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Abstract. We obtain revenue guarantees for the simple pricing mecha-
nism of a single posted price, in terms of a natural parameter of the distri-
bution of buyers’ valuations. Our revenue guarantee applies to the single
item n buyers setting, with values drawn from an arbitrary joint distri-
bution. Specifically, we show that a single price drawn from the distri-
bution of the maximum valuation Vmax = max{V1, V2, . . . , Vn} achieves
a revenue of at least a 1

e
fraction of the geometric expecation of Vmax.

This generic bound is a measure of how revenue improves/degrades as a
function of the concentration/spread of Vmax.
We further show that in absence of buyers’ valuation distributions, re-
cruiting an additional set of identical bidders will yield a similar guaran-
tee on revenue. Finally, our bound also gives a measure of the extent to
which one can simultaneously approximate welfare and revenue in terms
of the concentration/spread of Vmax.

Keywords: Revenue, Auction, Geometric expectation, Single posted
price

1 Introduction

Here is a natural pricing problem: A single item is to be sold to one among n
buyers. Buyers’ valuations are drawn from some known joint distribution. How
good a revenue can be achieved by posting a single price for all the buyers, and
giving the item to the first buyer whose value exceeds the price? Can we lower
bound the revenue in terms of some properties of the distribution? Such a single
pricing scheme is often the only option available, for several natural reasons. In
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many situations, it is illegal or not in good taste to price discriminate between
buyers; furthermore often it is not possible to implement a pricing scheme with
multiple prices.

We define the geometric expectation of a random variable before describing
our result: the geometric expectation of a random variable X is given by eE[log(X)]

(see, e.g., [5]). The geometric expectation is always lower than the expectation,
and the more concentrated the distribution, the closer they are; indeed, the ratio
between the geometric expectation and the expectation is a natural measure of
concentration around the mean. We illustrate how the ratio of geometric and
actual expectations captures the spread of a random variable through an example
in Section 2.

Constant fraction of geometric expectation. We show that a single price obtains a
1
e fraction of the geometric expectation of the maximum among the n valuations
(V1, . . . , Vn), i.e. geometric expectation of Vmax = max{V1, . . . , Vn}. Thus for
distributions that are concentrated enough to have a geometric expectation of
Vmax that is close to the expectation of Vmax, a single pricing scheme extracts
a good fraction of the social surplus. In particular, when the ratio of geometric
and actual expectations is larger than e/4, our revenue guarantee is larger than
a 1/4 fraction of the welfare (and hence the optimal revenue), thus beating
the currently best known bound of 1/4 by Hartline and Roughgarden [4]. In
the special case when the distribution of Vmax satisfies the monotone hazard
rate (MHR) property, a single price can extract a 1

e fraction of the expected
value of Vmax ([3]). However, since several natural distributions fail to satisfy
the MHR property, establishing a generic revenue guarantee in terms of the
geometric expectation, and then bounding the ratio of the geometric and actual
expectation is a useful route. For instance, in Section 2 we compute this ratio
for power law distributions (which do not satisfy the MHR property) and show
that for all exponents m ≥ 1.56 this ratio is larger than e/4 thus beating the
currently known bound.

Why geometric expectation?
1. Since the concentration of a distribution is a crucial property in determining

what fraction of welfare (expectation of Vmax) can be extracted as revenue, it
is natural to develop revenue guarantees expressed in terms of some measure
of concentration.

2. While there are several useful measures of concentration for different con-
texts, in this work we suggest that for revenue in auctions the ratio of the
geometric and actual expectations is both a generic and a useful measure —
as explained in the previous paragraph, for some distributions our revenue
guarantees are the best known so far.

3. The ratio of the two expectations is a dimensionless quantity (i.e., scale free).

Second price auction with an anonymous reserve price. A natural corollary of the
lower bound on single pricing scheme’s revenue is that the second price auction
(or the Vickrey auction) with a single anonymous reserve obtains a fraction 1

e of



the geometric expectation of Vmax. When buyers’ distributions are independent
and satisfy a technical regularity condition, Hartline and Roughgarden [4] show
that the second price auction with a single anonymous reserve price obtains a
four approximation to the optimal revenue obtainable. Here again, our result
shows that for more general settings, where bidders values could be arbitrarily
correlated, Vickrey auction with a single anonymous reserve price guarantees a
1
e fraction of geometric expectation of Vmax.

Second price auction with additional bidders. When estimating the distribution
is not feasible (and hence computing the reserve price is not feasible), a natural
substitute is to recruit extra bidders to participate in the auction to increase
competition. We show that if we recruit another set of bidders distributed iden-
tically to the first set of n bidders, and run the second price auction on the 2n
bidders, the expected revenue is at least a 2

e fraction of the geometric expectation
of Vmax. As in the previous result, for the special case of independent distribu-
tions that satisfy the regularity condition, Hartline and Roughgarden [4] show
that recruiting another set of n bidders identical to the given n bidders obtains
at least half of the optimal revenue; our result gives a generic lower bound for
arbitrary joint distributions.

In the course of proving this result we also prove the following result: in the
single pricing scheme result, the optimal single price to choose is clearly the
monopoly price of the distribution of Vmax. However we show that a random
price drawn from the distribution of Vmax also achieves a 1

e fraction of geometric
expectation of Vmax.

Related Work. For the special single buyer case, Tamuz [6] showed that the
monopoly price obtains a constant fraction of the geometric expectation of the
buyer’s value. We primarily extend this result by showing that for the n buyer
setting, apart from the monopoly reserve price of Vmax, a random price drawn
from the distribution of Vmax also gives a 1

e fraction of geometric expectation
of Vmax. This is important for showing our result by recruiting extra bidders.
Daskalakis and Pierrakos [2] study simultaneous approximations to welfare and
revenue for settings with independent distributions that satisfy the technical reg-
ularity condition. They show that Vickrey auction with non-anonymous reserve
prices achieves a 1

5 of the optimal revenue and welfare in such settings. Here
again, for more general settings with arbitrarily correlated values, our result
gives a measure how the quality of such simultaneous approximations degrades
with the spread of Vmax. The work of Hartline and Roughgarden [4] on second
price auction with anonymous reserve price / extra bidders has been discussed
already.

2 Definitions and Main Theorem

Consider the standard auction-theoretic problem of selling a single item among
n buyers. Each buyer i has a private (non-negative) valuation Vi for receiving



the item. Buyers are risk neutral with utility ui = Vixi − pi, where xi is the
probability of buyer i getting the item and pi is the price he pays. The valu-
ation profile (V1, V2, . . . , Vn) of the buyers is drawn from some arbitrary joint
distribution that is known to the auctioneer. Let Vmax = maxi Vi be the random
variable that denotes the maximum value among the n bidders. We denote with
Fmax the cumulative density function of the distribution of Vmax.

Definition 1. For a positive random variable X, the geometric expectation G [X]
is defined as:

G [X] = exp(E [logX])

We note that by Jensen’s inequality G [X] ≤ E [X] and that equality is
achieved only when X is a deterministic random variable. Further, as noted in
the introduction, the ratio of geometric and actual expectations of a random
variable is a useful measure of concentration around the mean. We illustrate this
point through an example.

Example 2. Consider the family Fm(x) = 1 − 1/xm of power-law distributions
for m ≥ 1. As m increases the tail of the distribution decays faster, and thus we
expect the geometric expectation to be closer to the actual expectation. Indeed,
the geometric expectation of such a random variable can be computed to be
e1/m and the actual expectation to be m

m−1 . The ratio e1/m(1 − 1/m) is an
increasing function of m. It reaches 1 at m = ∞, i.e., when the distribution
becomes a point-mass fully concentrated at 1. The special case of m = 1 gives
the equal-revenue distribution, where the geometric expectation equals e and the
actual expectation is infinity. However this infinite gap (or the zero ratio) quickly
vanishes as m grows; at m = 1.56, the ratio already crosses e/4 thus making our
revenue guarantee better than the current best 1/4 of optimal revenue; at m = 4,
the ratio already equals 0.963.

For a random variable X drawn from distribution F , define Rp [X] as:

Rp [X] = pP [X ≥ p] ≥ pP [X > p] = p(1− F (p))

If X is the valuation of a buyer, Rp [X] is the expected revenue obtained by
posting a price of p for this buyer. Therefore Rp [Vmax] is the revenue of a pricing
scheme that posts a single price p for n buyers with values V1, . . . , Vn and Vmax =
max{V1, . . . , Vn}.

We show that the revenue of a posted price mechanism with a single price
drawn randomly from the distribution of Vmax, achieves a revenue that is at least
a 1
e fraction of the geometric expectation of Vmax, or equivalently a 1

e fraction
of the geometric expectation of the social surplus.

Theorem 3 (Main Theorem). Let r be a random price drawn from the dis-
tribution of Vmax. Then:

Er [Rr [Vmax]] ≥ 1

e
G [Vmax] . (1)



Proof. By the definition of Rr [V ] we have:

Er [Rr [Vmax]] ≥ Er [r (1− Fmax(r))] . (2)

By taking logs on both the of the above equation, and using Jensen’s inequality
we get:

log(Er [Rr [Vmax]]) ≥ log (Er [r(1− Fmax(r))])

≥ Er [log(r(1− Fmax(r)))]

= Er [log(r)] + Er [log(1− Fmax(r))] .

For any positive random variable X drawn from a distribution F we have:

E [log(1− F (X))] =

∫ ∞
−∞

log(1− F (x))dF (x) =

∫ 1

0

log(1− y)dy = −1. (3)

So we have:

log(Er [Rr [Vmax]]) ≥ Er [log(r)]− 1

Er [Rr [Vmax]] ≥ 1

e
exp(Er [log(r)] =

1

e
G [Vmax] .

where the last equality follows from the fact that the random reserve r is drawn
from Fmax. ut

Since a random price drawn from Fmax achieves this revenue, it follows that
there exists a deterministic price that achieves this revenue and hence the best
deterministic price will achieve the same.

We define the monopoly price ηF of a distribution F to be the optimal
posted price in a single buyer setting when the buyer’s valuation is drawn from
distribution F , i.e.:

ηF = arg sup
r
r(1− F (r))

So a direct corollary of our main theorem is the following:

Corollary 4. Let ηmax be the monopoly price of distribution Fmax. Then:

Rηmax
[Vmax] ≥ 1

e
G [Vmax]

3 Applications to Approximations in Mechanisms Design

Single Reserve Mechanisms for Non-iid Irregular Settings. A corollary of our
main theorem is that in a second price auction with a single anonymous reserve,
namely a reserve drawn randomly from the distribution of Fmax or a determinis-
tic reserve of the monopoly price of Fmax, will achieve revenue that is a constant
approximation to the geometric expectation of the maximum value. When the
maximum value distribution is concentrated enough to have the geometric expec-
tation is close to expectation it immediately follows that an anonymous reserve
mechanism’s revenue is close to that of the expected social surplus and hence
the expected optimal revenue.



Corollary 5. The second price auction with a single anonymous reserve achieves
a revenue of at least 1

eG [Vmax] for arbitrarily correlated bidder valuations.

Approximation via replicating buyers in Irregular Settings. When the auctioneer
is unable to estimate the distribution of Vmax, and therefore unable to compute
the reserve price, a well known alternative [1] to achieve good revenue is to recruit
additional bidders to participate in the auction to increase competition. In our
setting, recruiting a set of n bidders distributed identically as the initial set of n
bidders (i.e. following joint distribution F ) will simulate having a reserve drawn
randomly from Fmax. In fact it performs even better than having a reserve —
one among the additionally recruited agents could be the winner and he pays
the auctioneer, as against the reserve price setting. More formally, observe that
in the setting with 2n bidders, half of the revenue is achieved from the original
n bidders, and half from the new bidders (by symmetry). But the revenue from
each of these parts is exactly that of the second price auction with a random
reserve drawn from the distribution of Vmax. Hence, the revenue of this extended
second price mechanism will be twice the revenue of a second price mechanism
with a single random reserve drawn from the distribution of Vmax. This fact,
coupled with our main theorem gives us the following corollary.

Corollary 6. The revenue of a second price auction with an additional set of
bidders drawn from joint distribution F is at least 2

eG [Vmax].

Approximately Optimal and Efficient Mechanisms. Finally, we note that when
the geometric expectation of Vmax is close to its expectation, all our mechanisms
(both the single pricing scheme, and Vickrey with a single reserve) are also
approximately efficient.

Corollary 7. If G [Vmax] = cE [Vmax], a single price drawn randomly from the
distribution of Fmax is simultaneously c

e approximately revenue-optimal and c
e

approximately efficient.

Proof. Since expected social welfare of a pricing scheme is at least its expected
revenue, we have:

E [Social Welfare] ≥ E [Revenue] ≥ 1

e
G [Vmax] ≥ c

e
E [Vmax]

ut
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