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Abstract. We give an example of an infinite, vertex transitive
graph that has the following property: it is the unique completion
to a transitive graph of a large enough finite subgraph of itself.

1. Introduction

Vertex transitive graphs “look the same from the point of view of ev-
ery vertex”; all vertices play the same role in their geometry. Thus they
are a natural model for a discrete, homogeneous geometrical space. In
this paper we study transitive graphs whose local structure determines
their global structure.

Consider the following scenario: Alice has in mind some vertex tran-
sitive graph G and wants to describe it to Bob. Her graph may be
infinite, and so she cannot provide a complete list of the vertices and
edges. Instead, she chooses a vertex in the graph, and shows to Bob a
ball of some finite radius around that vertex; since the graph is transi-
tive, it does not matter which vertex she chooses. Can this convey to
Bob enough information to uniquely determine G, given that he knows
that G is transitive?

For example, if G is the bi-infinite chain, then the answer is no: a
ball of any radius is a finite chain, and so Bob cannot tell whether G
is the bi-infinite chain, or whether it is a large cycle. If G is a regular
tree, then likewise the answer is no: there are many transitive graphs
that locally look like trees, but are not trees. On the other hand, if G
is finite then the answer is yes, since in this case Alice can show Bob
the entire graph. Hence the question is: does there exist an infinite
transitive graph that is uniquely determined by a large enough finite
ball?

Formally, let G be the set of finite or countably infinite, simple,
undirected, locally finite, connected, vertex transitive graphs; these
terms are defined formally in Section 2. Given a G ∈ G and an r ∈ N,
a ball of radius r in G is the subgraph that includes all vertices at
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distance at most r from some vertex in G, and all edges between them.
We say that G = (V,E) ∈ G is isolated if it has the following property:
there exists an r ∈ N large enough so that, if a ball of radius r in some
H ∈ G is isomorphic to the ball of radius r in G, then H is isomorphic
to G. Intuitively, the structure of the ball of radius r in G determines
G uniquely.

Clearly, every finite transitive graph is isolated: one can take r to be
the radius of G. However, it is not obvious that there are any infinite
graphs that have this property. In this paper we give an example of an
isolated infinite graph, namely Trofimov’s grandfather graph [9].

Note that the grandfather graph is not unimodular, and so cannot
locally resemble finite graphs. The novelty is therefore that it can also
not locally resemble any other infinite graph. It would be interesting
to find an example of an isolated, finite, unimodular graph.

This question can be formulated as one of finding isolated points in a
natural topology on the set of transitive graphs, namely the Benjamini-
Schramm topology [2,4]. This topological perspective raises a number
of interesting questions: what is the Cantor-Bendixson rank of this
space? Which graphs are left after the isolated points are repeatedly
removed? And what generic properties do these graphs have?

These and similar questions have been previously addressed in regard
to the related space of marked groups [5, 6]. In particular, Cornulier,
Guyot and Pitsch [7] characterize the isolated points in that space. It
would be interesting to understand if the (unlabeled) Cayley graphs of
these groups are isolated in the space of transitive graphs.

An analogous, more quantitative version of this question can be asked
for finite graphs: which finite transitive graphs of radius n are uniquely
determined by a ball of size (say) n/10?

1.1. Acknowledgments. We would like to thank Russell Lyons and
Bobby Kleinberg for helpful discussions.

2. Formal definitions and results

2.1. Transitive graphs. Let G = (V,E) be a graph. We will study
the set of graphs with the following properties:

• V is finite or countably infinite.
• G is simple and undirected: E is a symmetric relation on V .
• G is locally finite: the number of edges incident on each vertex

is finite.
• G is connected: there is a path between every pair of vertices.
• G is vertex transitive; we next define this notion.
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A graph isomorphism between G = (V,E) and H = (U, F ) is a bi-
jection h : V → U such that (u,w) ∈ E if and only if (h(u), h(w)) ∈ F .
A graph automorphism is a graph isomorphism from a graph to itself.
A graph G = (V,E) is said to be vertex transitive if its automorphism
group acts transitively on its vertices. That is, if for every u,w ∈ V
there exists an automorphism h such that h(u) = w. The isomorphism
class of a transitive graph G is the set of graphs H that are isomorphic
to G. We denote by G the set of isomorphism classes of graphs with
the properties described above. In this paper, we will, whenever unam-
biguous, refer to “graph isomorphism classes” simply as “graphs”, and
likewise simply denote by G the isomorphism class of G. We will ac-
cordingly write G = H whenever G and H are in the same isomorphism
class.

Given G = (V,E) ∈ G and r ∈ N, let Br(G) = (Vr, Er) be the ball of
radius r in G. This is the finite induced subgraph of G whose vertices
Vr are all the vertices at distance at most r from some vertex of G,
and whose edges Er are the edges of G whose vertices are both in Vr.
Since we are concerned with graph isomorphism classes, and since G is
vertex transitive, it does not matter with which vertex of G we choose
to construct Br(G).

2.2. The Benjamini-Schramm topology and isolated points.
The Benjamini-Schramm topology [2,4] on G is defined by the following
metric. Given G,H ∈ G, let

D(G,H) = sup{2−r : Br(G) = Br(H)}.

It is straightforward to verify that this is indeed a metric. In fact, this
topology is Polish and zero-dimensional. The sets Gd consisting of the
graphs with degree d are compact in this topology.

We say that G ∈ G is isolated if it is an isolated point in this topology.
By the above definition, this means that there exists an r ∈ N such
that whenever Br(G) = Br(H) then G = H. Since Br(G) = G for
every finite G and r large enough, it follows immediately that all the
finite graphs are isolated.

2.3. The grandfather graph. The grandfather graph of order n ≥ 3,
Gn, is the following graph (see Figure 1). Let Tn be the regular tree
of degree n. The ends of Tn can be identified with the set of infinite
simple paths starting at o, an arbitrary distinguished vertex. Choose a
distinguished end. Then each vertex has a unique edge in the direction
of this end. Call the vertex on the other side of that edge the “father”.
Then each vertex has a unique father, and, as one can imagine, each
vertex has a unique “grandfather”. The set of vertices of Gn is identical
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Figure 1. The grandfather graph G3. Edges of T3

are straight black lines. Edges to grandfathers are red
curves. The distinguished end is the “down” direction.

to that of Tn. The set of edges includes the set of edges of Tn, and in
addition an edge between each vertex and its grandfather.

2.4. Main result.

Theorem 1. For n ≥ 3, the grandfather graph Gn is isolated.

That is, there exists an r > 0 such that Gn has a unique ball of
radius r among all vertex transitive graphs. In fact, we show that this
already holds for r = 1.

We state here without proof that this result can be further extended
to some classes of graphs that are similar to Gn. For example, the
product of Gn with any finite graph will also be isolated, as will “greatk-
grandfather” graphs.

3. More on the grandfather graph

A directed edge in an undirected graph G = (V,E) is an ordered pair
(u,w) of vertices in G such that (u,w) ∈ E.

Let (u,w) and (u′, w′) be two directed edges in a graph G. We say
that (u,w) and (u′, w′) are isomorphic if there exists a graph isomor-
phism of G that maps u to u′ and w to w′ (compare to the notion



5

of “doubly rooted graphs” - see, e.g., [1, 8]). While all vertices in a
transitive graph are isomorphic, not all directed edges are necessarily
isomorphic.

Figure 2. The ball of radius one in the grandfather
graph G3. The directions and labels of the edges can be
inferred from the undirected graph.

In the grandfather graph Gn, (u,w) and (u′, w′) are isomorphic if
and only if both pairs can be described by the same (ordered) familial
relation: that is, if w is u’s father (respectively son / grandfather /
grandson) and w′ is u′’s father (respectively son / grandfather / grand-
son). This is a well-known property of this graph that is related to
the fact that it is not unimodular (see, e.g., [3, 8]). In fact, one can
already infer the familial relations by examining the ball of radius one:
in this subgraph (see Figure 2), the father and the sons can be distin-
guished from the grandfather and the grandsons, since father-son pairs
have n common neighbors, while grandfather-grandson pairs have only
one. Furthermore, a node’s father can be distinguished from the sons,
since the father is connected to all of the sons (he is their grandfather),
whereas the sons are not connected to each other. Thus, if w is u’s
father but w′ is not u′’s father, there is no graph isomorphism of Gn

that maps (u,w) to (u′, w′).
We can therefore label each directed edge as a father / son / grand-

father / grandson edge (that is, (u,w) will be a father edge if w is u’s
father), and this labeling will be invariant to any isomorphism of the
graph.

This labeling gives rise to an equivalent definition of the grandfather
graph: define a father relation on the vertices of n-regular tree Tn;
this is any relation in which each node has a unique father which is
its neighbor in the graph. Then, connect each node to its grandfather.
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The choice of a father relation is equivalent to a choice of end, and
hence this also results in the grandfather graph.

4. Proof of Theorem 1

Let H = (V,E) be any graph in G such that B1(H) = B1(Gn). We
will prove the theorem by showing that it is isomorphic to Gn. Note
that Figure 2, depicts B1(G3) and hence also B1(H), for the case n = 3.

Consider any two neighboring vertices u and w in H. Since B1(H) =
B1(Gn), u and w will either have one common neighbor or n common
neighbors (see Figure 2). In the first case, color the edge (u,w) red;
in the grandfather graph this will occur when one is the grandfather
of the other. In the second case color the edge (u,w) black; in the
grandfather graph this will occur when one is the father of the other.

We next would like to determine the direction of the black (father-
son) edges; that is, we would like to know who is the son and who is
the father. Fix two vertices u and w that are connected by a black
edge. Since B1(H) = B1(Gn), it will either be that case that (1) there
is a unique path from u to w that first traverses a black edge and then
a red edge or conversely (2) there is a unique path from u to w that
first traverses a black edge and then a red edge (see Figure 2 again).
In the first case we say that u is w’s father, and in the second case w
is u’s father. Note that exactly one of these two cases must occur, and
that indeed each vertex will have a unique father and n− 1 sons. We
will call the directed edge (u,w) a father (resp., son) edge if w is u’s
father (resp., son).

Note that the resulting father relation on the vertices of H is invari-
ant to the isomorphism group of H. We will use this to show that H
is isomorphic to Gn, which will prove Theorem 1.

A simple cycle in a graph is a sequence of directed edges (u0, w0), . . . , (uk−1, wk−1)
such that wi = ui+1 mod k, and each edge is visited at most once.

Claim 4.1. There are no simple cycles in H which include only father
edges and son edges.

Proof. Assume by contradiction that (u0, w0), . . . , (uk−1, wk−1) is a sim-
ple cycle comprised only of father edges and and son edges. Then all
edges are of the same type (i.e., all father edges or all son edges): oth-
erwise, there must be in the cycle a father edge followed by a son edge,
which would make the cycle non-simple, since fathers are unique.

By perhaps changing the direction of the cycle we can therefore as-
sume without loss of generality that all edges are father edges. Now,
every node in H has a unique father and exactly n − 1 sons. Hence
each node on the cycle is its own kth-order father, and each node has
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n− 2 > 0 sons which are not on the cycle. Since the father relation is
invariant to graph isomorphisms, so is the kth-order father relation.

Let u be a vertex on the cycle, and let v be vertex which is not on
the cycle and is a son of u. Then there is no graph isomorphism of H
that maps v to u, since v - unlike u - is not its own kth-order father.
Hence H is not transitive, and we have reached a contradiction. �

Remark. This claim can also be proved by showing that H is not
unimodular and analyzing the Haar measure of the stabilizers of the
nodes lying on the cycle (see [8]).

It follows from Claim 4.1 that the restriction of H to father-son edges
is isomorphic to Tn, the n-regular tree. This restriction is still a con-
nected graph, since grandfather-grandson edges only connect nodes
already connected by length two paths of father-son edges.

Since B1(H) = B1(Gn), the grandfather edges in H are determined
by the father-son relation, and in the same way that they are deter-
mined in Gn. Hence H can be constructed by adding grandfather edges
to Tn, equipped with a father relation. It follows that H is isomorphic
to Gn, thus proving Theorem 1.
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