), which allows for non-orthogonal
multidimensional projections.

For the reader’s convenience, we include a proof similar to Lindenstrauss’s.

Theorem 5 (n = 2 (Lindenstrauss, 1965); n ≥ 2 (Shortt, 1986)). Any extreme point P of the set
of probability measures on [0, 1]N with given one-dimensional marginals νi ∈ ∆([0, 1]), i ∈ N , is
singular with respect to the Lebesgue measure λ on the unit cube. In other words, for each extreme
P there exists a measurable set B such that P (B) = 1 and λ(B) = 0.

Proof. Assume the converse: P is not singular. By the Lebesgue decomposition theorem the con-
tinuous part of P can be singled out: P = µ + λ⊥, where µ ̸= 0 is absolutely continuous with
respect to λ (dµ = fdλ with a non-negative integrable density f), λ⊥ is singular with respect to λ.

Consider the Lebesgue space L1(µ) of integrable functions with respect to µ (defined µ-everywhere)
and its closed subspace S generated by “separable”13 functions g(x1, . . . , xn) =

∑
i∈N gi(xi), where

gi ∈ L1(µ), i ∈ N , depends on the variable xi only.
Let’s assume that S ̸= L1(µ), i.e., separable integrable functions are not dense in all integrable

(we check this condition at the end of the proof). Now we show that under this assumption, µ can
be represented as a convex combination of 1

2µ
′+ 1

2µ
′′, where µ′ and µ′′ are distinct but have the same

marginals. By the Hann-Banach theorem there exists a continuous functional θ of norm 1 such that
θ is identically zero on S. Since the dual space to L1(µ) is the space L∞(µ) of essentially-bounded
functions, the functional θ can be identified with a non-zero function θ(x1, . . . , xn) bounded by 1

in absolute value. The condition of vanishing on S reads as∫ ∑
i∈N

gi(xi) · θ(x1, . . . , xn) dµ = 0, ∀gi = gi(xi) ∈ L1(µ), i ∈ N. (32)

13We refer here to separability in economic sense.
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We see that the measure θ dµ is non-zero but has zero marginals! Define µ′ and µ′′ as dµ′ =

(1− θ) dµ and dµ′ = (1 + θ) dµ. By the construction, µ is the average of µ′ and µ′′, µ′ and µ′′ are
distinct, and all measures µ, µ′, and µ′′ have the same marginals. Thus P is also represented as the
average of µ′ + λ⊥ and µ′′ + λ⊥, i.e., P is not an extreme point. Contradiction. This contradiction
completes the proof (under the assumption that S ̸= L1(µ)).

Now we check that S ̸= L1(µ). Our goal is to construct a function h ∈ L1(µ) such that for
any g(x1, . . . , xn) =

∑
i∈N gi(xi) ∈ L1(µ) the L1-distance

∫
|h − g|dµ is bounded below by some

positive constant independent of g.
Recall that dµ = fdλ. Fix δ > 0 such that the set Aδ = {x ∈ [0, 1]N : f(x) ≥ δ} has

non-zero Lebesgue measure. Fix another small constant ε > 0; by the Lebesgue density theorem
applied to Aδ, there exist a point x0 ∈ (0, 1)N and a number a > 0 such that for the cube C =∏

i∈N [x0
i − a, x0

i + a) ⊂ [0, 1]N of size 2a centered at x0 the following inequality holds λ(C\Aδ)
λ(C) ≤ ε.

Define h(x) = 1 if xi ≥ x0
i for all i ∈ N , and h(x) = 0, otherwise.

Cut the cube C into 2n small cubes indexed by subsets of N : for M ⊂ N the cube CM is given
by
∏

i∈N\M
[
x0
i − a, x0

i

)
×
∏

i∈M

[
x0
i , x

0
i + a

)
. No function g(x) =

∑
i∈N gi(xi) can approximate

h well on all the small cubes at the same time. Intuition is the following: since h is zero in all
the cubes except CN , then g must be close to zero on these cubes; however, values on these cubes
determine values of g on CN by

g(x) =
1

n− 1

((∑
i∈N

g
(
x1, . . . , xi−1, xi − a, xi+1, . . . , xn

))
− g
(
x1 − a, x2 − a, . . . , xn − a

))
,

(33)
therefore g is close to zero on CN and cannot approximate h well.

To formalize this intuition, we assume that
∫
CM

|h − g|dµ is less then some α · λ(CM ) for any
M ⊂ N and show that this constant α cannot be too small. For M ̸= N we get

∫
CM

|g| · f dλ ≤
αλ(CM ). Applying the Markov inequality on the set CM ∩Aδ and taking into account that this set
is big enough (by the construction of the original cube, λ(CM\Aδ)

λ(CM ) ≤ 2nε), we obtain existence of a
set BM ⊂ CM such that |g(x)| ≤

√
α
δ on BM and λ(CM\BM )

λ(CM ) ≤ 2nε+
√
α.

Consider a subset B∗ of CN such that, whenever x ∈ B∗, all the arguments of the right-hand
side in (33) belong to respective subsets BM , i.e., B∗ = ∩i∈N

(
BN\{i} + a · ei

)
∩
(
B∅ + a ·

∑
i∈N ei

)
,

where sets BM are translated by the elements of the standard basis (ei)i∈N . The union bound
implies that the set B∗ is dense enough in CN : λ(CN\B∗)

λ(CN ) ≤ (n + 1) (2nε+
√
α). By formula (33),
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the absolute value of g is bounded by n
n−1

√
α
δ on B∗. We get the following chain of inequalities:

α ≥ 1

λ(CN )

∫
CN

|h− g|dµ

≥ 1

λ(CN )

∫
B∗∩Aδ

|h− g| · f dλ

≥
(
1− n

n− 1

√
α

δ

)
· δ · λ(B

∗ ∩Aδ)

λ(CN )

≥
(
δ − n

n− 1

√
α

)(
1− (n+ 1)

(
2nε+

√
α
)
− 2nε

)
. (34)

Denote by α∗ = α∗(δ, n, ε) the minimal value of α ≥ 0 satisfying the inequality created by the head
and the tail of (34). The constant ε is a free parameter in the construction. Selecting it to be small
enough (namely (n+ 2)2nε < 1), we ensure that α∗ > 0.

For any g =
∑

i∈N gi(xi)∫
[0,1]N

|h− g|dµ ≥ max
M⊂N

∫
CM

|h− g|dµ ≥ α∗(δ, n, ε) · 2−nλ(C) > 0.

Since the constant on the right-hand side is independent of g and positive, we see that h cannot be
approximated by separable functions. Thus h does not belong to S and S ̸= L1.

D A characterization of feasible distributions for finitely many
agents

In this section we prove Theorem 3. The proof of necessity is straightforward and explained before
the theorem statement.

The proof of sufficiency uses Théorème 2.6 of Hansel and Troallic (1986), which is a generaliza-
tion of Kellerer’s Theorem. Recall that a paving of a set X is a set of subsets of X that includes
the empty set, and an algebra is a paving that is closed under unions and complements. By a
collection we mean a multiset, i.e., the same element can enter the collection several times. Denote
R̄+ = [0,∞]. A finitely additive measure is a map from an algebra to R̄+ that is additive for disjoint
sets.

Theorem C (Hansel and Troallic (1986)). Let X be a set, and F an algebra of subsets of X. Let
F1, . . . ,Fn,G1, . . . ,Gm be subpavings of F . For i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} let αi : Fi → R̄+,
and βj : Gj → R̄+ be maps that vanish on the empty set. Then the following are equivalent:

1. There is a finitely additive measure Q : F → R+ such that, for every i ∈ {1, . . . , n} and every
A ∈ Fi it holds that αi(A) ≤ Q(A), and for every j ∈ {1, . . . ,m} and every B ∈ Gj it holds
that Q(B) ≤ βj(B).
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2. For every finite collections of sets A1 ⊆ F1, . . . ,An ⊆ Fn, B1 ⊆ G1, . . . ,Bm ⊆ Gm, if
n∑

i=1

∑
A∈Ai

1A ≤
m∑
j=1

∑
B∈Bj

1B

then
n∑

i=1

∑
A∈Ai

αi(A) ≤
m∑
j=1

∑
B∈Bj

βj(B).

We will need the following corollary of this result.

Corollary C. Fix P ∈ ∆([0, 1]n), 0 < p ≤ 1, and M1, . . . ,Mn ∈ ∆([0, 1]). Then the following are
equivalent:

1. There exists a probability measure Q ∈ ∆([0, 1]n) that is dominated by 1
pP , and which has

marginals Qi = Mi.

2. For every A1 . . . ,An, finite collections of Borel subsets of [0, 1], every C a finite collection of
Borel subsets of [0, 1]n, and for every non-negative integer K, if

n∑
i=1

∑
A∈Ai

1A(xi) ≤ K +
∑
C∈C

1C(x1, . . . , xn) (35)

for all (x1, . . . , xn), then
n∑

i=1

∑
A∈Ai

Mi(A) ≤ K +
∑
C∈C

1

p
P (C). (36)

Proof. The proof that 1. implies 2. is simple and omitted.14

Let F be the Borel sigma-algebra of [0, 1]n. For each i ∈ {1, . . . , n} let Fi be the sub-sigma-
algebra of sets that are measurable in the ith coordinate. That is, Fi consists of sets of the form
[0, 1]i−1 × A × [0, 1]n−i, where A is any Borel subset of [0, 1]. Denote by πi : [0, 1]

n → [0, 1] the
projection on the ith coordinate.

Letm = 2. Define G1 as the trivial algebra {∅, [0, 1]n} and G2 = F . Let αi = Mi, β1

(
[0, 1]n

)
= 1,

β1(∅) = 0, and β2 = 1
pP . Let A1 . . . ,An and C satisfy (35). By abuse of notation we identify each

A ∈ Ai with its preimage π−1
i (A) = [0, 1]i−1 × A × [0, 1]n−i. Thus Ai ⊆ Fi. We define B1 and B2

as follows. The collection B1 ⊆ G1 contains K copies of [0, 1]n and Bm = C ⊆ G2.
We can apply Theorem C directly to conclude that there is a finitely additive measure Q that

is dominated by 1
pP , has Q([0, 1]n) ≤ 1, and whose marginals Qi dominate Mi for i ∈ N . Each Mi

14We will only make use of the other, non-trivial direction.
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is a probability measure and the total mass of Q is at most 1; hence, Qi can dominate Mi only if
Qi = Mi. We conclude that Q is a probability measure with marginals Mi for each i. Since Q is
dominated by a sigma-additive measure, it is also itself sigma-additive (see Lemma 6 below).

Lemma 6. Let F be a sigma-algebra of subsets of X. Let µ : F → R̄+ be a finitely additive measure,
and let ν : F → R̄+ be a sigma-additive measure. If µ ≤ ν and ν(X) < ∞ then µ is sigma-additive.

Proof. Let A1, A2, . . . ∈ F be pairwise disjoint. Denote A = ∪iAi. Then, by additivity, we have
that

µ(A) = µ(∪n
i=1Ai) + µ(∪∞

i=n+1Ai) ≥ µ(∪n
i=1Ai) =

n∑
i=1

µ(Ai)

Hence µ(A) ≥
∑∞

i=1 µ(Ai). For the other direction,

µ(A) = µ(∪n
i=1Ai) + µ(∪∞

i=n+1Ai) ≤
n∑

i=1

µ(Ai) + ν(∪∞
i=n+1Ai),

since µ ≤ ν. By the sigma-additivity and finiteness of ν, the last addend vanishes as n tends to
infinity. Hence µ(A) ≤

∑∞
i=1 µ(Ai).

We are now ready to finish the proof of Theorem 3. We will show that (7) suffices for feasibility
by checking that it implies the condition of Lemma 3. Assume then that P satisfies (7), i.e. for
every trading scheme (a1, . . . , ai) it holds that∫

[0,1]n

(
n∑

i=1

ai(xi)xi −max

{
0,

n∑
i=1

ai(xi)

})
dP (x1, . . . , xn) ≤ 0. (37)

Choose i, j ∈ {1, . . . , n}, and consider the trading scheme in which ai = 1, aj = −1 and ak = 0 for all
k ̸∈ {i, j}. Then (37) implies that

∫ 1

0
x dPi(x) =

∫ 1

0
x dPj(x). We accordingly set p =

∫ 1

0
xdPi(x),

and note that this definition is independent of the choice of i. Define the measures Mi ∈ ∆([0, 1]n)

by dMi(x) =
x
pdPi(x).

Let A1 . . . ,An, K, and C satisfy (35). We will show that (36) must hold. This will conclude
the proof, since then it follows from Corollary C that there exists a measure Q that satisfies the
conditions of Lemma 3, as condition (10) is simply Qi = Mi.

To show that (36) holds, define the trading scheme (a1, . . . , an) by

ai(x) = c ·

(∑
A∈Ai

1A(x)−
K

n

)
,
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where c is a normalization constant chosen small enough so that the image of all the ai’s is in
[−1, 1]. Then by (37)∫

[0,1]n

n∑
i=1

ai(xi)xi dP (x1, . . . , xn) ≤
∫
[0,1]n

max

{
0,

n∑
i=1

ai(xi)

}
dP (x1, . . . , xn).

We substitute the definition of the trading scheme and the measures Mi. This yields

p ·
n∑

i=1

∑
A∈Ai

Mi(A)− p ·K ≤
∫
[0,1]n

max

{
0,

n∑
i=1

∑
A∈Ai

1A(xi)−K

}
dP (x1, . . . , xn).

By (35), the integrand on the right-hand side is at most
∑

C∈C 1C(x1, . . . , xn). Hence

p ·
n∑

i=1

∑
A∈Ai

Mi(A)− p ·K ≤
∑
C∈C

P (C).

Dividing by p and rearranging yields
n∑

i=1

∑
A∈Ai

Mi(A) ≤ K +
∑
C∈C

1

p
P (C).

Thus condition (36) holds, and by Lemma 3 the distribution P is p-feasible. This completes the
proof of Theorem 3.

E Independent beliefs induced by Gaussian signals
Let ϕ be the density of the standard Gaussian random variable: ϕ(t) = 1√

2π
e−

t2

2 .
For prior p = 1/2, consider an agent who gets a signal s ∈ R distributed according to the

Gaussian distribution with variance 1 and mean equal to d for the state ω = h, and equal to −d

for the state ω = ℓ, so that the conditional distributions have the densities ϕ(s− d) and ϕ(s+ d),
respectively. The density f(s) of the unconditional distribution is

f(s) =
1

2
ϕ(s− d) +

1

2
ϕ(s+ d) =

1

2
√
2π

e−
d2

2 e−
s2

2

(
eds + e−ds

)
.

For the sake of definiteness we assume d > 0.
Denote by ν the induced distribution of posteriors. By Bayes’ Law, the posterior x(s) upon

receiving the signal s is equal to

x(s) =
ϕ(s− d)

1
2ϕ(s− d) + 1

2ϕ(s+ d)
· 1
2
=

eds

eds + e−ds
(38)

and

ν([0, t]) =

∫ x−1(t)

−∞
f(s)ds.
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We are interested in the question of when ν × ν is 1/2-feasible. By Proposition 2, it is feasible
if and only if it is a mean preserving contraction of the uniform distribution. The next lemma
provides a simple sufficient condition for this property.

Lemma 7. Let µ ∈ ∆([0, 1]) be a non-atomic distribution, symmetric around 1/2, with cumulative
distribution function F (a) = µ([0, a]). Assume that there is at most one point 1

2 < a < 1 such that
F (a) = a and that F (x)− x > 0 for all x close enough to 1, but not equal to 1. Then the uniform
distribution is a mean preserving spread of µ if and only if

1

8
≥
∫ 1

1
2

(
x− 1

2

)
dµ(x). (39)

Proof. Necessity follows directly from the convex order definition of mean preserving spreads. In-
deed, the condition for being a mean preserving contraction of the uniform distribution is equivalent
to

H(y) =

∫ y

0

(F (x)− x) dx ≤ 0 ∀y ∈ [0, 1]. (40)

Integration by parts implies that for a = 1/2 this condition becomes exactly (39).
To prove sufficiency, we must check the inequality (40) for all y ∈ [0, 1]. Symmetry of µ implies

H(y) = H(1 − y) and thus we can focus on the right sub-interval y ∈ [1/2, 1]. It is enough to
check that maxy∈[1/2,1] H(y) ≤ 0. We claim that the maximum is attained at one of the end-points.
Indeed, if there is an internal maximum a ∈ (1/2, 1), then the derivative H ′(a) = F (a)− a = 0. On
the whole interval (a, 1), the derivative H ′(y) has a constant sign since it is continuous and y = a is
the unique zero in

(
1
2 , 1
)
. By assumption, F (x)−x > 0 for x close to 1 and, hence, the derivative is

positive on (a, 1) and H is increasing on this interval. Therefore, the point a cannot be a maximum
of H on [1/2, 1]. Thus (40) holds if and only if it holds on the end-points y = 1/2 and y = 1. For
y = 1/2, this inequality coincides with (39) and for y = 1 it is trivial.

Below we check that ν, as induced by Gaussian signals, satisfies the assumptions of Lemma 7 and,
therefore, ν × ν is 1/2-feasible if and only if

∫ 1
1
2

(
x− 1

2

)
dν ≤ 1

8 . This is equivalent to
∫ 1

1
2
x dν ≤ 3

8 .
We can make this condition more explicit by rewriting its left-hand side as∫ 1

1
2

xdν(x) =

∫ ∞

0

x(s) · f(s) ds = 1

2

∫ ∞

0

ϕ(s− d) ds =
1

2

∫ d

−∞
ϕ(t) dt,

where in the last equation we applied the change of variable s−d = −t. This results in the following
condition of feasibility: ∫ d

−∞
ϕ(t) dt ≤ 3

4
,
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i.e., d must be below the 3
4 -quantile of the standard normal distribution.15

It remains to prove that ν indeed satisfies the assumptions of Lemma 7. We check that ν([0, x])−
x is positive for x close to 1. Recall that we can write the belief x as a function x(s) of the signal
s using (38). We denote the derivative of x(s) by x′(s). Substituting x = x(s), we get

ν([0, x(s)])− x(s) = 1− x(s)− ν([x(s),+∞)) =

∫ ∞

s

(x′(t)− f(t)) dt.

For large t, we have

f(t) =
1

2
√
2π

e−
d2

2 · e− t2

2 +d·t(1 + o(1)) and x′(t) =
2d(

ed·t + e−d·t
)2 = 2d · e−2d·t(1 + o(1)).

Therefore, the asymptotic behavior of the integrand is dictated by x′(t):

x′(t)− f(t) = x′(t)(1 + o(1)).

The integrand is positive for t large enough. This implies the desired positivity of ν([0, x(s)])−x(s)

for large values of s.
Now we check that there is at most one point a ∈

(
1
2 , 1
)
such that F (a) = a or, equivalently, there

is at most one point s ∈ (0,∞) such that
∫ s

−∞ f(t) dt−x(s) = 0. Denote G(s) =
∫ s

−∞ f(t) dt−x(s).
The function G is smooth and G(0) = lims→+∞ G(s) = 0. If G has k zeros in (0,∞), then it also
has at least k+1 extrema (minima or maxima) in this interval, hence, at least k+1 critical points
(zeros of the derivative G′). We will show that there are no more than two critical points and thus
G has at most one zero. The equation for critical points takes the following form

G′(s) = 0 ⇐⇒ 1

2
√
2π

e−
d2

2 e−
s2

2

(
ed·s + e−d·s)− 2d(

ed·s + e−d·s
)2 = 0

and can be rewritten as
e−

s2

2

(
ed·s + e−d·s)3 = 4d

√
2πe

d2

2 .

Denote the left-hand-side by H(s). The graph of H for s ≥ 0 can intersect any given level at most
twice since H ′ has at most one zero in (0,+∞). Indeed, H ′(s) = (s− 3d · tanh(dq)) · H(q) and
the equation q − 3d · tanh(dq) = 0 has at most one positive solution by concavity of the hyperbolic
tangent on [0,+∞). Therefore, G has at most 2 critical points and thus at most one zero in (0,∞),
which completes the argument and justifies the application of Lemma 7 to ν.

15Note that in this computation, we do not use the explicit formula for ϕ. In particular, one gets the same condition
of feasibility for any absolutely-continuous distribution of signals on R, if the induced distribution of posteriors ν

satisfies the assumptions of Lemma 7.
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