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Abstract

We study the set of possible joint posterior belief distributions of a group of agents who share

a common prior regarding a binary state, and who observe some information structure. For two

agents we introduce a quantitative version of Aumann’s Agreement Theorem, and show that

it is equivalent to a characterization of feasible distributions due to Dawid et al. (1995). For

any number of agents, we characterize feasible distributions in terms of a “no-trade” condition.

We use these characterizations to study information structures with independent posteriors.

We also study persuasion problems with multiple receivers, exploring the extreme feasible

distributions.

1 Introduction

The question of whether agents’ observed behavior is compatible with rationality is fundamental

and pervasive in microeconomics. A particularly interesting case is that of beliefs: when are agents’

beliefs compatible with Bayes’ Law?
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Consider a single agent who has a prior belief regarding an uncertain event, and who updates to a

posterior belief after receiving some information. An analyst observes the prior and the distribution

of posteriors, but not the information structure. When is the distribution of posterior beliefs

feasible? That is, when is it compatible with Bayesian updating according to some information

structure? Feasibility in this case corresponds to what is known as the martingale condition: the

expectation of the posterior must equal the prior. This fundamental result is known as the Splitting

Lemma (see Blackwell, 1951; Aumann and Maschler, 1995), and is a key tool in the theories of

Bayesian persuasion (Kamenica and Gentzkow, 2011) and of games with incomplete information

(Aumann and Maschler, 1995).

Thus, in the case of a single agent, the analyst can readily determine feasibility.1 We ask the

same question, but regarding groups of more than one agent. In particular, we consider a group

of agents for which one can observe a common prior regarding a binary state, as well as a joint

distribution of posteriors. This distribution is said to be feasible if it is the result of Bayesian

updating induced by some joint information structure observed by the agents. Is there also in this

case a simple characterization of feasibility, that does not require the analyst to test infinitely many

possible information structures?

Clearly, feasibility implies that each agent’s posterior distribution must satisfy the martingale

condition. An additional important obstruction to feasibility is given by Aumann’s seminal Agree-

ment Theorem (Aumann, 1976). Aumann showed that rational agents cannot agree to disagree on

posteriors: when posteriors are common knowledge then they cannot be unequal. This implies that

feasibility is precluded if, for example, agent 1 has posterior 1/5 whenever agent 2 has posterior

2/5, and likewise agent 2 has posterior 2/5 whenever agent 1 has posterior 1/5. There are, however,

examples of distributions that are not feasible, even though they do not involve agents who agree

to disagree as above. Thus the Agreement Theorem does not provide a necessary and sufficient

condition for feasibility. Our first result is a quantitative version of the Agreement Theorem: a

relaxation that constrains beliefs to be approximately equal when they are approximately common

knowledge.

For the case of two agents, a characterization of feasible distributions was obtained by Dawid,

DeGroot, and Mortera (1995). Their criterion of feasibility takes a form of a family of inequalities,

which arise from results due to Kellerer (1961) and Strassen (1965). As we explain, these inequal-

ities correspond exactly to those in our quantitative Agreement Theorem, which thus provides a

necessary and sufficient condition for feasibility: a joint posterior belief distribution is feasible if

and only if agents do not approximately agree to disagree.

1The question becomes more subtle when the agent is exposed to a collection of information sources. Brooks,

Frankel, and Kamenica (2019) demonstrated that the feasible family of distributions that arises as we vary the subset

of information sources does not admit a simple characterization even in the single agent case.
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For any number of agents, we find a characterization of feasibility via a “no-trade” condition. To

derive this condition we introduce—as an analytic tool—a mediator who trades a good of uncertain

value with the agents. When an agent trades, it is at a price that reflects her expected value, and

thus the agents do not gain or lose in expectation. This implies that the mediator likewise does not

turn a profit, and so by bounding the mediator’s profit by zero we attain an obviously necessary

condition for feasibility. We show that this condition is also sufficient. Thus, for any number of

agents, a joint posterior belief distribution is feasible if and only if no mediator can extract an

expected profit from a trading scheme in which each agent expects to lose nothing.

We apply these characterizations to study independent joint posterior belief distributions: these

are induced by information structures in which each agent receives non-trivial information regarding

the state, and yet gains no information about the others’ posterior. We give a simple condition

for feasibility of independent distributions in the case of two agents with identically distributed,

symmetric posteriors: such distributions are feasible if and only if the uniform distribution on [0, 1]

is a mean preserving spread of the single agent belief distribution.

The set of feasible distributions plays an important role in Bayesian persuasion problems, and

in particular in what we call first-order Bayesian persuasion. A first-order Bayesian persuasion

problem includes a single sender and multiple receivers. First, the sender chooses an information

structure to be revealed to the agents. Then, each receiver chooses an action. Finally, both the

receivers and the sender receive payoffs. The sender’s utility depends generally on the receivers’

actions. The key assumption is that each receiver’s utility depends only on the unknown state and

her own action, and so only her first-order beliefs matter for her choice; we therefore refer to these

problems as first-order persuasion problems. As each receiver’s action depends only on her own

posterior, and as the sender’s utility depends on the actions of the receivers, the sender’s problem

is to choose an optimal feasible joint posterior belief distribution for the receivers.

As an example of a first-order Bayesian persuasion problem, we study the problem of a “polariz-

ing” sender who wishes to maximize the difference between two receivers’ posteriors. This example

highlights the limitations imposed by feasibility, as the sender cannot hope to always achieve com-

plete polarization in which one receiver has posterior 0 and the other posterior 1; such joint posterior

distributions are precluded by the Agreement Theorem. We solve this problem in some particular

regimes, and show that non-trivial solutions exist in others, depending on the details of how the

difference between posteriors is quantified.

A related question is how anti-correlated feasible posteriors can be. While they can clearly be

perfectly correlated, by the Agreement Theorem they cannot be perfectly anti-correlated. This

question can be phrased as a first-order Bayesian persuasion problem, which we solve. When the

two states are a priori equally likely, we show that the covariance between posteriors has to be

at least −1/32, and construct a feasible distribution, supported on four points, that achieves this

3



bound.2

The question of first-order Bayesian persuasion is closely tied to the study of the extreme points

of the set of feasible distributions, as the sender’s optimum is always achieved at an extreme point.

In the single agent case, the well-known concavification argument of Aumann and Maschler (1995)

and Kamenica and Gentzkow (2011) shows that every extreme point of the set of feasible posterior

distributions has support of size at most two. In contrast, we show that for two or more agents

there exist extreme points with countably infinite support. In the other direction, we show that

every extreme point is supported on a set that is small, in the sense of having zero Lebesgue mea-

sure. To this end, we do not use our characterization of feasibility, but rather a classical result of

Lindenstrauss (1965) regarding extreme points of the set of measures with given marginals. Like-

wise, our analysis of first-order persuasion is not based on the aforementioned characterizations of

feasibility; to study these problems we exploit the fact that conditional expectations are orthogonal

projections in the Hilbert space of square-integrable random variables.

This work leaves open a number of interesting questions. In particular, we leave for future studies

the extension of our work beyond the setting of a binary state and common priors. Likewise, the

study of the extreme feasible distributions is far from complete. For example, we do not have a

simple characterization of extreme points. We also do not know if there are non-atomic extreme

points.

Related literature

Coherent experts’ opinions. The study of feasible joint distributions of posteriors was pio-

neered by Dawid et al. (1995). They were motivated by the question of aggregating the opinions of

experts who rely on different information sources. As a byproduct of their analysis, Dawid et al.

(1995) characterized the set of feasible distributions for two agents and a binary state; the detailed

discussion of this result is in §2. Their foundational paper and the mathematical literature inspired

by it seem to be known little by the economic theory community.3 We refer to Burdzy and Pitman

(2020) and Burdzy and Pal (2019) for the references to the literature on experts, summary of the

results known in the two-agent case (the main focus of this literature), and tight bounds on the

probability that the pair of posteriors differ by more than δ. Maximizing the latter probability can

be seen as an example of a first-order Bayesian persuasion problem. Another example is offered by

Dubins and Pitman (1980) who found the distribution maximizing the expected maximal posterior

for any number of agents. A particular case of this result for two agents follows from our analysis;

see the discussion after Proposition 5. Independently and concurrently Cichomski (2020) proved

2The questions of first-order persuasion for polarization and anti-correlation were mentioned by Burdzy and

Pitman (2020, Problem 5.2) as open problems.
3We are indebted to Jim Pitman for introducing us to this literature.
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an analog of our Proposition 5 using a Hilbert-space technique similar to ours. Gutmann et al.

(1991) discovered an analog of the characterization by Dawid et al. (1995) in the particular case of

independent posteriors and demonstrated that the uniform distribution on the square is feasible;

they did not discover the special role played by this distribution (see our Proposition 2).

Information design and necessary conditions for feasibility. Recently, several necessary

conditions for feasibility appeared in the economic literature studying information design with

bounded-rational receivers. Independently from us, Ziegler (2020) considered an information design

setting with two receivers, and derived a necessary condition for feasibility. His condition is sufficient

for the case of binary signals. We further discuss Ziegler’s condition in §D. Another necessary

condition was found by Levy, de Barreda, and Razin (2020, Proposition 4); it is equivalent to the

corollary of Aumann’s Agreement Theorem (Corollary A) and, hence, is not sufficient. Levy et al.

(2020) also offered several recipes of how to construct feasible distributions starting from infeasible

ones.

Alternative approaches to multi-agent information design. Mathevet, Perego, and Taneva

(2019) studied Bayesian persuasion with multiple receivers and a finite number of signals. They

found an implicit characterization of feasibility: considering the entire belief hierarchy, they showed

that feasibility is equivalent to the consistency of the hierarchy.4. Bergemann and Morris (2019),

Taneva (2019), and Arieli and Babichenko (2019) related the optimal information disclosure to the

best Bayes Correlated Equilibrium from the sender’s perspective. Even if receivers’ actions are not

free of externalities, finding the best such equilibrium leads to a linear program. This linear program

happens to be tractable for a finite number of actions (Taneva (2019) and Arieli and Babichenko

(2019) focused on the binary case). Our approach is conceptually closer to the geometric point of

view on persuasion of Kamenica and Gentzkow (2011), where the distribution of posteriors plays

the key role. Our approach helps “visualize” the solution and does not require the set of actions

to be finite,5 however, it is limited to the first-order persuasion problems, i.e., we rule out strategic

externalities.6

4Certain compatibility questions for belief hierarchies (without application to the feasibility of joint belief distri-

bution or Bayesian persuasion) were recently addressed by Brooks, Frankel, and Kamenica (2019).
5In the example of a polarizing sender that we discuss in §4, receivers have a continuum of actions (the set of

actions coincides with the set of possible posterior beliefs), and the above linear-programming approach leads to an

infinite-dimensional program.
6In Section 4 we provide several applications of our results and study feasible correlation of posterior beliefs.

Related questions arise in numerous papers on information design. See, e.g., Ely (2017) and Bergemann, Heumann,

and Morris (2020).
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Common prior and no-trade. A related question to ours is the common prior problem studied

in the literature on interactive epistemology. Concretely, an Aumann knowledge partition model

with finite state space and agents is considered. Each agent has a partition over the state space and

to each partition element corresponds a posterior probability that is supported on that partition

element. The question is whether there exists a common prior: a single probability distribution over

the state space that gives rise to all the posterior distributions by means of conditional probability.

Morris (1991, Theorem 1a) offered a characterization for the existence of a common prior in no-

trade terms thus providing a variant of the converse statement to the no-trade theorem of Milgrom

and Stokey (1982). This result was rediscovered by Feinberg (2000) and a simple geometric proof

was given by Samet (1998).

There is a fundamental distinction between the common prior problem and ours. While in the

common prior problem the conditional probability is given and therefore the full belief hierarchy

at every state can be inferred, in our case only the unconditional posterior is considered, and the

belief hierarchy is not specified.7 Despite this distinction, there is a connection between the no-

trade characterizations of a common prior and of feasible distributions. In a follow-up paper, Morris

(2020) demonstrated how to deduce a no-trade characterization of feasibility similar to ours from his

earlier characterization of a common prior. This approach leads to a characterization of feasibility

for finitely-supported distributions and arbitrary finite sets of states.8 Morris (2020) also offered a

comprehensive discussion of the history of the no-trade approach to the common prior problem.

Measures with given marginals. From a technical perspective, our characterization of feasi-

bility relies on the existence of measures with given marginals. Instead of the classic results of

Kellerer (1961) and Strassen (1965) used by Dawid et al. (1995), we apply a more recent result due

to Hansel and Troallic (1986). In the economic literature, such tools were applied by Gershkov,

Goeree, Kushnir, Moldovanu, and Shi (2013) and Gershkov, Moldovanu, and Strack (2018). Our

feasibility condition for product distributions (Proposition 2) shares some similarity with Border’s

condition of feasibility for reduced-form auctions; see Hart and Reny (2015).

The remainder of the paper is organized as follows. In §2 we introduce the formal problem.

In §3 we present our main results. Applications are presented in §4. In §5 we study first-order

Bayesian persuasion and the extreme feasible beliefs. In §6 we study implementations of a given,

feasible posterior distribution. Further proofs are provided in the Appendix.

7In the notation introduced in our model section below, the common prior problem can be phrased as follows. Fix

a signal space Si for each agent i, and denote Ω =
∏

i Si. Say we are given, for each agent i and signal realization

si, a conditional distribution Qsi (·) supported on the subset of Ω in which agent i’s signal is si. When does there

exist a single probability measure P on Ω such that for P-almost every si it holds that Qsi (·) = P(·|si)?
8The restriction to finitely-supported distributions can possibly be eliminated by approximation arguments.
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2 Model

Information structures and posterior beliefs. We consider a binary state space Ω = {`, h},
and a set of n agents N = {1, 2, . . . , n}. An information structure I = ((Si)i∈N ,P) consists of signal

sets Si (each equipped with a sigma-algebra, which we suppress) for each agent i, and a distribution

P ∈ ∆(Ω × S1 × · · · × Sn). Let ω, s1, . . . , sn be the random variables corresponding to the n + 1

coordinates of the underlying space Ω× S1 × · · · × Sn. When it is unambiguous, we also use si to

denote a generic element of Si.

The prior probability of the high state is denoted by p = P(ω = h). Throughout the paper we

assume that p ∈ (0, 1). All n agents initially have prior p regarding the state ω. Then, each agent i

observes the signal si. The posterior belief xi attributed to the high state by agent i after receiving

the signal si is

xi = P(ω = h | si).

We denote by PI the joint distribution of posterior beliefs induced by the information structure

I. This probability measure on [0, 1]N is the joint distribution of (x1, x2, . . . , xn). I.e., for each

measurable B ⊂ [0, 1]N ,

PI(B) = P
(

(x1, . . . , xn) ∈ B
)
.

We similarly denote the conditional joint distributions of posterior beliefs by P `I and PhI ; these

are the joint distributions of (x1, . . . , xn), conditioned on the state ω.

For a probability measure P ∈ ∆([0, 1]N ) and for i ∈ N , we denote by Pi the marginal dis-

tribution, i.e., the distribution of the projection on the ith coordinate, or the distribution of the

posterior of agent i.

Feasible joint posterior beliefs. When is a given distribution on [0, 1]N equal to the distribution

of posterior beliefs induced by some information structure? This is the main question we study in

this paper. The following definition captures this notion formally.

Definition 1. Given p ∈ (0, 1), we say that a distribution P ∈ ∆([0, 1]N ) is p-feasible if there

exists some information structure I with prior p such that P = PI .

When p is understood from the context we will simply use the term “feasible” rather than

p-feasible.

The single agent case. Before tackling the question of feasibility for n agents, it is instructive

to review the well-understood case of a single agent.

The so-called martingale condition states that the average posterior belief of a feasible posterior

distribution is equal to the prior. Formally, given a p-feasible distribution P ∈ ∆([0, 1]), it must be
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the case that ∫ 1

0

xdP (x) = p.

The necessity of this condition for p-feasibility follows from the law of iterated expectation. For the

single agent case, the martingale condition is necessary and sufficient for P to be p-feasible. This

result is known as the Splitting Lemma.

3 Feasible joint beliefs

The two agent case and the Agreement Theorem. In the two agent case the martingale con-

dition is not sufficient for feasibility. An additional obstruction to feasibility is given by Aumann’s

celebrated Agreement Theorem (Aumann, 1976). We here provide a rephrasing of this theorem in

a form that will be useful for us later.

Theorem A (Aumann). Let ((Si)i,P) be an information structure, and let B1 ⊆ S1 and B2 ⊆ S2

be subsets of possible signal realizations for agents 1 and 2, respectively. If

P(s1 ∈ B1, s2 6∈ B2) = P(s2 ∈ B2, s1 6∈ B1) = 0 (1)

then

E(x1 · 1s1∈B1) = E(x2 · 1s2∈B2).

To understand why this is a reformulation of the Agreement Theorem, note that condition (1)

implies that

P(s1 ∈ B1, s2 ∈ B2) = P(s1 ∈ B1) = P(s2 ∈ B2),

and thus the event {s1 ∈ B1, s2 ∈ B2} is self evident, i.e., is common knowledge whenever it

occurs.9 Hence this form of the Agreement Theorem states that if agents have common knowledge

of the event {s1 ∈ B1, s2 ∈ B2} then their average beliefs on this event must coincide. The original

theorem follows by choosing B1 and B2 such that x1 is constant on B1 and x2 is constant on B2.

The statement of Theorem A is close in form to that of the No-Trade Theorem of Milgrom and

Stokey (1982), which provides the same obstruction to feasibility; we discuss this further below. We

do not provide a proof of Theorem A, as it is a special case of our quantitative Agreement Theorem

(Theorem 1) which we prove below.

Using Theorem A it is easy to construct examples of distributions that are not feasible, even

though they satisfy the martingale condition. For example, consider the prior p = 1/2 and the

distribution P = 1
2δ0,1 + 1

2δ1,0, where δx1,x2
denotes the point mass at (x1, x2). Clearly P satisfies

9An event is self-evident if, whenever it occurs, all agents almost surely know that it has occurred. An event A

is common knowledge at an outcome a ∈ A if A contains a self-evident event that contains a.
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the martingale condition. Nevertheless, it is not feasible, since under this distribution agents “agree

to disagree,” when agent 1 attributes probability 1 to the high state and agent 2 considers the

probability of this state to be 0. Indeed, assume towards a contradiction that P is equal to PI ,

for some information structure I = ((Si)i, P). Then the events B1 = {s ∈ S1 : x1(s) = 1} and

B2 = {s ∈ S2 : x2(s) = 0} satisfy the common knowledge condition (1). But

P(ω = h | s1 ∈ B1) = 1 6= 0 = P(ω = h | s2 ∈ B2),

in contradiction to Theorem A.

This example can be extended to a more general necessary condition for feasibility of a joint

posterior distribution.

Corollary A. Let P ∈ ∆([0, 1]2) be feasible for some p, and let A1 and A2 be measurable subsets

of [0, 1]. Denote complements by Ai = [0, 1] \Ai. If

P (A1 ×A2) = P (A1 ×A2) = 0 (2)

then ∫
A1

x dP1(x) =

∫
A2

xdP2(x). (3)

Corollary A is a recasting of Theorem A into a direct condition for feasibility: condition (2)

states that the event A1 × A2 is self evident: it has the same probability as A1 and the same

probability as A2. And each of the two integrals in (3) is equal to the average belief of agent

i conditioned on Ai, times the probability of Ai. Hence Corollary A follows immediately from

Theorem A, by setting Bi = {si : xi(si) ∈ Ai} for i = 1, 2. The advantage of this formulation is

that it takes the form of a direct condition on P .10

A quantitative Agreement Theorem. While Aumann’s Agreement Theorem provides an ob-

struction to feasibility, a joint posterior distribution can be infeasible even when it does not imply

that agents agree to disagree. A larger set of necessary conditions follows from our first result,

which is a quantitative version of the Agreement Theorem:

Theorem 1. Let ((Si)i,P) be an information structure, and let B1 ⊆ S1 and B2 ⊆ S2 be sets of

possible signal realizations for agents 1 and 2, respectively. Then

P(s1 ∈ B1, s2 6∈ B2) ≥ E(x1 · 1s1∈B1
)− E(x2 · 1s2∈B2

) ≥ −P(s2 ∈ B2, s1 6∈ B1).
10A particular case of Corollary A appears in Dawid et al. (1995, Theorem 5.2); and the inaccuracy in that

statement was later corrected by (Burdzy and Pitman, 2020, Proposition 2.1). Levy et al. (2020) found a necessary

condition for feasibility equivalent to Corollary A for distributions with finite support. None of these papers mention

the connection to the Agreement Theorem.
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Proof. By the law of total expectations, we have that

E(xi · 1si∈Bi) = E(P(ω = h|si) · 1si∈Bi) = P(ω = h, si ∈ Bi).

We thus need to show that

P(s1 ∈ B1, s2 6∈ B2) ≥ P(ω = h, s1 ∈ B1)− P(ω = h, s2 ∈ B2) ≥ −P(s2 ∈ B2, s1 6∈ B1).

We show the first inequality; the second follows by an identical argument. We in fact demonstrate

a stronger inequality:

P(ω = h, s1 ∈ B1, s2 6∈ B2) ≥ P(ω = h, s1 ∈ B1)− P(ω = h, s2 ∈ B2). (4)

Denote the conditional probability P(C | ω = h) by Ph(C) for any event C. Then inequality (4) is

equivalent to the elementary inequality Ph(A ∩ B) ≥ Ph(A) − Ph(B), which holds for any pair of

events A an B and any probability measure Ph.

A comparison to the Agreement Theorem (Theorem A) is illustrative. In Theorem A the com-

mon knowledge assumption (1) implies equality of average posteriors. Here (1) has been removed,

and we instead bound the difference in the average posteriors by the extent to which (1) is violated.

Thus, one can think of Theorem 1 as quantifying the extent to which approximate common knowl-

edge implies approximate agreement. The Agreement Theorem becomes the special case in which

(1) holds.11

In analogy to Corollary A, we use Theorem 1 to derive further necessary conditions for feasibility.

Corollary 1. Let P ∈ ∆([0, 1]2) be p-feasible for some p, and let A1 and A2 be measurable subsets

of [0, 1]. Then

P (A1 ×A2) ≥
∫
A1

x dP1(x)−
∫
A2

xdP2(x) ≥ −P (A1 ×A2). (5)

Corollary 1 admits a simple interpretation in terms of the No-Trade Theorem (Milgrom and

Stokey, 1982). Consider three risk-neutral agents: two traders and a mediator. Trader 2 owns

a good with an unknown quality ω ∈ {0, 1}. The mediator also owns a copy of the same good.

The two traders receive private information regarding the quality of the good, with a joint belief

distribution P ∈ ∆([0, 1]2). The mediator knows P and the realized pair (x1, x2).

Let A1, A2 ⊆ [0, 1] be any measurable sets and consider the following trading scheme: The

mediator buys the good from trader 2 whenever x2 ∈ A2 at a price of x2. The mediator sells one

11An alternative approach to quantitative extensions of the Agreement Theorem is by the concept of common

p-beliefs (Monderer and Samet, 1989). Neeman (1996) showed that when posteriors are common p-belief then they

cannot differ by more that 1 − p. However, we are not aware of any formal connection between this extension and

our Theorem 2.
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copy of good to trader 1 whenever x1 ∈ A1 at a price of x1. Thus the mediator may need to use

her copy of the good, in case she sells but does not buy.

We argue that the mediator’s expected profit is at least∫
A1

xdP1(x)−
∫
A2

x dP2(x)− P (A1 ×A2).

The first two addends correspond to the expected transfer between each trader and the mediator.

The last addend corresponds to the event that the mediator has to sell his own good to trader 1

since trader 2’s belief x2 is not in A2 and trader 1’s belief is in A1. In this case the mediator loses

at most 1.

Clearly, the mediator does not provide any additional information to the two players and so their

expected profit is zero. Thus the mediator’s expected profit is also zero, and so we have arrived at

the left inequality of (5). The right inequality follows by symmetry.

A characterization for two agents. Dawid et al. (1995) characterized the feasible distributions

for the case of two agents, by applying a result of Kellerer (1961) and Strassen (1965). Although

they do not relate their result to the Agreement Theorem or phrase it in these terms, what they

show is that the condition of feasibility from Corollary 1 is both necessary and sufficient.

Theorem 2 (Dawid et al. (1995)). A probability measure P ∈ ∆([0, 1]2) is p-feasible for some p if

and only if

P (A1 ×A2) ≥
∫
A1

xdP1(x)−
∫
A2

xdP2(x) ≥ −P (A1 ×A2)

for all measurable A1, A2 ⊆ [0, 1]. (6)

The necessity of (6) is Corollary 1. The sufficiency requires another argument, which uses

a theorem of Kellerer (1961). For the reader’s convenience, we present the complete proof of

Theorem 2 in Appendix A.

It follows from Theorem 2 and the single agent martingale condition that when (6) holds then

P is p-feasible for

p =

∫ 1

0

x dP1(x) =

∫ 1

0

x dP2(x).

We note that in Dawid et al. (1995), condition (6) was written in the equivalent form

P (A1 ×B2) + p ≥
∫
A1

xdP1(x) +

∫
B2

xdP2(x),

from which the relation to the Agreement Theorem is harder to see.
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It is natural to wonder if (6) can be relaxed to a simpler sufficient condition, and in particular

if it suffices to check it on A1, A2 that are intervals. As we show in Appendix D, restricting (6) to

intervals results in a condition that is not sufficient: we construct a measure that is not feasible,

but satisfies (5) for all intervals A1, A2. The constructed measure demonstrates that the condition

derived by Ziegler (2020) for feasibility is necessary but insufficient.

A characterization for any number of agents. For three or more agents, Theorem 2 provides

a necessary condition for feasibility, as the joint belief distribution of each pair of agents must

clearly satisfy (6). However, this condition is not sufficient: we construct below an example of three

agents whose belief distribution satisfies (6) for each pair of agents, and yet is not feasible. The

violation of feasibility stems from a violation of the No-Trade Theorem, in a manner similar to the

one illustrated above for two agents. We use this approach to provide a necessary and sufficient

condition for feasibility for an arbitrary number of agents.

A trading scheme consists of n measurable functions ai : [0, 1] → [−1, 1], i = 1, . . . , n. Given

agent i’s posterior xi, a mediator sells ai(xi) units of the good to agent i for the price of xi per

unit, so that the total transfer is ai(xi)xi.

Clearly, each agent’s expected profit is zero, since she is buying or selling the good at her

expected value. Hence the mediator’s expected profit is also zero. We argue that∫
[0,1]n

(
n∑
i=1

ai(xi)xi −max

{
0,

n∑
i=1

ai(xi)

})
dP (x1, . . . , xn) (7)

is a lower bound on the mediator’s profit. Indeed, the first addend in the integral is the total

transfer to the mediator. The second is equal to the total number of units of the good that the

mediator needs to contribute to the transaction, in case the total amount that she sells exceeds

the total amount that she buys. Since each unit is worth at most 1, she loses at most
∑
ai(xi),

whenever this sum is positive. Thus, since the mediator’s profit is zero, it follows that (7) cannot

be positive if P is feasible.

Our characterization shows that this condition is also sufficient for feasibility. The proof is given

in Appendix B.

Theorem 3. A probability measure P ∈ ∆([0, 1]n) is p-feasible for some p if and only if for every

trading scheme (a1, . . . , an)∫
[0,1]n

(
n∑
i=1

ai(xi)xi −max

{
0,

n∑
i=1

ai(xi)

})
dP (x1, . . . , xn) ≤ 0. (8)

In the case of two agents, by taking ai = ±1Ai in (8), we recover the condition (6) from

Theorem 2. However, we are not aware of a simple argument for deducing (8) from (6) in the
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two agent case. In particular, Theorem 2 is not a simple corollary of Theorem 3 since the latter

requires a broader set of trading schemes, while indicators are enough for the former. Relatedly,

Kellerer’s theorem that underlies Theorem 2 holds only for n = 2 and cannot be extended to the

multidimensional case without expanding the set of test functions; see the discussion in Strassen

(1965, pp. 436-437).

A natural question is whether Theorem 3 can be strengthened, along the lines of Theorem 2,

to consider only indicator trading schemes: Is it sufficient to consider trading schemes of the form

ai = ±1Ai , so that each agent is either a buyer or a seller, and has a set of beliefs in which she

trades one unit? By computerized verification it is possible to show that the answer is no. A

counterexample is the distribution ν × ν × ν ∈ ∆([0, 1]3), where ν = 1
3

(
δ3/14 + δ1/2 + δ11/14

)
. This

distribution is not feasible, and yet each of the small number of possible indicator trading schemes

is not profitable.

Since ν× ν is feasible, this example also shows that Theorem 3 provides additional obstructions

for feasibility when n ≥ 3, beyond the pairwise condition implied by Theorem 2. We end this

section with another such example. Consider three agents whose beliefs (x1, x2, x3) are distributed

uniformly and independently on [0, 1]. That is, let their joint belief distribution P ∈ ∆([0, 1]3)

be the Lebesgue measure. By Proposition 2 below, the agents pairwise satisfy the condition of

Theorem 2. We argue that this is nevertheless not a feasible distribution.

To see this, consider the trading scheme given by

a1(x) = a2(x) = a3(x) = 1x≥2/3 − 1x≤1/3.

In this scheme each agent buys a unit whenever her belief is above 2/3, and sells when it is below

1/3. A simple calculation shows that condition (8) of Theorem 3 is violated.12 These examples

illustrate the general phenomenon that is captured by Proposition 3 below: for any distribution

ν on [0, 1] not concentrated at one point, νn becomes infeasible for large enough n. In these two

examples n = 3 suffices.

4 Applications

Identically Distributed Binary Signals. As an illustration of the restrictions imposed by the

requirement of feasibility, consider a setting with prior p = 1/2, and two agents who each receive

12We get
∫
[0,1]3 ai(xi)xidP = −

∫ 1/3
0 xdx +

∫ 1
2/3 xdx = 2

9
. Hence,

∫
[0,1]3

∑3
i=1 ai(xi)xidP = 6

9
. The hyperplanes

xi ∈ {1/3, 2/3} partition [0, 1]3 into 27 small cubes. There is 1 small cube where the sum
∑3

i=1 ai(xi) is equal to 3,

there are 3 cubes where the sum equals 2, and 6 cubes where it has the value of 1; on the other cubes it is non-positive.

Hence,
∫
[0,1]3 max

{
0,
∑3

i=1 ai(xi)
}

dP = 15
27

= 5
9

. We see that the condition (8) is violated and conclude that the

uniform distribution on [0, 1]3 is infeasible. We thank Eric Neyman for alerting us to an error in a previous version

of this example.
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a binary signal that equals the state with some probability r > 1/2. What joint distributions are

feasible?

The canonical setting is the one in which signals are independent, conditioned on the state. Note

that they are not unconditionally independent: while each agent has each posterior with probability

1/2, conditioned on the first agent acquiring a high posterior, the second agent is more likely to also

have a high posterior than a low one. In this case the induced belief distribution is

P =
r2 + (1− r)2

2
[δr,r + δ1−r,1−r] + r(1− r) [δ1−r,r + δr,1−r] .

Another simple case is the one in which both agents observe the same signal, in which case the

posteriors are of course perfectly correlated, and the distribution is

P =
1

2
δr,r +

1

2
δ1−r,1−r,

as in the signal agent case. In both of these cases P is feasible, since we derive it from a joint signal

distribution.

The case in which agents’ posteriors are perfectly anti-correlated, i.e.,

P =
1

2
δr,1−r +

1

2
δ1−r,r

is precluded by the Agreement Theorem and its Corollary A, as agents here agree to disagree on

their posteriors.

More generally, we can consider the case in which conditioned on an agent’s posterior, the other

agent has the same posterior with probability c. That is,

P =
c

2
[δr,r + δ1−r,1−r] +

1− c
2

[δ1−r,r + δr,1−r] . (9)

In this case there is never common knowledge of beliefs, as long as c < 1. The natural question

is: to what extent can the signals be anti-correlated? Can they for example be (unconditionally)

independent, so that after observing a signal, the probability that an agent assigns to the other

agent’s posterior is still uniform over {r, 1−r}? A common intuition suggests that this is impossible,

since even if signals are independent given the state, the induced unconditional distribution of

posteriors inherits the dependence on the state and thus the posteriors must be dependent; on

the other hand, if the conditional distribution of signals is the same in both states, they convey

no information and thus the posterior just equals the prior. Perhaps surprisingly, this intuition is

wrong, and posteriors can be independent and even anti-correlated; see e.g. Burdzy and Pitman

(2020).

Proposition 1. A joint belief distribution P as given in (9) is 1/2-feasible if and only if c ≥ 2r−1.
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This proposition follows directly from Theorem 2: one only needs to check the sets Ai = {r}
and Ai = {1 − r}. More generally, for finitely supported P only finitely many conditions need be

checked.

Proposition 1 implies that indeed too much anti-correlation is infeasible, especially as the signals

become more informative. Nevertheless, it is possible that the agents’ posteriors are independent of

each other (i.e., c = 1/2) as long as r ≤ 3/4. Moreover, for r < 3/4, the posteriors can be negatively

correlated; for example, P is feasible for c = 1/3 and r = 2/3. In this case, posteriors are either

1/3 or 2/3, each obtained with probability 1/2. When an agent has the high posterior, she assigns

probability 2/3 to the event the the other agent has the low posterior.

Unconditionally independent signals. As another application of Theorem 2 we further explore

independent joint posterior belief distributions. To motivate this application consider a sender (e.g.,

a consulting agency) who wants to reveal some information to receivers (its clients). However, there

is an additional concern: none of the receivers must be able to form any non-trivial guess about

the information received by their counterpart. This can be motivated either by privacy concerns

or by the desire to avoid complicated strategic reasoning on receivers’ side. For example, consider

the case that the receivers are two firms competing on the same market and plan to use the

received information to adjust their strategies. If their posteriors are not independent, they might

engage in a complicated reasoning involving higher order beliefs, as in Weinstein and Yildiz (2007).

Another motivation for studying independent joint beliefs comes from mechanism design, where

these distributions arise endogenously (see, e.g., Bergemann, Brooks, and Morris, 2017; Brooks and

Du, 2019).

We already saw above that identically distributed binary signals can be independent for prior

p = 1/2 as long as r ≤ 3/4. As a second example, let P be the uniform distribution on the unit

square. Following Gutmann et al. (1991), we verify that it is 1/2-feasible and find the information

structure inducing it. This distribution clearly satisfies the martingale condition so it remains to

check that

P (A1 ×A2) ≥
∫
A1

x dP1(x)−
∫
A2

xdP2(x).

The other inequality of (6) will follow by symmetry.

Let 1−a be the Lebesgue measure of A1 and b of A2. Then the left hand side equals (1−a)(1−b)
and the right hand-side is maximized when A1 is pushed as much as possible towards high values

of the integrand (i.e., A1 = [a, 1]) and A2 is pushed towards low values (A2 = [0, b]). We get the

following inequality

(1− a)(1− b) ≥
∫ 1

a

xdx−
∫ b

0

x dx =
1

2

(
1− a2 − b2

)
.
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Simplifying the expression, we get (a+ b− 1)2 ≥ 0, which holds for any a and b. Thus the uniform

distribution is 1/2-feasible.

The equality attained at a + b − 1 = 0 helps guess the information structure that induces this

distribution of beliefs. Comparing the inequality in the statement of Theorem 1 to inequality (4),

we see that for any such information structure, P(ω = h, x1 ∈ [a, 1], x2 ∈ [b, 1]) = P(x1 ∈ [a, 1], x2 ∈
[b, 1]) for a+ b− 1 = 0, and hence P(ω = h | x1 ∈ [a, 1], x2 ∈ [b, 1]) = 1. In other words, whenever

the pair of posteriors is in the triangle T = {(x1, x2) ∈ [0, 1]2 : x1 + x2 > 1}, the state is ω = h;

by the symmetric argument, ω = ` whenever posteriors are in [0, 1]2 \ T . Hence, one can use the

following information structure: sample a pair of signals (s1, s2) uniformly from T if ω = h and

from [0, 1]2 \ T if ω = `. This information structure leads to xi(si) = si and thus induces the

uniform distribution. In §6, we describe a family of information structures inducing the uniform

distribution on [c, 1− c]2.

We generalize this example to study the conditions for 1/2-feasibility of more general product

distributions. The next proposition provides a necessary and sufficient condition for feasibility of a

large class of such distributions, and shows that the uniform distribution is, in fact, an important

edge case. We say that a distribution ν ∈ ∆([0, 1]) is symmetric around 1/2 if its cumulative

distribution function F (a) = ν([0, a]) satisfies F (a) = 1 − F (1 − a) for all a ∈ [0, 1]. Recall that

µ ∈ ∆([0, 1]) is a mean preserving spread of µ′ ∈ ∆([0, 1]) if there exist random variables x, x′ such

that x ∼ µ, x′ ∼ µ′ and E(x|x′) = x′.13

Proposition 2. Let P = ν×ν, where ν ∈ ∆([0, 1]) is symmetric around 1/2. Then P is 1/2-feasible

if and only if the uniform distribution on [0, 1] is a mean preserving spread of ν.

In particular, among symmetric, 1/2-feasible product distributions, the uniform is maximal in

the convex order.14

The proof of Proposition 2 is relegated to §C. The “if” direction is a consequence of the following,

more general lemma.

Lemma 1. Let P = µ1× · · · ×µn ∈ ∆([0, 1]n) be p-feasible, and let P ′ = µ′1× · · · ×µ′n, where each

µi is a mean preserving spread of µ′i. Then P ′ is also p-feasible.

13Equivalently,
∫
f(x) dµ(x) ≥

∫
f(x) dµ′(x) for every bounded convex f . Another equivalent condition is that

both have the same expectation, and
∫ y
0 F (x) dx ≤

∫ y
0 F
′(x) dx for all y ∈ [0, 1], where F and F ′ are the cumulative

distribution functions of µ and µ′, respectively. See (Blackwell, 1953).
14We note that the symmetry assumption cannot be dropped. Indeed, the uniform distribution is not a mean-

preserving spread of the non-symmetric distribution ν = a · δ1−a + (1− a) · δ1 with a = 1√
2

, but nevertheless ν × ν
is feasible. Feasibility can checked via Theorem 2 or directly by constructing the information structure: both agents

have two signals S1 = S2 = {s, s}; if the state is ω = h, then the pair of signals is (s, s) with probability 2(1 − a)2

and (s, s) or (s, s) with probabilities 1
2
− (1 − a)2; if the state is ω = `, the signals are always (s, s). The uniform

distribution is not a mean-preserving spread of ν since
∫ 1

1
2

(
x− 1

2

)
dν(x) = 1

2
− 1

2
√
2
>
∫ 1

1
2

(
x− 1

2

)
dx = 1

8
.
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This lemma can be seen as a corollary of Blackwell’s Theorem (Blackwell, 1951, Theorem 12):

Given an information structure that induces P , one can apply an independent garbling to each

coordinate to arrive at a structure that induces P ′. Our proof illustrates how the result can be

obtained via the no-trade arguments of our Theorem 3, without invoking Blackwell’s Theorem.

Using Proposition 2, we show in §F that Gaussian signals may induce independent beliefs,

provided that that they are not too informative. Let ν be the belief distribution induced by a

signal which, conditioned on the state, is a unit variance Gaussian with mean ±d. Then ν × ν
is 1/2-feasible if and only if d lies between the 1

4 -quantile and 3
4 -quantile of the standard normal

distribution.

Interestingly, product distributions with a given marginal cease being feasible once the number

of agents becomes large enough, as demonstrated in the following proposition.

Proposition 3. For every probability measure ν ∈ ∆([0, 1]) that differs from a Dirac measure, for

sufficiently large n the product distribution νn ∈ ∆([0, 1]n) is not feasible.

The proof, that is relegated to §C, uses our Theorem 3. We show that with sufficiently large

number of agents, a mediator can implement a strictly beneficial trading scheme, i.e. one that

violates Theorem 3. In fact, we show that the product distribution νn is infeasible whenever

bn2 c >
1
8

( ∫ 1

m
xdν(x)−

∫m
0
x dν(x)

)−2
, where m is the median of the marginal distribution ν.

5 First-order Bayesian Persuasion and Extreme Feasible Joint

Posterior Belief Distributions

First-order Bayesian persuasion. In this section we consider a sender who sends information

regarding an underlying state to a group of n receivers. The sender’s utility depends on the actions

of the receivers. We assume that each receiver’s utility depends only on the state and her own

action, as, for example, is common in the social learning literature. Since the equilibrium action

of a receiver is dictated solely by her first-order beliefs, we call this setting first-order Bayesian

persuasion. We note that the results of this section do not rely on the characterizations of feasibility

given in Theorems 2 and 3, but rather offer an additional set of tools to study the set of feasible

distributions of posteriors.

Formally, a first-order Bayesian persuasion problem is given byB = (N, p, (Ai)i∈N , (ui)i∈N , us).

As above, ω ∈ {`, h} is a binary state for which n = |N | receivers have a common prior p ∈ (0, 1).

Each receiver i ∈ N has to choose an action ai from a compact metric set of actions Ai. Her utility

ui(ω, ai) depends only on the state and her action. A single sender has utility us(a1, . . . , an) which

depends on the receivers’ actions.
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The sender chooses an information structure I = ((Si)i∈N , P) with prior p, and each receiver i

observes a private signal si ∈ Si and then chooses an action ai.

In equilibrium, the action

ãi ∈ argmax
ai∈Ai

E(ui(ω, ai) | si)

is chosen by i to maximize her expected utility conditioned on her information si. Note that since

ui depends only on ω and ai, it follows that given the information structure I, receiver i’s posterior

xi = P(ω = h | si) is a sufficient statistic for her utility, i.e.,

max
ai∈Ai

E(ui(ω, ai) | si) = max
ai∈Ai

E(ui(ω, ai) | xi),

and so a receiver does not decrease her expected utility by discarding her private signal, retaining

only the first-order posterior belief xi. We accordingly consider only equilibria in which the agents—

even when they are indifferent—use only xi to choose their actions, so that ãi is a function of xi.
15

The information structure I is chosen to maximize the expectation of us. We assume that ui and

us are upper-semicontinuous, to ensure the existence of equilibria. The value V (B) is the sender’s

expected equilibrium utility in the first-order Bayesian persuasion problem B.

A crucial feature is the assumption that ui does not depend on the other agents’ actions. The

case in which externalities are allowed is the general problem of Bayesian mechanism design, which

is beyond the scope of this paper.16 In contrast, in first-order Bayesian persuasion the receivers

have no strategic incentives. This implies that their higher order beliefs are irrelevant to the sender,

who in turn is solely interested in their first-order posterior beliefs. This is captured by the following

proposition, which states that for every first-order Bayesian persuasion problem there is an indirect

utility function that the sender maximizes by choosing the receivers’ posteriors. Of course, the

posterior distribution must be feasible.

Denote by PNp the set of p-feasible P ∈ ∆([0, 1]N ).

Proposition 4. For every first-order Bayesian persuasion problem B = (N, p, (Ai)i, (ui)i, us)

there is an indirect utility function v : [0, 1]N → R such that the value V (B) is given by

V (B) = max
P∈Pnp

∫
v(x1, . . . , xn) dP (x1, . . . , xn).

15This refinement rules out equilibria in which, for example, an agent uses higher order beliefs to break ties when

indifferent between two actions.
16Nevertheless, our approach remains applicable even in the presence of externalities if the game played by receivers

is “simple” in the sense of Börgers and Li (2019), i.e., the equilibrium behavior of a receiver does not require her to

form higher order beliefs.
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Example: Polarizing receivers. In §4 we showed that joint belief distributions can be anti-

correlated, and explored the extent to which identically distributed binary signals can be anti-

correlated. For general signal distributions, this question can be formalized using a first-order

Bayesian persuasion approach.

Consider a sender whose indirect utility for the posteriors of two receivers is

v(x1, x2) = |x1 − x2|a,

for some parameter a > 0. Informally, the sender wishes to maximize the polarization between

receivers, or the discrepancy between their posteriors.

For the case a = 2 we solve the sender’s problem completely.

Proposition 5. Let V be the value of the two receiver first-order Bayesian persuasion problem

where the sender’s indirect utility is

v(x1, x2) = (x1 − x2)2

and the prior is p ∈ (0, 1). Then V (B) = (1− p)p.

In this case of a = 2, the optimum can be achieved by completely informing one agent, and

leaving the other completely uninformed. E.g., by letting s1 = ω and s2 = 0. We show in §C that

when p = 1/2, the same policy is also optimal for all a < 2. Dubins and Pitman (1980) show the

same result for a = 1 and any p.

For a ≥ 3, it is no longer true that it is optimal to reveal the state to one receiver and leave the

other uninformed, which yields utility 2−a to the sender. For example, the posterior distribution

P =
1

4
δ0,2/3 +

1

4
δ2/3,0 +

1

2
δ2/3,2/3 (10)

can be easily verified to be 1/2-feasible using (6), and yields utility 1
2

(
2
3

)a
, which for a = 3 (for

example) is larger than 2−a.

Another approach to quantifying the extent to which beliefs can be anti-correlated is by di-

rectly minimizing their covariance. This question admits a simple, non-trivial solution, as the next

proposition shows: for the prior p = 1/2, the smallest possible covariance between posterior beliefs

is −1/32, and is achieved on a distribution supported on four points.

Proposition 6. Let V be the value of the two receiver first-order Bayesian persuasion problem

where the prior is p = 1/2 and the sender’s indirect utility is

v(x1, x2) = −(x1 − p) · (x2 − p).

Then V (B) = 1/32, and is achieved by

P =
1

8
δ3/4,0 +

3

8
δ3/4,1/2 +

1

8
δ1/4,1 +

3

8
δ1/4,1/2.
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The distribution P is depicted in Figure 1.

The proofs of Propositions 5 and 6 are presented in §C. They do not rely on our characterization

of feasible beliefs, and instead use the fact that conditional expectations are orthogonal projections

in the Hilbert space of square-integrable random variables. This technique exploits the quadratic

form of these persuasion problems. A natural avenue for future research is the extension of these

techniques—or the development of new techniques—to tackle non-quadratic problems.

x1

x2

1
4

0 13
4

1
2

1

1
8

3
8

1
8

3
8

Figure 1: An optimal distribution of the first-order Bayesian persuasion problem given by the

indirect utility v(x1, x2) = −(x1−p) · (x2−p) and prior p = 1/2; see Proposition 6. For p = 1/2, this

distribution achieves the lowest possible covariance between posterior beliefs: −1/32. Blue points

describe the distribution of posteriors conditional on ω = 0. Red points describe the distribution

of posteriors conditional on ω = 1.

Extreme feasible joint posterior belief distributions. The set PNp of p-feasible joint pos-

terior belief distributions is a convex, compact subset of ∆([0, 1]N ), when the latter is naturally

equipped with the weak* topology; see Dubins and Pitman (1980) or Proposition 8 in the Appendix.

Together with Proposition 4, this fact implies that V (B) is always achieved at an extreme point of

the set of p-feasible distributions PNp . It is thus natural to study the set of extreme points.

In the single agent case the concavification argument of Aumann and Maschler (1995) and

Kamenica and Gentzkow (2011) implies that every extreme point is a distribution with support

of size at most 2. This is not true for 2 or more agents. For example, the posterior distribution

with support of size 3 defined in (10) is extreme in P2
1/2, since its restriction to any support of

smaller cardinality is not feasible, as it cannot satisfy the martingale condition. The next theorem

shows that there in fact exist extreme points with countably infinite support. It also states that
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the support cannot be too large, in the sense that every extreme point is supported on a set of zero

Lebesgue measure.

Theorem 4. Let |N | ≥ 2. Then

1. For every p ∈ (0, 1) there exists an extreme point in PNp whose support has an infinite countable

number of points.

2. For every extreme P ∈ PNp there exists a measurable A ⊆ [0, 1]N such that P (A) = 1, and the

Lebesgue measure of A is zero.

To prove the first part of Theorem 4 we explicitly construct an extreme feasible belief distribution

with countably infinite support; see §C. The construction is a variant of Rubinstein’s e-mail game

(Rubinstein, 1989). Unlike Rubinstein’s email game, no agent in our construction is fully informed

about the state. The resulting belief distribution for two agents is depicted in Figure 2. Interestingly,

it is possible to modify our construction in a way that places the beliefs closer and closer to the

diagonal. This results in a sequence of extreme points that converge to a distribution that is

supported on the diagonal, and has support size larger than two. Every extreme point that is

supported on the diagonal is supported on at most two points, since this reduces to the single agent

case. Therefore, for two agents or more, the set of extreme points is not closed within the set of

feasible distributions. This demonstrates another distinction from the single agent case where the

set of extreme points is closed.

The proof of the second part of Theorem 4 relies on the classic result of Lindenstrauss (1965)

regarding extreme points of the set of joint distributions with given marginals.

Theorem 4 leaves a natural question open: Are there any non-atomic extreme points? Or

conversely, does every extreme point have countable support?

6 Implementing feasible distributions

Assume we are given a feasible distribution P ∈ ∆([0, 1]n). A natural question is: Which informa-

tion structures induce P? And, relatedly, which conditional posterior belief distributions (P `, Ph)

are compatible with P?

By Lemma 3 (stated in the Appendix), P is feasible if and only if there exists a distribution

Q ∈ ∆([0, 1]n) such that Q ≤ 1
pP and dQi(x) = x

pdPi(x) for all agents i. Note that this is a linear

program, which in general is infinite-dimensional.

Given a solution Q, define Ph = Q and P ` = P−p·Q
1−p . Then the distribution of posteriors P is

induced by the information structure in which the signals have joint distribution Pω conditional on

ω (see Lemma 2 and its proof); in this case, we say that P is implemented by the pair (P `, Ph),
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Figure 2: An extreme point of P2
1/2 with infinite countable support. The numbers near the points

indicate their probabilities. Conditional on ω = ` the pair of posteriors belongs to the set of blue

points. Conditional on ω = h the pair of posteriors belongs to the set of red points.
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which are also the conditional distributions of the beliefs. Thus, to find an information structure

that induces P , it suffices to solve the above mentioned linear program.

When P has finite support, this linear program has finite dimension, and thus a solution can

be numerically calculated by simply applying a linear program solver. In the general, infinite

dimensional case, we do not expect that simple, closed-form solutions always exist. An exception

is the single agent case, in which an implementing pair is given by (see Lemma 2)

dP `(x) =
1− x
1− p

dP (x) dPh(x) =
x

p
dP (x).

We make two observations about the single agent case. First, there is a unique pair of conditional

belief distributions (P `, Ph) that implements P : every information structure that induces P will

have the same conditional distributions of beliefs. Second, the two distributions P `, Ph have the

RadonNikodym derivative dPh

dP `
(x) = 1−p

p
x

1−x , and so are mutually absolutely continuous, unless

there is an atom on 0 or on 1. As we now discuss, neither of these two properties hold in general

beyond the single agent case.

We consider the case that the number of agents is n ≥ 2, and that P ∈ ∆([0, 1]n) is a fea-

sible distribution that admits a density. In this case, the next proposition shows that P can be

implemented by (P `, Ph) that are very far from being mutually absolutely continuous: they are

supported on disjoint sets.17

Proposition 7. Let n ≥ 2, and let P ∈ ∆([0, 1]n) be p-feasible for some p. Assume that P admits

a density. Then there exists a subset D ⊂ [0, 1]n, such that P can implemented by (P `, Ph) with

the property that Ph is supported on D and P ` is supported on the complement D. Furthermore,

restricted to D and D respectively, P ` = 1
1−pP , and Ph = 1

pP .

Proof. Let R be a measure on [0, 1]n. For a subset D ⊆ [0, 1]n we denote by R
∣∣
D

the restriction of

R to this subset, i.e., R
∣∣
D

(A) = R(D ∩A) for any measurable set A.

In Theorem 3 in Gutmann et al. (1991) it was shown that for any absolutely continuous, finite

measure R on [0, 1]n and every measure Q ≤ R, there exists a measurable set D such that R
∣∣
D

and

Q have identical marginals.

Apply this result to R = 1
pP and Q ≤ 1

pP , which solves the linear program of Lemma 3. Then

there is a D ⊂ [0, 1]n such that Q and 1
pP
∣∣
D

have the same marginals. Let Q′ = 1
pP
∣∣
D

. Then Q′

is also a solution to the linear program of Lemma 3: Q′ ≤ 1
pP and dQi(x) = x

pdPi(x). Hence, P is

implemented by Ph = Q′ = 1
pP
∣∣
D

and P ` = P−p·Q′
1−p = 1

1−pP |D, which proves the claim.

When n ≥ 2, an implementation is not always unique, in contrast to the single agent case. To

see this, consider the case of n = 2, and P equal to the uniform distribution US on the square

17These pairs are also easily seen to be extreme points among the convex set of pairs that implement P .
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1

c 1− c

Ph :

Figure 3: The implementation (P `, Ph) of the uniform distribution on [c, 1 − c]2. Darker/lighter

colors indicate higher/lower densities.

S = [c, 1 − c]2 with c ∈ [0, 1/2). It is 1/2-feasible since the marginals are second-order dominated

by the uniform distribution on [0, 1] (see Proposition 2). In §2, we saw the implementation of

the uniform distribution on [0, 1]2, which corresponds to c = 0. For c > 0, that implementation

suggests that solutions of the linear program of Lemma 3 might be found in the form of a convex

combination of US and the uniform distribution UT on the upper-triangle T = S ∩ {x1 + x2 ≥ 1}.
Indeed, it is easy to check that

Q =
1− c
1 + c

· UT +
2c

1 + c
· US

has the correct marginals and satisfies Q ≤ 2 ·US . The corresponding pair of distributions (P `, Ph)

is illustrated in Figure 3.

Note that in this implementation the two distributions (P `, Ph) do not have disjoint supports.

Hence Proposition 7 implies that another implementation exists. This is illustrated in Figure 4.
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x1

x2

c c∗ 1
2

1− c0 1

c

c∗

1
2
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1

Figure 4: An implementation of the uniform distribution on [c, 1 − c]2 in which P ` (depicted in

blue) and Ph (depicted in red) have disjoint supports. We denote c∗ = 2c(1− c).
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A Proof of Theorem 2

In this section we present a proof of Theorem 2, a result due to Dawid et al. (1995). We begin with

the following simple lemma, which gives a direct revelation principle for joint belief distributions.

Similar statements appeared in the literature (e.g., Gutmann et al., 1991; Dawid et al., 1995; Levy

et al., 2020; Ziegler, 2020; Arieli et al., 2020). We include a proof for the convenience of the reader.

Lemma 2. Let P ∈ ∆([0, 1]n) be a p-feasible belief distribution. Then there exist P `, Ph ∈ ∆([0, 1]n)

such that P = (1− p) · P ` + p · Ph and for every i ∈ {1, . . . , n} the marginal distributions Phi and

Pi satisfy

dPhi (x) =
x

p
dPi(x). (11)

In particular, every feasible belief distribution can be induced by an information structure in which,

for each i, the belief xi is equal to the signal si.

The next lemma gives a necessary and sufficient condition for feasibility in terms of the existence

of a measure with given marginals and with a given upper bound.

Lemma 3. For n ≥ 2 agents, a distribution P ∈ ∆([0, 1]n) is p-feasible if and only if there exists

a probability measure Q ∈ ∆([0, 1]n) such that

1. Q is upper-bounded by 1
pP , i.e. Q(A) ≤ 1

pP (A) for any measurable A ⊆ [0, 1]n, and
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2. for every i ∈ {1, . . . , n} the marginal distribution Qi is given by

dQi(x) =
x

p
dPi(x). (12)

Proof. If P is feasible, then by Lemma 2 there is a pair P `, Ph ∈ ∆([0, 1]n) such that P =

(1 − p)P ` + p · Ph and such that (11) holds. Picking Q = Ph, it follows from (11) that Q ≤ 1
pP

and that Q the desired marginals. In the opposite direction: if there is Q satisfying the theorem

hypothesis, then let Ph = Q and P ` = P−p·Q
1−p . Consider the information structure I in which

ω = h with probability p, and (s1, . . . , sn) is chosen from Ph conditioned on ω = h, and from P `

conditioned on ω = `. It follows from (12) that P is the joint posterior distribution induced by I,

and is hence p-feasible.

Lemma 3 reduces the question of feasibility to the question of the existence of a bounded measure

with given marginals. This is a well-studied question in the case n = 2. When the upper bound is

proportional to the Lebesgue measure, Lorentz (1949) provided the answer in terms of first-order

stochastic dominance of marginals. The discrete analog of this result for matrices is known as

the Gale-Ryser Theorem (Gale et al., 1957; Ryser, 1957). The condition for general upper-bound

measures was derived by Kellerer (1961, Satz 4.2); the formulation below is due to Strassen (1965,

Theorem 6).

Theorem B (Kellerer, Strassen). Fix P ∈ ∆([0, 1]2), 0 < p ≤ 1, and M1, M2 ∈ ∆([0, 1]). Then

the following are equivalent:

1. There exists a probability measure Q ∈ ∆([0, 1]2) that is bounded from above by 1
pP , and which

has marginals Qi = Mi.

2. For every measurable B1, B2 ⊂ [0, 1] it holds that

1

p
P (B1 ×B2) ≥M1(B1) +M2(B2)− 1. (13)

As we now show, Theorem 2 is a consequence of Kellerer’s Theorem and Lemma 3.18

Proof of Theorem 2. When P is p-feasible, (6) follows immediately from Corollary 1. To prove the

other direction, we assume that P satisfies (6), and prove that P is p-feasible for some p. To this end

we will use Kellerer’s Theorem to show that there exists a Q ∈ ∆([0, 1]2) satisfying the conditions

of Lemma 3.

18We note that this result can also proved by interpreting the infinite-dimensional linear program for Q from

Lemma 3 as a condition that there is a feasible flow of magnitude 1 in an auxiliary network (as in Gale et al. (1957),

but with a continuum of edges) and then using max-flow/min-cut duality for infinite networks (see Neumann, 1985).
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Assume then that P satisfies (6), i.e. for every measurable A1, A2 ⊆ [0, 1] it holds that

P (A1 ×A2) ≥
∫
A1

xdP1(x)−
∫
A2

xdP2(x) ≥ P (A1 ×A2). (14)

Applying this to A1 = A2 = [0, 1] yields∫ 1

0

x dP1(x) =

∫ 1

0

x dP2(x).

We accordingly set p =
∫ 1

0
xdP1(x), and define the measures M1, M2 ∈ ∆([0, 1]) by dMi(x) =

x
pdPi(x). Given any two measurable subsets B1, B2 ⊆ [0, 1], let A1 = B1 and A2 = B2. Applying

the left hand inequality of (14) to A1 = B1 and A2 = B2 yields

P (B1 ×B2) ≥
∫
B1

xdP1(x)−
∫
B2

xdP2(x).

Since dMi(x) = x
pdPi(x) we can write this as

P (B1 ×B2) ≥ p ·M1(B1)− p ·M2(B2),

dividing by p and substituting M2(B2) = 1−M2(B2) yields.

1

p
P (B1 ×B2) ≥M1(B1) +M2(B2)− 1.

Thus condition (13) holds, and we can directly apply Kellerer’s theorem to conclude that there

exists a measure Q that satisfies the conditions of Lemma 3, as condition (12) is simply Qi = Mi.

Hence P is p-feasible.

B Proof of Theorem 3

In this section we prove Theorem 3. The proof of necessity is straightforward and explained before

the theorem statement. The proof of sufficiency uses Théorème 2.6 of Hansel and Troallic (1986),

which is a generalization of Kellerer’s Theorem.

Recall that a paving of a set X is a set of subsets of X that includes the empty set, and an algebra

is a paving that is closed under unions and complements. By a collection we mean a multiset, i.e.,

the same element can enter the collection several times. Denote R̄+ = [0,∞]. A finitely additive

measure is a map from an algebra to R̄+ that is additive for disjoint sets.

Theorem C (Hansel and Troallic (1986)). Let X be a set, and F an algebra of subsets of X. Let

F1, . . . ,Fn,G1, . . . ,Gm be subpavings of F . For i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} let αi : Fi → R̄+,

and βj : Gj → R̄+ be maps that vanish on the empty set. Then the following are equivalent:
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1. There is a finitely additive measure Q : F → R+ such that, for every i ∈ {1, . . . , n} and every

A ∈ Fi it holds that αi(A) ≤ Q(A), and for every j ∈ {1, . . . ,m} and every B ∈ Gj it holds

that Q(B) ≤ βj(B).

2. For every finite collections of sets A1 ⊆ F1, . . . ,An ⊆ Fn, B1 ⊆ G1, . . . ,Bm ⊆ Gm, if

n∑
i=1

∑
A∈Ai

1A ≤
m∑
j=1

∑
B∈Bj

1B

then

n∑
i=1

∑
A∈Ai

αi(A) ≤
m∑
j=1

∑
B∈Bj

βj(B).

We will need the following corollary of this result.

Corollary C. Fix P ∈ ∆([0, 1]n), 0 < p ≤ 1, and M1, . . . ,Mn ∈ ∆([0, 1]). Then the following are

equivalent:

1. There exists a probability measure Q ∈ ∆([0, 1]n) that is upper-bounded by 1
pP , and which has

marginals Qi = Mi.

2. For every A1 . . . ,An, finite collections of Borel subsets of [0, 1], every C a finite collection of

Borel subsets of [0, 1]n, and for every non-negative integer K, if

n∑
i=1

∑
A∈Ai

1A(xi) ≤ K +
∑
C∈C

1C(x1, . . . , xn) (15)

for all (x1, . . . , xn), then

n∑
i=1

∑
A∈Ai

Mi(A) ≤ K +
∑
C∈C

1

p
P (C). (16)

Proof. The proof that 1. implies 2. is simple and omitted.19

Let F be the Borel sigma-algebra of [0, 1]n. For each i ∈ {1, . . . , n} let Fi be the sub-sigma-

algebra of sets that are measurable in the ith coordinate. That is, Fi consists of sets of the form

[0, 1]i−1 × A × [0, 1]n−i, where A is any Borel subset of [0, 1]. Denote by πi : [0, 1]n → [0, 1] the

projection on the ith coordinate.

Let m = 2. Define G1 as the trivial algebra {∅, [0, 1]n} and G2 = F . Let αi = Mi, β1
(
[0, 1]n

)
= 1,

β1(∅) = 0, and β2 = 1
pP . Let A1 . . . ,An and C satisfy (15). By abuse of notation we identify each

19We will only make use of the other, non-trivial direction.
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A ∈ Ai with its preimage π−1i (A) = [0, 1]i−1 × A × [0, 1]n−i. Thus Ai ⊆ Fi. We define B1 and B2
as follows. The collection B1 ⊆ G1 contains K copies of [0, 1]n and Bm = C ⊆ G2.

We can apply Theorem C directly to conclude that there is a finitely additive measure Q that

is upper-bounded by 1
pP , has Q([0, 1]n) ≤ 1, and whose marginals Qi bound Mi from above for

i ∈ N . Each Mi is a probability measure and the total mass of Q is at most 1; hence, Qi can

upper-bound Mi only if Qi = Mi. We conclude that Q is a probability measure with marginals Mi

for each i. Since Q is upper-bounded by a sigma-additive measure, it is also itself sigma-additive

(see Lemma 4 below).

Lemma 4. Let F be a sigma-algebra of subsets of X. Let µ : F → R̄+ be a finitely additive measure,

and let ν : F → R̄+ be a sigma-additive measure. If µ ≤ ν and ν(X) <∞ then µ is sigma-additive.

Proof. Let A1, A2, . . . ∈ F be pairwise disjoint. Denote A = ∪iAi. Then, by additivity, we have

that

µ(A) = µ(∪ni=1Ai) + µ(∪∞i=n+1Ai) ≥ µ(∪ni=1Ai) =

n∑
i=1

µ(Ai)

Hence µ(A) ≥
∑∞
i=1 µ(Ai). For the other direction,

µ(A) = µ(∪ni=1Ai) + µ(∪∞i=n+1Ai) ≤
n∑
i=1

µ(Ai) + ν(∪∞i=n+1Ai),

since µ ≤ ν. By the sigma-additivity and finiteness of ν, the last addend vanishes as n tends to

infinity. Hence µ(A) ≤
∑∞
i=1 µ(Ai).

We are now ready to finish the proof of Theorem 3. We will show that (8) suffices for feasibility

by checking that it implies the condition of Lemma 3. Assume then that P satisfies (8), i.e. for

every trading scheme (a1, . . . , ai) it holds that∫
[0,1]n

(
n∑
i=1

ai(xi)xi −max

{
0,

n∑
i=1

ai(xi)

})
dP (x1, . . . , xn) ≤ 0. (17)

Choose i, j ∈ {1, . . . , n}, and consider the trading scheme in which ai = 1, aj = −1 and ak = 0 for all

k 6∈ {i, j}. Then (17) implies that
∫ 1

0
xdPi(x) =

∫ 1

0
x dPj(x). We accordingly set p =

∫ 1

0
xdPi(x),

and note that this definition is independent of the choice of i. Define the measures Mi ∈ ∆([0, 1]n)

by dMi(x) = x
pdPi(x).

Let A1 . . . ,An, K, and C satisfy (15). We will show that (16) must hold. This will conclude

the proof, since then it follows from Corollary C that there exists a measure Q that satisfies the

conditions of Lemma 3, as condition (12) is simply Qi = Mi.
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To show that (16) holds, define the trading scheme (a1, . . . , an) by

ai(x) = c ·

(∑
A∈Ai

1A(x)− K

n

)
,

where c is a normalization constant chosen small enough so that the image of all the ai’s is in

[−1, 1]. Then by (17)∫
[0,1]n

n∑
i=1

ai(xi)xi dP (x1, . . . , xn) ≤
∫
[0,1]n

max

{
0,

n∑
i=1

ai(xi)

}
dP (x1, . . . , xn).

We substitute the definition of the trading scheme and the measures Mi. This yields

p ·
n∑
i=1

∑
A∈Ai

Mi(A)− p ·K ≤
∫
[0,1]n

max

{
0,

n∑
i=1

∑
A∈Ai

1A(xi)−K

}
dP (x1, . . . , xn).

By (15), the integrand on the right-hand side is at most
∑
C∈C 1C(x1, . . . , xn). Hence

p ·
n∑
i=1

∑
A∈Ai

Mi(A)− p ·K ≤
∑
C∈C

P (C).

Dividing by p and rearranging yields

n∑
i=1

∑
A∈Ai

Mi(A) ≤ K +
∑
C∈C

1

p
P (C).

Thus condition (16) holds, and by Lemma 3 the distribution P is p-feasible. This completes the

proof of Theorem 3.

We end this section by noting a different avenue for proving this theorem. Lemma 3 gives a

necessary and sufficient condition for a distribution P to be feasible, in terms of the existence of a

distribution Q satisfying two properties. Since the support of Q is always a subset of the support

of P , for finitely supported P the conditions of the lemma reduce to a finite number of equalities

and inequalities on a finite number of variables. Theorem 3 then becomes an corollary of the Farkas

lemma.20 Theorem 3 for general distributions can then be deduced by approximation arguments.

C Additional missing claims and proofs

Proof of Lemma 1. To prove the lemma we assume that P ′ is not p-feasible and show that P is not

p-feasible.

20A similar approach to the characterization of finitely supported feasible distributions was taken by Morris (2020).
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Let (x1, x
′
1, . . . , xn, x

′
n) be random variables such that (i) each pair (xi, x

′
i) is independent of the

rest, (ii) xi has distribution µi and x′i has distribution µ′i, and (iii) E(xi|x′i) = x′i, which is possible

since µi is a mean preserving spread of µ′i.

By this definition, P is the joint distribution of (x1, . . . , xn) and P ′ is the joint distribution of

(x′1, . . . , x
′
n). Hence, by Theorem 3, in order to prove our claim it suffices to find a trading scheme

(a1, . . . , an) such that

E

(
n∑
i=1

ai(xi)xi −max

{
0,

n∑
i=1

ai(xi)

})
> 0, (18)

which would violate (8).

Since P ′ is not p-feasible, it follows from Theorem 3 that there exists a trading scheme (a′1, . . . , a
′
n)

such that

E

(
n∑
i=1

a′i(x
′
i)x
′
i −max

{
0,

n∑
i=1

a′i(x
′
i)

})
> 0. (19)

Define ai by21

ai(xi) = E(a′i(x
′
i)|xi).

It follows from the definition of ai, from the law of iterated expectation, and from E(xi|x′i) = x′i

that

E(ai(xi) · xi) = E (E(a′i(x
′
i)|xi) · xi)

= E (E(a′i(x
′
i) · xi|xi))

= E (a′i(x
′
i) · xi)

= E (E(a′i(x
′
i) · xi|x′i))

= E (a′i(x
′
i) · E(xi|x′i))

= E (a′i(x
′
i) · x′i) . (20)

21This only defines ai µi-almost everywhere, which is sufficient for our needs; the rest of the definition can be

completed using any version of the conditional expectation.
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In addition, we have

E

(
−max

{
0,

n∑
i=1

ai(xi)

})
= E

(
−max

{
0,

n∑
i=1

E(a′i(x
′
i)|xi)

})

= E

(
−max

{
0,E

(
n∑
i=1

a′i(x
′
i)

∣∣∣∣∣x1, . . . , xn
)})

≥ E

(
E

(
−max

{
0,

n∑
i=1

a′i(x
′
i)

}∣∣∣∣∣x1, . . . , xn
))

= E

(
−max

{
0,

n∑
i=1

a′i(x
′
i)

})
(21)

where the first equality holds by the definition of ai, the second equality holds since (x1, . . . , xn)

are independent, the third inequality follows from Jensen’s inequality since the function x 7→
−max{0, x} is concave, and the last equality is again the law of iterated expectation.

Together, (20) and (21) imply that the left hand side of (18) is at least as large as that of (19).

Since the latter is positive, we conclude that

E

(
n∑
i=1

ai(xi)xi −max

{
0,

n∑
i=1

ai(xi)

})
≥ E

(
n∑
i=1

a′i(x
′
i)x
′
i −max

{
0,

n∑
i=1

a′i(x
′
i)

})
> 0,

as desired.

Proof of Proposition 2. Assume that the uniform distribution is a mean preserving spread of ν (or,

equivalently, that ν is a mean preserving contraction of the uniform distribution). As shown before

the statement of the proposition, the uniform distribution is 1/2-feasible. Hence P is 1/2-feasible by

Lemma 1.

Conversely, let ν be a probability measure that is symmetric around 1/2, and assume that ν is not

a mean preserving contraction of the uniform distribution. We show that ν × ν is not 1/2-feasible.

Let F (x) = ν([0, x]) be the cumulative distribution function of ν. Since the uniform distribution

is not a mean-preserving spread of ν, there must be y ∈ [0, 1] such that

H(y) =

∫ y

0

F (x) dx−
∫ y

0

xdx =

∫ y

0

F (x) dx− y2

2
> 0.

Note that H is continuous, and furthermore differentiable. Since ν is symmetric and
∫ 1

0
F (x) dx =

1/2, the function H is also symmetric around 1/2: H(y) = H(1− y).

The function H vanishes at the end-points of the interval, and, as we noted above, is positive

somewhere on [0, 1]. Hence, it must have a global maximum y ∈ (0, 1/2]. By construction, H(y) > 0.

Since H is differentiable, we also have the first-order condition H ′(y) = F (y)− y = 0.
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Let z = 1
F (y)

∫ y
0
xdν(x). We claim that z < y

2 . To see this note that

z =
1

F (y)

∫ y

0

xdF (x) =
1

F (y)

[
yF (y)−

∫ y

0

F (x) dx

]
< y − y2

2F (y)
= y − y

2
=
y

2
.

The second equality follows from integration by parts, the third equality holds since
∫ y
0
F (x) dx >

y2

2 , and the forth inequality follows since F (y) = y.

Let A1 = [1 − y, 1] and A2 = [0, y]. Let P = ν × ν. Note that by symmetry ν([y, 1]) =

1 − F (y) = 1 − y and by independence P (A1 × A2) = y(1 − y). In addition, by construction,∫
A1
xdP (x) = 1

2 −
∫ y
0
xdP (x) = 1

2 − yz, and
∫
A2
x dP (x) = yz. Therefore∫

A1

xdP (x)−
∫
A2

xdP (x)−P (A1×A2) =
1

2
− yz− yz− y(1− z) =

1

2
− 2yz− y+ y2 >

1

2
− y ≥ 0,

where the second inequality follows since z < 1/2. Therefore, Theorem 2 implies that P = ν × ν is

not feasible.

Proof of Proposition 3. Let m ∈ (0, 1) be the median of ν. We first prove the proposition for the

case where ν has no atom at m. We assume for simplicity that the number of agents is even; i.e.,

n = 2k (otherwise, we simply ignore the last agent).

We consider the trading scheme (a1, . . . , a2k) given by

ai(x) = 1x<m

for i ∈ {1, . . . , k}, and

ai(x) = −1x>m

for i ∈ {k+ 1, . . . , 2k}. We argue that for large enough n (i.e., large enough k) this trading scheme

violates the condition of Theorem 3.

Let B1 ∼ Bin(k, 1
2 ) denote the random variable of the number of agents i = 1, ..., k whose

posterior is in [0,m) (i.e., those that sell the product). Let B2 ∼ Bin(k, 1
2 ) denote the random

variable of the number of agents i = k + 1, ..., 2k whose posterior is in (m, 1] (i.e., those that buy

the product). Since νn is a product distribution we have that B1 is independent of B2.

Note also that
∑n
i=1 ai(xi) = B2 − B1, and so we have that the lower bound to the mediator’s

profit given by (8) equals

k

∫ 1

m

xdν(x)− k
∫ m

0

xdν(x)− E
(

max{0, B2 −B1}
)
.
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We observe that E
(

max{0, B2 − B1}
)
≤
√

k
8 : We have E

(
B2 − B1

)
= 0 and E

(
(B2 − B1)2

)
= k

2 .

Jensen’s inequality implies that E
(
|B2−B1|

)
≤
√

k
2 and by symmetry we deduce that E

(
max{B2−

B1, 0}
)
≤ 1

2

√
k
2 .

It follows that for k > 1
8

( ∫ 1

m
xdν −

∫m
0
xdν

)−2
this lower bound on the mediator’s profit is

positive, and thus by Theorem 3 the belief distribution νn is not feasible.

In case the distribution ν has an atom at m, the only needed change is to choose ai(m) so that

the expected number of units that each agent buys or sells is 1/2; the same calculation applies in

this case.

Proof of Lemma 2. Let I0 = ((Si)i∈N , P) be an information structure with prior p that induces P .

By the law of total expectation,

xi = P(ω = h | si) = P(ω = h | xi)

almost everywhere. Hence, if we define a new information structure I ′ for which the signals are

s′i = xi and the beliefs are, accordingly, x′i = P(ω = h | s′i), we will have that

x′i = s′i,

and so we proved the second part of the claim.

Denote by P ` and Ph be the conditional distributions of (x′1, . . . , x
′
n), conditioned on ω = ` and

ω = h, respectively. Then clearly P = (1− p) · P ` + p · Ph.

Finally, (11) holds, since by Bayes’ law and the fact that x′i = s′i,

x′i = P(ω = h | x′i) = p · dPhi
dPi

(x′i).

Proof of Proposition 4. Let B = (N, p, (Ai)i, (ui)i, us) be a first-order Bayesian persuasion prob-

lem. By our equilibrium refinement assumption, for each receiver i there is a map αi : [0, 1] → Ai

such that in equilibrium receiver i chooses action ãi = αi(xi) when their posterior is xi. Hence, if

we set

v(x1, . . . , xn) = us(α1(x1), . . . , αn(xn)),

Then, given an information structure chosen by the sender,

E(us(ã1, . . . , ãn)) = E(us(α1(x1), . . . , αn(xn))) = E(v(x1, . . . , xn)).
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Thus, if we denote by P the posterior belief distribution induced by the chosen information struc-

ture, we have shown that the sender’s expected utility is∫
v(x1, . . . , xn) dP (x1, . . . , xn).

Since the sender, by choosing the information structure, can choose any p-feasible distribution, we

arrive at the desired conclusion.

Proof of Proposition 5. We first show that every information structure I = (S1, S2,P) with prior p

chosen by the sender yields utility at most (1− p)p.
This proof uses the fact conditional expectations are orthogonal projections in the Hilbert space

of square-integrable random variables. We now review this fact.

For the probability space (Ω× S1 × S2, P) denote by L2 the Hilbert space of square-integrable

random variables, equipped with the usual inner product (X, Y ) = E(X · Y ) and corresponding

norm ‖X‖ =
√
E(X2).

Given a sub-sigma-algebra G ⊆ F , denote by L2(G) ⊆ L2 the closed subspace of G-measurable,

sqaure-integrable random variables. Recall that the map X 7→ E(X | G) is simply the orthogonal

projection L2 → L2(G).

The following is an elementary lemma regarding Hilbert spaces. We will, of course, apply it to

L2.

Lemma 5. Let u be a vector in a Hilbert space U , and let w be an orthogonal projection of u to a

closed subspace W ⊆ U . Then w lies on a sphere of radius 1
2‖u‖ around 1

2u, i.e. ‖w− 1
2u‖ = 1

2‖u‖.

Proof. Since w is an orthogonal projection of u, we can write u = w + w′, where w and w′ are

orthogonal. This orthogonality implies that ‖w − w′‖ = ‖w + w′‖ = ‖u‖. It follows that∥∥∥w − 1

2
u
∥∥∥ =

∥∥∥w − 1

2
(w + w′)

∥∥∥ =
∥∥∥1

2
w − 1

2
w′
∥∥∥ =

1

2
‖w − w′‖ =

1

2
‖u‖.

Let X = 1ω=h be the indicator of the event that the state is high. Hence xi = E(X | Fi), where

Fi = σ(si) is the sigma-algebra generated by the private signal si. Denote X̂ = X/p − 1. Hence

P(X̂ = 1/p − 1) = p, P(X̂ = −1) = 1 − p, and ‖X̂‖2 = (1 − p)/p. Denote X̂i = xi/p − 1, so that

X̂i = E(X̂ | Fi). Since X̂i is the projection of X̂ to the subspace L2(Fi), it follows from Lemma 5

that

‖X̂i − X̂/2‖ =
1

2

√
1− p
p

.
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Therefore, by the triangle inequality, ‖X̂1 − X̂2‖ ≤
√

(1− p)/p, and since X̂i = xi/p − 1 we get

that ‖x1/p− x2/p‖ ≤
√

(1− p)/p, or

E((x1/p− x2/p)2) ≤ 1− p
p

.

Thus

E((x1 − x2)2) ≤ (1− p)p.

To finish the proof of Proposition 5, we note that a simple calculation shows that the sender can

achieve the expected utility (1− p)p by completely informing one agent, and giving no information

to the other. That is, by inducing the joint posterior distribution

P = p · δ1,p + (1− p)δ0,p.

Remark on the polarizing first-order Bayesian persuasion problem with a < 2 and

p = 1/2. For the first-order Bayesian persuasion problem Ba given by v(x1, x2) = |x1 − x2|a and

symmetric prior p = 1/2, we argue that P = 1
2δ1, 12 + 1

2δ0, 12 is the optimal posterior distribution for

all a ∈ (0, 2); thus the value V (Ba) of the problem equals 1
2a . To prove this, it is enough to check

the upper bound V (Ba) ≤ 1
2a .

Consider an arbitrary 1/2-feasible policy P ′. Hölder’s inequality implies∫
v(x1, x2) dP ′ =

∫
v(x1, x2) · 1 dP ′ ≤

(∫
(v(x1, x2))

q
dP ′
) 1
q

·
(∫

1q
′
dP ′
) 1
q′

where q, q′ > 0 and 1
q + 1

q′ = 1. Picking q = 2
a and taking supremum over P ′ on both sides, we get

V (Ba) ≤
(
V (B2)

) a
2 . By Proposition 5, V (B2) = 1

4 and we obtain the required upper bound.

Proof of Proposition 6. It is immediate to check that the expected utility for the distribution P

given in the theorem statement is 1/32. It thus remains to prove that no other distribution can

achieve higher expected utility.

We retain the notation used in the proof of Proposition 4. Let (x1, x2) be the posterior beliefs

of two agents induced by some information structure. Since the prior is p = 1/2, X̂i = 2xi − 1, and

so

E(v(x1, x2)) = −E((x1 − 1/2) · (x2 − 1/2)) = −1

4
E(X̂1 · X̂2).

We recall that (·, ·) denotes the inner product in the Hilbert space L2. Thus we can write

E(v(x1, x2)) = −1

4
(X̂1, X̂2). (22)
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By Lemma 5, the vectors X̂1, X̂2 ∈ L2 lie on a sphere of radius 1
2‖X̂‖ around 1

2X̂ ∈ L
2. Note that

since p = 1/2, ‖X̂‖ = 1. Since {X̂, X̂1, X̂2} span a subspace that is (at most) three dimensional,

the question is reduced to the following elementary question in three dimensional geometry: given

a vector w ∈ R3, what is the minimum of the inner product (u1, u2), as u1, u2 ∈ R3 range over the

sphere of radius ‖w‖ around w? Lemma 6 states that the minimum is − 1
2‖w‖

2. Hence by (22)

E(v(x1, x2)) ≤ 1

32
.

w

0

u1

u2

Figure 5: Lemma 6 states that −1/2 is the smallest possible inner product between two vectors that

lie on a unit sphere which intersects the origin. The depicted u1 and u2 achieve this minimum.

Lemma 6. Let w ∈ R3. Then

min
{

(u1, u2) : ‖w − u1‖ = ‖w − u2‖ = ‖w‖
}

= −1

2
‖w‖2.

The proof is left as an exercise to the reader. Alternatively, this problem can be solved symbol-

ically using the Mathematica command

Minimize[{x1*y1 + x2*y2 + x3*y3,

(x1 - 1)^2 + (x2)^2 + (x3)^2 == 1 && (y1 - 1)^2 + (y2)^2 + (y3)^2 == 1},

{x1, x2, x3, y1, y2, y3}]

Proof of Theorem 4. We start by constructing an extreme point of P2
p with infinite support. There-

after, we extend this construction for N ≥ 2 receivers.

Consider the following information structure. Let S1 = S2 = {1, 2, . . .}. Choose at random a

number K, which is distributed geometrically with parameter r that depends on the state: When
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ω = `, r = 2/3, and when ω = h, r = 1/2. The signals (s1, s2) that the agents receive are equal to

(K,K) when ω = `, and to (K + 1,K) when ω = h.

A simple calculation shows that when an agent 1 observes a signal s1 = k her posterior x1(k) = tk

and when agent 2 observes s2 = k, her posterior is x2(k) = wk, where tk and wk are given by

tk =

{
2−k+1p

2−k+1p+2·3−k(1−p) , k ≥ 2

0, k = 1
, wk =

2−kp

2−kp+ 2 · 3−k(1− p)
, k ≥ 1.

The induced conditional distributions of (x1, x2) are

P ` =

∞∑
k=1

2 · 3−k · δ(tk, wk)

Ph =

∞∑
k=1

2−k · δ(tk+1, wk).

Note that P ` and Ph have disjoint supports; see Figure 2.

Hence the induced (unconditional) distribution is P = (1− p) · P ` + p · Ph. It satisfies the pair

of identities

tk · P
({(

tk, wk
)})

= (1− tk) · P
({(

tk, wk−1
)})

, k ≥ 2, (23)

wk · P
({(

tk, wk
)})

= (1− wk) · P
({(

tk+1, wk
)})

, k ≥ 1, (24)

which we use below.

We first argue that (P `, Ph) is the unique implementation of P .22

By Lemma 2, for any pair (Q`, Qh) implementing a feasible distribution Q, the marginals satisfy

dQhi (x) = x
pdQi(x) for each agent i ∈ N . Since Q` = Q−p·Qh

1−p , we get the complementary equation

dQ`i(x) = 1−x
1−pdQi(x). Combining the two equations, we obtain

x

p
· dQ`i(x) =

1− x
1− p

· dQhi (x) for i ∈ N . (25)

Let (P̂ `, P̂h) be an implementation of P . The identity (25), applied to i = 1 and x = tk, gives

the following equation
t1
p
P̂ `
({(

t1, w1

)})
=

1− t1
1− p

P̂h
({(

t1, w1

)})
(26)

for k = 1, and the following family of equations for k ≥ 2:

tk
p

(
P̂ `
({(

tk, wk
)})

+ P̂ `
({(

tk, wk−1
)}))

=
1− tk
1− p

(
P̂h
({(

tk, wk
)})

+ P̂h
({(

tk, wk−1
)}))

. (27)

22See §6 for the definition of an implementation, as well as an example that shows that feasible distributions may

have multiple implementations.
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Similarly, for i = 2 and x2 = wk, we get

wk
p

(
P̂ `
({(

tk, wk
)})

+ P̂ `
({(

tk+1, wk
)}))

=
1− wk
1− p

(
P̂h
({(

tk, wk
)})

+ P̂h
({(

tk+1, wk
)}))

. (28)

We now show that these equations and the condition P = (1−p)P̂ `+p·P̂h completely determine the

pair (P̂ `, P̂h). Since t1 = 0, equation (26) results in P̂h({(t1, w1)}) = 0 and hence the entire mass
1

1−pP ({(t1, w1)}) of the point (t1, w1) must be assigned to P̂ `. Given this, the equality (28) implies

the entire mass 1
pP ({(t2, w1)}) of the point (t2, w1) must be assigned to P̂h. Indeed, expressing

P̂ `({(tk, wk)}) and P̂h({(tk+1, wk)}) through P and taking into account that P̂h({(tk, wk)}) = 0

for k = 1, we rewrite (28) as

wk
p

(
1

1− p
P
({(

tk, wk
)})

+ P̂ `
({(

tk+1, wk
)}))

=
1− wk
1− p

(
P
({(

tk+1, wk
)})
− (1− p)P̂ `

({(
tk+1, wk

)})
p

)
(29)

for k = 1. This equality and the identity (24) lead to P̂ `({(t2, w1)}) = 0.

Next, a similar argument demonstrates that the entire mass 1
1−pP

({(
t2, w2

)})
of the point

(t2, w2) must be assigned to P̂ `. Indeed, we know that P̂ `({(tk, wk−1)}) = 0 for k = 2, which

allows us to rewrite (27) as

tk
p

P
({(

tk, wk
)}
− p · P̂h

({(
tk, wk

)}))
1− p


=

1− tk
1− p

(
P̂h
({(

tk, wk
)})

+
1

p
P
({(

tk, wk−1
)}))

(30)

for k = 2. Combining this equality with identity (23), we get P̂h
({(

t2, w2

)})
= 0. We proceed

inductively: knowing that P̂h
({(

tk, wk
)})

= 0, we deduce equality (29) and infer using (24) that

P̂ `
({(

tk+1, wk
)})

= 0; from this, we derive equality (30) and, with the help of (23), see that

P̂h
({(

tk+1, wk+1

)})
= 0, and so on. Thus P̂ ` coincides with 1

1−pP restricted to {(tk, wk) : k ≥ 1}
and P̂h coincides with 1

pP restricted to {(tk+1, wk) : k ≥ 1}, and so P̂ ` = P `, P̂h = Ph. Hence P

has a unique implementation.

Given a convex combination P = αQ+(1−α)Q̂, where Q and Q̂ are both feasible and α ∈ (0, 1),

our goal is to show that Q = P . Let (Q`, Qh) and (Q̂`, Q̂h) be some pairs of conditional probability

distributions that implement Q and Q̂, respectively. The pair (αQ` + (1 − α)Q̂`, αQh + (1 −
α)Q̂h) implements P . From the uniqueness of P ’s implementation we deduce that supp (Q`) ⊂
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supp (P `) and supp (Qh) ⊂ supp (Ph), and thus Q`({(tk+1, wk)}) = Qh({(tk, wk)}) = 0. Therefore,

condition (25) implies

tk
p
·Q`

({(
tk, wk

)})
=

1− tk
1− p

·Qh
({(

tk, wk−1
)})

, k ≥ 2

wk
p
·Q`

({(
tk, wk

)})
=

1− wk
1− p

·Qh
({(

tk+1, wk
)})

, k ≥ 1.

This family of equations uniquely determines the weights of each point (tk, wk) and (tk+1, wk),

k ≥ 1, up to a multiplicative factor, which is pinned down by the condition that Q is a probability

measure. Hence in the decomposition P = αQ + (1 − α)Q̂, the distribution Q is unique. Thus Q

must be equal to P and hence P is an extreme point.

This construction extends to N ≥ 2, by sending no information to the remaining N − 2 agents.

The resulting distribution over posteriors is an extreme point due to the same arguments.

Now we check the singularity of the extreme points of PNp with respect to the Lebesgue measure

λ on the unit cube [0, 1]N . The proof relies on the classical theorem of Lindenstrauss (1965),

which states that all extreme points of the set of all probability measures with given marginals are

singular. Lindenstrauss (1965) proved this result for n = 2 and Shortt (1986) extended it to general

n. In §E (Theorem 5), we include an alternative proof for n ≥ 2 closely following the original proof

of Lindenstrauss. Here we show how to apply this result to our problem.

By Lemma 2, any p-feasible distribution P can be represented as (1− p)P ` + p · Ph, where the

marginals of the pair (P `, Ph) satisfy the identity

x

p
dP `i (x) =

(
1− x

p

)
dPhi (x). (31)

Denote by HNp the set of all pairs satisfying (31). The set of p-feasible distributions PNp is, therefore,

the image of the convex set HNp under the linear map (P `, Ph)→ (1− p)P ` + p ·Ph. The extreme

points of PNp are hence all contained in the image of the extreme points of HNp .

So it is enough to check that in any extreme pair (P `, Ph), both measures are necessary singular

with respect to λ. We check singularity of P `; the argument for Ph is analogous. We assume towards

a contradiction that P ` is not singular. Then by Theorem 5, P ` is not an extreme point among

measures with the same marginals and thus can be represented as P ` = 1
2Q + 1

2Q
′, where Q and

Q′ have the same marginals as P ` and Q 6= Q′. This induces the representation of (P `, Ph) as the

average of
(
Q, Ph

)
and

(
Q′, Ph

)
, where both pairs satisfy (31). Contradiction.

Proposition 8. The set of p-feasible posterior distributions is a convex, weak* compact subset of

∆([0, 1]n).

Proof. Pick a pair of feasible distributions P, P ′ ∈ PNp and consider the corresponding Q, Q′ ∈
∆
(
[0, 1]N

)
that satisfy the conditions of Lemma 3 for P and P ′, respectively. For a convex combi-
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nation P ′′ = αP + (1 − α)P ′, the conditions of the lemma are satisfied by Q′′ = αQ + (1 − α)Q′.

Thus P ′′ also belongs to PNp , and so we have shown that the set of feasible distributions is convex.

To verify the weak* compactness of PNp , consider a sequence of p-feasible distributions P (k)

weakly converging to some P (∞) ∈ ∆
(
[0, 1]N

)
, as k → ∞. To prove weak* compactness we show

that the limit distribution P (∞) is also feasible. For each P (k), select some Q(k) from Lemma 3. The

set of all probability distributions on [0, 1]N is weak* compact and, therefore, there is a subsequence

Q(km) weakly converging to some Q(∞) ∈ ∆
(
[0, 1]N

)
.

The conditions of Lemma 3 can be rewritten in an equivalent integrated form. Condition (1)

becomes ∫
f(x1, . . . , xn)

(
1

p
dP (x1, . . . , xn)− dQ(x1, . . . , xn)

)
≥ 0 (32)

for any non-negative continuous function f on the unit cube. Condition (2) is equivalent to∫
g(xi)

(
xi
p

dP (x1, . . . , xn)− dQ(x1, . . . , xn)

)
= 0 (33)

for any agent i ∈ N and any continuous g of arbitrary sign on the unit interval.

With this reformulation it is immediate that both conditions are closed, and hence withstand

the weak* limit. Therefore, since P (km), Q(km) satisfy the conditions (32) and (33), the limiting

pair P (∞), Q(∞) satisfies them as well. We deduce that P (∞) is feasible.

D Checking on Intervals is not Sufficient

In this section we show that restricting the condition (6) to intervals A1, A2 provides a condition

that—while clearly necessary—is not sufficient for feasibility.

To see this, consider the following distribution P , depicted in Figure 6. It is parameterized

by small ε > 0 and is supported on four points: two “heavy” points,
(
1
4 −

ε
4 ,

1
2

)
and

(
3
4 ,

1
2

)
with

probabilities 1−ε
2 and 1/2, respectively, and two “light” points,

(
1
2 −

ε
4 , 0
)

and
(
1
2 −

ε
4 , 1
)
, each with

probability ε
4 . Thus

P =
1− ε

2
δ 1−ε

4 , 12
+

1

2
δ 3

4 ,
1
2

+
ε

4

(
δ1/2−ε/4,0 + δ1/2−ε/4,1

)
(34)

This distribution satisfies the martingale condition with prior 1/2; however, it is not 1/2-feasible.

To see that, pick A1 =
{

1−ε
4 , 34

}
and A2 =

{
1
2

}
, then A1×A2 has zero P -measure and the condition

(6) is violated:

0 ≥ 1− ε
4
· 1− ε

2
+

3

4
· 1

2
− 1

2

(
1− ε

2
+

1

2

)
=
ε2

8
.
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Figure 6: The distribution defined in (34), for ε = 1/10. The “heavy” points are large, and the

“light” points are small.

We now check that none of the inequalities (6) is violated for intervals A1, A2. Since P satisfies

the martingale condition, it suffices to check the left inequality23

P (A1 ×A2) ≥
∫
A1

x dP1(x)−
∫
A2

xdP2(x). (35)

Since P has finite support, different choices of A1, A2 yield the same inequality if each set contains

the same points of the support of P1 and P2, respectively. Thus, we need to check that (35) is

satisfied if A1 is a subset of
{

1−ε
4 , 1

2 −
ε
4 ,

3
4

}
and A2, a subset of

{
0, 1

2 , 1
}

, except the cases of

A1 =
{

1−ε
4 , 3

4

}
and A2 = {0, 1}, which exclude the middle points and do not correspond to any

interval.

We consider the following cases:

• Inequality (35) holds if one of the sets Ai is empty or contains the whole support of Pi, as it

then boils down to the martingale condition, which we already verified.

• Consider the case when A1×A2 contains exactly one heavy point; by the interval constraint,

if it contains two, then A1 contains the support of P1, which is the case we already considered.

In this case, P (A1×A2) ≥ 1−ε
2 . On the other hand, the integral

∫
A1
x dP1(x) does not exceed

1
2 −

3
4 ·

1
2 = 1

8 if A1 excludes the rightmost heavy point and it does not exceed 1
2 −

1−ε
4

1−ε
2 . We

see that for ε small enough (e.g., ε = 1
10 ), condition (35) is satisfied regardless of the choice

of A2, since 1−ε
2 ≥ max

{
1
8 ,

1
2 −

1−ε
4

1−ε
2

}
.

23Using the martingale condition
∫
A1

x dP1(x) +
∫
A1

xdP1(x) = p the right inequality in (6) follows from the left

by a simple calculation.
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• Consider the remaining case, in which there are no heavy points in A1×A2, and both A1 and

A2 are nonempty strict subsets of the supports. This can only be possible if A2 contains 1/2

or A1 =
{

1
2 −

ε
4

}
. In the former case,

∫
A2
x dP2(x) ≥ 1

2 −
ε
4 , which for small ε ( 1

10 suffices)

exceeds
∫
A1
xdP1(x) for any A1 excluding at least one of the heavy points (see the bounds

above). Hence, the right-hand side of (35) is negative and the inequality is satisfied. Consider

the remaining case of A1 =
{

1
2 −

ε
4

}
and A2 either {0} or {1}. The left-hand side of (35)

equals ε
4 and

∫
A1
x dP1(x) =

(
1
2 −

ε
4

)
· ε2 ≤

ε
4 . Thus (35) is satisfied on all intervals.

This example also demonstrates that the condition of Ziegler (2020) (Theorem 1) is not sufficient

for feasibility. Using our notation his condition can be written as follows:

max

{∫ a

0

x dP1(x) +

∫ b

0

x dP2(x)− p,
∫ a

0

(1− x) dP1(x) +

∫ b

0

(1− x) dP2(x)− (1− p)

}
≤

≤ P ([0, a]× [0, b]) ≤

≤ min

{∫ a

0

(1− x) dP1(x) +

∫ b

0

x dP2(x),

∫ a

0

x dP1(x) +

∫ b

0

(1− x) dP2(x)

}
.

for every a, b ∈ [0, 1]

Simple computations show that for every given a, b ∈ [0, 1] this condition is equivalent to four of our

conditions (see Equation 6) for all possible combinations of A1 = [0, a] or A1 = [a, 1] and A2 = [0, b]

or A2 = [b, 1].

The condition for feasibility in Ziegler (2020) is essentially the same condition as our condition

(6), but restricted to interval subsets A1, A2 ⊂ [0, 1], where each interval has a boundary point

either at 0 or at 1. If the marginals P1 and P2 are supported on at most two points, such intervals

exhaust all possible non-trivial sets in Equation 6; in this case, Ziegler’s condition is necessary and

sufficient for feasibility. However, the example above demonstrates that this condition becomes

insufficient if the support contains at least 3 points.

E Singularity of extreme measures with given marginals

In this section we formulate an extension of a celebrated result of Lindenstrauss (1965) regarding

extreme points of the set of measures with given marginals. The extension is two-fold: the classic

result assumes n = 2 and uniform marginals and we get rid of both assumptions. This extension can

also be deduced from a more general statement by Shortt (1986), which allows for non-orthogonal

multidimensional projections.

For the reader’s convenience, we include a proof similar to Lindenstrauss’s.

46



Theorem 5 (n = 2 (Lindenstrauss, 1965); n ≥ 2 (Shortt, 1986)). Any extreme point P of the set

of probability measures on [0, 1]N with given one-dimensional marginals νi ∈ ∆([0, 1]), i ∈ N , is

singular with respect to the Lebesgue measure λ on the unit cube. In other words, for each extreme

P there exists a measurable set B such that P (B) = 1 and λ(B) = 0.

Proof. Assume the converse: P is not singular. By the Lebesgue decomposition theorem the con-

tinuous part of P can be singled out: P = µ + λ⊥, where µ 6= 0 is absolutely continuous with

respect to λ (dµ = fdλ with a non-negative integrable density f), λ⊥ is singular with respect to λ.

Consider the Lebesgue space L1(µ) of integrable functions with respect to µ (defined µ-everywhere)

and its closed subspace S generated by “separable”24 functions g(x1, . . . , xn) =
∑
i∈N gi(xi), where

gi ∈ L1(µ), i ∈ N , depends on the variable xi only.

Let’s assume that S 6= L1(µ), i.e., separable integrable functions are not dense in all integrable

(we check this condition at the end of the proof). Now we show that under this assumption, µ can

be represented as a convex combination of 1
2µ
′+ 1

2µ
′′, where µ′ and µ′′ are distinct but have the same

marginals. By the Hann-Banach theorem there exists a continuous functional θ of norm 1 such that

θ is identically zero on S. Since the dual space to L1(µ) is the space L∞(µ) of essentially-bounded

functions, the functional θ can be identified with a non-zero function θ(x1, . . . , xn) bounded by 1

in absolute value. The condition of vanishing on S reads as∫ ∑
i∈N

gi(xi) · θ(x1, . . . , xn) dµ = 0, ∀gi = gi(xi) ∈ L1(µ), i ∈ N. (36)

We see that the measure θ dµ is non-zero but has zero marginals! Define µ′ and µ′′ as dµ′ =

(1− θ) dµ and dµ′ = (1 + θ) dµ. By the construction, µ is the average of µ′ and µ′′, µ′ and µ′′ are

distinct, and all measures µ, µ′, and µ′′ have the same marginals. Thus P is also represented as the

average of µ′ + λ⊥ and µ′′ + λ⊥, i.e., P is not an extreme point. Contradiction. This contradiction

completes the proof (under the assumption that S 6= L1(µ)).

Now we check that S 6= L1(µ). Our goal is to construct a function h ∈ L1(µ) such that for

any g(x1, . . . , xn) =
∑
i∈N gi(xi) ∈ L1(µ) the L1-distance

∫
|h − g|dµ is bounded below by some

positive constant independent of g.

Recall that dµ = fdλ. Fix δ > 0 such that the set Aδ = {x ∈ [0, 1]N : f(x) ≥ δ} has

non-zero Lebesgue measure. Fix another small constant ε > 0; by the Lebesgue density theorem

applied to Aδ, there exist a point x0 ∈ (0, 1)N and a number a > 0 such that for the cube C =∏
i∈N [x0i − a, x0i + a) ⊂ [0, 1]N of size 2a centered at x0 the following inequality holds λ(C\Aδ)

λ(C) ≤ ε.
Define h(x) = 1 if xi ≥ x0i for all i ∈ N , and h(x) = 0, otherwise.

Cut the cube C into 2n small cubes indexed by subsets of N : for M ⊂ N the cube CM is given

by
∏
i∈N\M

[
x0i − a, x0i

)
×
∏
i∈M

[
x0i , x

0
i + a

)
. No function g(x) =

∑
i∈N gi(xi) can approximate

24We refer here to separability in economic sense.

47



h well on all the small cubes at the same time. Intuition is the following: since h is zero in all

the cubes except CN , then g must be close to zero on these cubes; however, values on these cubes

determine values of g on CN by

g(x) =
1

n− 1

((∑
i∈N

g
(
x1, . . . , xi−1, xi − a, xi+1, . . . , xn

))
− g
(
x1 − a, x2 − a, . . . , xn − a

))
,

(37)

therefore g is close to zero on CN and cannot approximate h well.

To formalize this intuition, we assume that
∫
CM
|h − g|dµ is less then some α · λ(CM ) for any

M ⊂ N and show that this constant α cannot be too small. For M 6= N we get
∫
CM
|g| · f dλ ≤

αλ(CM ). Applying the Markov inequality on the set CM ∩Aδ and taking into account that this set

is big enough (by the construction of the original cube, λ(CM\Aδ)
λ(CM ) ≤ 2nε), we obtain existence of a

set BM ⊂ CM such that |g(x)| ≤
√
α
δ on BM and λ(CM\BM )

λ(CM ) ≤ 2nε+
√
α.

Consider a subset B∗ of CN such that, whenever x ∈ B∗, all the arguments of the right-hand

side in (37) belong to respective subsets BM , i.e., B∗ = ∩i∈N
(
BN\{i} + a · ei

)
∩
(
B∅ + a ·

∑
i∈N ei

)
,

where sets BM are translated by the elements of the standard basis (ei)i∈N . The union bound

implies that the set B∗ is dense enough in CN : λ(CN\B∗)
λ(CN ) ≤ (n + 1) (2nε+

√
α). By formula (37),

the absolute value of g is bounded by n
n−1

√
α
δ on B∗. We get the following chain of inequalities:

α ≥ 1

λ(CN )

∫
CN

|h− g|dµ

≥ 1

λ(CN )

∫
B∗∩Aδ

|h− g| · f dλ

≥
(

1− n

n− 1

√
α

δ

)
· δ · λ(B∗ ∩Aδ)

λ(CN )

≥
(
δ − n

n− 1

√
α

)(
1− (n+ 1)

(
2nε+

√
α
)
− 2nε

)
. (38)

Denote by α∗ = α∗(δ, n, ε) the minimal value of α ≥ 0 satisfying the inequality created by the head

and the tail of (38). The constant ε is a free parameter in the construction. Selecting it to be small

enough (namely (n+ 2)2nε < 1), we ensure that α∗ > 0.

For any g =
∑
i∈N gi(xi)∫

[0,1]N
|h− g|dµ ≥ max

M⊂N

∫
CM

|h− g|dµ ≥ α∗(δ, n, ε) · 2−nλ(C) > 0.

Since the constant on the right-hand side is independent of g and positive, we see that h cannot be

approximated by separable functions. Thus h does not belong to S and S 6= L1.
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F Independent beliefs induced by Gaussian signals

Let φ be the density of the standard Gaussian random variable: φ(t) = 1√
2π
e−

t2

2 .

For prior p = 1/2, consider an agent who gets a signal s ∈ R distributed according to the

Gaussian distribution with variance 1 and mean equal to d for the state ω = h, and equal to −d
for the state ω = `, so that the conditional distributions have the densities φ(s− d) and φ(s + d),

respectively. The density f(s) of the unconditional distribution is

f(s) =
1

2
φ(s− d) +

1

2
φ(s+ d) =

1

2
√

2π
e−

d2

2 e−
s2

2

(
eds + e−ds

)
.

For the sake of definiteness we assume d > 0.

Denote by ν the induced distribution of posteriors. By Bayes’ Law, the posterior x(s) upon

receiving the signal s is equal to

x(s) =
φ(s− d)

1
2φ(s− d) + 1

2φ(s+ d)
· 1

2
=

eds

eds + e−ds
(39)

and

ν([0, t]) =

∫ x−1(t)

−∞
f(s)ds.

We are interested in the question of when ν × ν is 1/2-feasible. By Proposition 2, it is feasible

if and only if it is a mean preserving contraction of the uniform distribution. The next lemma

provides a simple sufficient condition for this property.

Lemma 7. Let µ ∈ ∆([0, 1]) be a non-atomic distribution, symmetric around 1/2, with cumulative

distribution function F (a) = µ([0, a]). Assume that there is at most one point 1
2 < a < 1 such that

F (a) = a and that F (x)− x > 0 for all x close enough to 1, but not equal to 1. Then the uniform

distribution is a mean preserving spread of µ if and only if

1

8
≥
∫ 1

1
2

(
x− 1

2

)
dµ(x). (40)

Proof. Necessity follows directly from the convex order definition of mean preserving spreads. In-

deed, the condition for being a mean preserving contraction of the uniform distribution is equivalent

to

H(y) =

∫ y

0

(F (x)− x) dx ≤ 0 ∀y ∈ [0, 1]. (41)

Integration by parts implies that for a = 1/2 this condition becomes exactly (40).

To prove sufficiency, we must check the inequality (41) for all y ∈ [0, 1]. Symmetry of µ implies

H(y) = H(1 − y) and thus we can focus on the right sub-interval y ∈ [1/2, 1]. It is enough to

check that maxy∈[1/2,1]H(y) ≤ 0. We claim that the maximum is attained at one of the end-points.
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Indeed, if there is an internal maximum a ∈ (1/2, 1), then the derivative H ′(a) = F (a)− a = 0. On

the whole interval (a, 1), the derivative H ′(y) has a constant sign since it is continuous and y = a is

the unique zero in
(
1
2 , 1
)
. By assumption, F (x)−x > 0 for x close to 1 and, hence, the derivative is

positive on (a, 1) and H is increasing on this interval. Therefore, the point a cannot be a maximum

of H on [1/2, 1]. Thus (41) holds if and only if it holds on the end-points y = 1/2 and y = 1. For

y = 1/2, this inequality coincides with (40) and for y = 1 it is trivial.

Below we check that ν, as induced by Gaussian signals, satisfies the assumptions of Lemma 7 and,

therefore, ν × ν is 1/2-feasible if and only if
∫ 1

1
2

(
x− 1

2

)
dν ≤ 1

8 . This is equivalent to
∫ 1

1
2
x dν ≤ 3

8 .

We can make this condition more explicit by rewriting its left-hand side as∫ 1

1
2

xdν(x) =

∫ ∞
0

x(s) · f(s) ds =
1

2

∫ ∞
0

φ(s− d) ds =
1

2

∫ d

−∞
φ(t) dt,

where in the last equation we applied the change of variable s−d = −t. This results in the following

condition of feasibility: ∫ d

−∞
φ(t) dt ≤ 3

4
,

i.e., d must be below the 3
4 -quantile of the standard normal distribution.25

It remains to prove that ν indeed satisfies the assumptions of Lemma 7. We check that ν([0, x])−
x is positive for x close to 1. Recall that we can write the belief x as a function x(s) of the signal

s using (39). We denote the derivative of x(s) by x′(s). Substituting x = x(s), we get

ν([0, x(s)])− x(s) = 1− x(s)− ν([x(s),+∞)) =

∫ ∞
s

(x′(t)− f(t)) dt.

For large t, we have

f(t) =
1

2
√

2π
e−

d2

2 · e− t
2

2 +d·t(1 + o(1)) and x′(t) =
2d(

ed·t + e−d·t
)2 = 2d · e−2d·t(1 + o(1)).

Therefore, the asymptotic behavior of the integrand is dictated by x′(t):

x′(t)− f(t) = x′(t)(1 + o(1)).

The integrand is positive for t large enough. This implies the desired positivity of ν([0, x(s)])−x(s)

for large values of s.

Now we check that there is at most one point a ∈
(
1
2 , 1
)

such that F (a) = a or, equivalently, there

is at most one point s ∈ (0,∞) such that
∫ s
−∞ f(t) dt−x(s) = 0. Denote G(s) =

∫ s
−∞ f(t) dt−x(s).

25Note that in this computation, we do not use the explicit formula for φ. In particular, one gets the same condition

of feasibility for any absolutely-continuous distribution of signals on R, if the induced distribution of posteriors ν

satisfies the assumptions of Lemma 7.
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The function G is smooth and G(0) = lims→+∞G(s) = 0. If G has k zeros in (0,∞), then it also

has at least k+ 1 extrema (minima or maxima) in this interval, hence, at least k+ 1 critical points

(zeros of the derivative G′). We will show that there are no more than two critical points and thus

G has at most one zero. The equation for critical points takes the following form

G′(s) = 0 ⇐⇒ 1

2
√

2π
e−

d2

2 e−
s2

2

(
ed·s + e−d·s

)
− 2d(

ed·s + e−d·s
)2 = 0

and can be rewritten as

e−
s2

2

(
ed·s + e−d·s

)3
= 4d

√
2πe

d2

2 .

Denote the left-hand-side by H(s). The graph of H for s ≥ 0 can intersect any given level at most

twice since H ′ has at most one zero in (0,+∞). Indeed, H ′(s) = (s− 3d · tanh(dq)) · H(q) and

the equation q − 3d · tanh(dq) = 0 has at most one positive solution by concavity of the hyperbolic

tangent on [0,+∞). Therefore, G has at most 2 critical points and thus at most one zero in (0,∞),

which completes the argument and justifies the application of Lemma 7 to ν.
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