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Abstract. We show that the automorphism group of every zero
entropy infinite shift admits a “drift” homomorphism to (R,+)
that maps the shift map to 1. This homomorphism arises as the
expectation, under an invariant measure, of a cocycle defined on a
space of asymptotic pairs.

1. Introduction

Automorphism groups of low complexity shifts have attracted much
attention in the past few years (see, e.g., [5–9, 16, 17]), and this paper
builds on this work. We recall the basic definitions and state our main
result.

Let A be a finite set called an alphabet. The set AZ, endowed with
the product topology, is called the full shift. Let σ : AZ → AZ denote
the shift map, given by [σ(x)]n = xn−1. A closed, σ-invariant subset
of AZ is called a shift. An infinite shift can be either countable or
uncountable.
Let Σ ⊆ AZ be a shift. A word of length n in Σ is an element w ∈ An

such that w = (x1, . . . , xn) for some x ∈ Σ. The number of words of
length n in Σ is denoted by PΣ(n). The entropy of Σ is given by

h(Σ) = lim
n

1

n
logPΣ(n).

The automorphism group of a shift Σ, denoted Aut(Σ), is the group
of homeomorphisms of Σ that commute with σ. Note that σ (or, more
precisely, its restriction to Σ) is an element of Aut(Σ).

Our main result shows that when Σ is zero entropy and infinite,
then Aut(Σ) is indicable: it admits a non-trivial homomorphism to the
additive group (R,+).
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Theorem 1. Let Σ be a zero entropy infinite shift. Then there exists
a group homomorphism Φ: Aut(Σ) → R such that Φ(σ) = 1.

We construct Φ by defining a action of Aut(Σ) by homeomorphisms
on a space CA(Σ) of asymptotic pairs. We show that this space ad-
mits a bounded “drift” cocycle c : Aut(Σ)× CA(Σ) → Z that satisfies
c(σ, ·) = 1. Furthermore, using a technique introduced in [11], we show
that CA(Σ) also admits an Aut(Σ)-invariant probability measure ν.
The drift homomorphism Φ is defined as the expectation of c with
respect to ν: Φ(φ) =

∫
c(φ, ·) dν.

This homomorphism has a similar flavor to those that stem from
Krieger’s dimension representation [4, 15]. The construction of a ho-
momorphism through the integration of a cocycle with respect to an
invariant measure is a technique that has yielded other interesting re-
sults in the past (see, e.g., Karlsson and Ledrappier [13]).

The remainder of this paper contains definitions and a proof of The-
orem 1. In §7 we provide some examples and further notes.

Acknowledgment. The author thanks Joshua Frisch and Ville Salo for
valuable comments on an earlier version.

2. The space of calibrated asymptotic pairs

As is well known (see, e.g., [1, Chapter 2]) every infinite shift Σ
admits at least one asymptotic pair : x, y ∈ Σ such that xM ̸= yM
for some M ∈ Z, and xn = yn for all n < M . Accordingly, given an
asymptotic pair, we denote by

M(x, y) = min{m ∈ Z : xm ̸= ym}
the first coordinate in which x and y differ. Note that

M(σkx, σky) = M(x, y) + k.(2.1)

Asymptotic pairs have been used to study automorphism groups of
shifts: in [9] it is shown that Aut(Σ) is virtually Z if Σ is transitive
and lim infn PΣ(n)/n is finite.
We say that an asymptotic pair is calibrated if M(x, y) = 0. If (x, y)

is an asymptotic pair then (σm(x), σm(y)) is an asymptotic pair, and
it is calibrated if and only if m = −M(x, y). We denote by

C(x, y) = (σ−M(x,y)x, σ−M(x,y)y)

the calibrated asymptotic pair that is attained from (x, y) by shifting
both of them so that they first differ at 0. We denote by CA(Σ) the set
of calibrated asymptotic pairs in Σ. This definition is closely related
to the asymptotic components of [10] and the asymptotic composants
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of [3]. It is straightforward to see that CA(Σ) is a closed subset of Σ2,
and is therefore compact. Note also that C(x, y) ∈ CA(Σ) for every
asymptotic pair (x, y).

3. An Aut(Σ) action on the calibrated asymptotic pairs

Let Σ be an infinite shift. Then Σ admits an asymptotic pair, and
so CA(Σ) is non-empty. We construct an Aut(Σ) action on CA(Σ).
Given an automorphism φ of Σ, define φ̂ : CA(Σ) → CA(Σ) by

φ̂(x, y) = C(φx, φy).(3.1)

That is, given a calibrated asymptotic pair (x, y), φ̂ applies φ to both
x and y, and then shifts the resulting asymptotic pair so that it is
again calibrated. The next few claims show that this is a well defined
action by homeomorphisms. While φ̂ is easily seen to be measurable,
its continuity is less apparent.

By the Curtis-Lyndon-Hedlund Theorem [12], for every φ ∈ Aut(Σ)
there is a memory k ∈ N and a block map Bφ : A

{−k,...,k} → A such
that [φx]m = Bφ(xm−k, . . . , xm+k). Importantly, [φx]m is determined
by (xm−k, . . . , xm+k). The following claim, which shows that φ is well
defined, is a direct consequence.

Claim 3.1. If (x, y) is an asymptotic pair in Σ then so is (φx, φy), for
any φ ∈ Aut(Σ).

Proof. Let k be a memory of φ. Then [φx]m = [φy]m for all m <
M(x, y) − k, since (xm−k, . . . , xm+k) = (ym−k, . . . , ym+k) for such m.
And φx ̸= φy, since φ is a bijection, and since x ̸= y. □

The next claim offers a bound on the difference between M(x, y)
and M(φx, φy). This will be the key component in the proof that φ̂ is
continuous.

Claim 3.2. For every φ ∈ Aut(Σ) there is a B ∈ N such that |M(x, y)−
M(φx, φy)| ≤ B for every asymptotic pair (x, y) in Σ.

Proof. Let k be a memory of φ. Then [φx]m = [φy]m for all m <
M(x, y)− k, as noted in the proof of Claim 3.1 above. Hence

M(φx, φy) ≥ M(x, y)− k,

which provides one side of the desired inequality.
Now, let k′ be a memory of φ−1. Then by the same argument applied

to the pair (φx, φy) and the automorphism φ−1 we have that

M(φ−1φx, φ−1φy) ≥ M(φx, φy)− k′,
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which provides the other side of the inequality. Thus the claim holds
for B = max{k, k′}. □

Proposition 3.3. Each map φ̂ : CA(Σ) → CA(Σ) is continuous.

Proof. Fix φ ∈ Aut(Σ). By definition, M(x, y) = 0 for (x, y) ∈ CA(Σ).
Thus, by Claim 3.2, there is some B such that |M(φx, φy)| ≤ B for all
(x, y) ∈ CA(Σ). Thus the map Mφ : CA(Σ) → Z given by Mφ(x, y) =
M(φx, φy) takes values in {−B, . . . , B}. Furthermore

Mφ(x, y) = min{m ∈ {−B, . . . , B} : [φx]m ̸= [φy]m},
and so Mφ is continuous, since φ is continuous. Since

φ̂(x, y) = (σ−Mφ(x,y)φx, σ−Mφ(x,y)φy),

and again using that φ is continuous, it follows that φ̂ is also continu-
ous. □

The proof above in fact shows a stronger claim, which will be im-
portant later:

Claim 3.4. For each φ ∈ Aut(Σ) there is a b ∈ N such that the mth co-
ordinates of φ̂(x, y) depend only on (x−m−b, . . . , xm+b) and (y−m−b, . . . , ym+b).

Finally, the next claim completes the proof that we have defined an
action of Aut(Σ) on CA(Σ).

Claim 3.5. The map φ 7→ φ̂ is a group homomorphism from Aut(Σ)
to Homeo(CA(Σ)).

Proof. By Proposition 3.3, each φ̂ is a homeomorphism of the compact
space CA(Σ). It thus suffices to prove that ρ̂φ̂ = ρ̂φ for all ρ, φ ∈
Aut(Σ).

By definition

ρ̂φ̂(x, y) = ρ̂(σmφx, σmφy)

where m = −M(φx, φy). Applying the definition again we get

ρ̂φ̂(x, y) = (σnρσmφx, σnρσmφy),

where n = −M(ρσmφx, ρσmφy). Since ρ commutes with σ, n =
−M(σmρφx, σmρφy), and by (2.1), n = −M(ρφx, ρφy) − m. Thus,
and by again using the fact that σ and ρ commute,

ρ̂φ̂(x, y) = (σn+mρφx, σn+mρφy)

= (σ−M(ρφx,ρφy)ρφx, σ−M(ρφx,ρφy)ρφy)

= ρ̂φ(x, y).

□
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4. The drift cocycle and drift homomorphisms

Define the drift cocycle c : Aut(Σ)× CA(Σ) → Z by

c(φ, (x, y)) = M(φx, φy).

In a sense, c(φ, (x, y)) captures the amount by which φ shifts the as-
ymptotic pair (x, y). In particular, by (2.1), c(σ, (x, y)) = 1 for all
(x, y) ∈ CA(Σ).

Claim 4.1. The drift cocycle c is continuous and satisfies the cocycle
relation

c(φρ, (x, y)) = c(φ, ρ̂(x, y)) + c(ρ̂, (x, y)).

Proof. In the proof of Proposition 3.3 we definedMφ(x, y) = M(φx, φy) =
c(φ, (x, y)) and showed that it is continuous, and thus c is continuous.
It remains to be shown that it satisfies the cocycle relation.

By definition,

c(φ, ρ(x, y)) = c(φ,C(ρx, ρy))

= c(φ, (σ−M(ρx,ρy)ρx, σ−M(ρx,ρy)ρy))

= M(φσ−M(ρx,ρy)ρx, φσ−M(ρx,ρy)ρy).

Since φ commutes with σ, we have that

c(φ, ρ(x, y)) = M(σ−M(ρx,ρy)φρx, σ−M(ρx,ρy)φρy).

Applying (3.1) yields

c(φ, ρ(x, y)) = M(φρx, φρy)−M(ρx, ρy),

which is equal to c(φρ, (x, y))− x(ρ, (x, y)). □

SinceM(x, y) = 0 for all (x, y) ∈ CA(Σ), by Claim 3.2 c is a bounded
cocycle:

Claim 4.2. For each φ ∈ Aut(Σ) there exists a B ∈ N such that
|c(φ, (x, y))| ≤ B for all (x, y) ∈ CA(Σ).

Suppose ν is a Borel probability measure on CA(Σ) that is Aut(Σ)-
invariant, i.e., ν(φ̂(A)) = ν(A) for every φ ∈ Aut(Σ) and Borel A ⊂
CA(Σ). Let Φν : Aut(Σ) → R be given by

Φν(φ) =

∫
c(φ, (x, y)) dν(x, y).

We call Φν a drift homomorphism.

Claim 4.3. Φν is a well defined homomorphism Aut(Σ) → R, with
Φν(σ) = 1.
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Proof. By Claim 4.1 c(φ, ·) is continuous and thus measurable. By
Claim 4.2 it is bounded. Hence it is integrable, and Φν(φ) is well
defined. To show that it is a homomorphism we first apply the cocycle
relation, and then the invariance of ν

Φν(ρφ) =

∫
c(φρ, (x, y)) dν(x, y)

=

∫
c(φ, ρ̂(x, y)) dν(x, y) +

∫
c(ρ, (x, y)) dν(x, y)

=

∫
c(φ, (x, y)) dν(x, y) +

∫
c(ρ, (x, y)) dν(x, y)

= Φν(φ) + Φν(ρ).

Finally, Φν(σ) = 1, since c(σ, (x, y)) = 1 for all (x, y). □

In light of this claim, we prove our main theorem by showing that if
Σ is zero entropy shift with an asymptotic point then CA(Σ) admits
an Aut(Σ)-invariant measure. This is what we do in the next section.

5. Aut(Σ)-invariant random calibrated asymptotic pairs

In this section we construct, for each zero entropy shift Σ, a Borel
probability measure on CA(Σ) that is Aut(Σ)-invariant. This construc-
tion is nearly identical to that of the main result in [11]; we provide
the details for completeness.

Let Wn ⊆ A2n+1 × A2n+1 denote the set of word-pairs that appear
in the centered window of radius n in CA(Σ). That is, Wn is the
set of (w1, w2) ∈ A2n+1 × A2n+1 such that w1 = (x−n, . . . , xn) and
w2 = (y−n, . . . , yn) for some (x, y) ∈ CA(Σ). We say that (x, y) projects
to (w1, w2) ∈ Wn if (w1, w2) appears in (x, y), and denote πn(x, y) =
(w1, w2), πn : CA(Σ) → Wn. As each (w1, w2) ∈ Wn appears in some
pair (x, y) ∈ CA(Σ), we can find a set W̄n ⊆ CA(Σ) of the same size as
Wn, and where each (w1, w2) ∈ Wn appears in exactly one (x, y) ∈ W̄n.
I.e., πn restricted to W̄n is a bijection.
Since |Wn| ≤ (PΣ(2n+1))2, and since Σ has zero entropy, |Wn| grows

sub-exponentially, and so there is a sequence (nm)m such that

|Wnm+m|
|Wnm |

≤ 1 + om(1).

That is, along the sequence nm, the number of word-pairs in a window
of width nm+m is only a small fraction more than in a window of length
nm. It follows that, along this sequence, at least a 1 − o(1) fraction
of the word-pairs in Wnm have a unique extension to a word-pair in
Wnm+m. Denote such a sequence of sets by Um.



7

Let νm be the uniform measure on W̄nm , which, we remind the reader,
is a subset of CA(Σ) for which the projection to the words Wnm is a
bijection. Since CA(Σ) is compact, the sequence νm has a subsequential
limit ν.

Proposition 5.1. The measure ν on CA(Σ) is Aut(Σ)-invariant.

Proof. Since ν is defined on the Borel sigma-algebra, to show that it is
invariant it suffices to show that ν(φ̂−1Ē) = ν(Ē) for every φ ∈ Aut(Σ)
and every clopen Ē ⊆ CA(Σ).

Since Ē is clopen, for all m large enough there is a set Em ⊂ Wnm

such that Ē is the set of all (x, y) ∈ CA(Σ) that project to some
(w1, w2) ∈ Em. That is, Ē = π−1

nm
(Em). Hence |Ē ∩ W̄nm| = |Em ∩

Wnm| = |Em|, where the last equality holds since Em ⊆ Wnm . It
follows that

νm(Ē) =
|Ē ∩ W̄nm|
|W̄nm|

=
|Em ∩Wnm|

|Wnm|
=

|Em|
|Wnm|

,

where the first equality is the definition of νm. Likewise,

νm(φ̂
−1Ē) =

|(φ̂−1Ē) ∩ W̄nm |
|W̄nm|

=
|Ē ∩ φ̂W̄nm|

|W̄nm|
.

Now, Ē ∩ φ̂W̄nm is the set of elements of φ̂W̄nm that are in Ē. Since
Ē = π−1

nm
(Em), The size of this set is equal to the number of elements

(x, y) ∈ φ̂W̄nm such that πnm(x, y) is in Em:

νm(φ̂
−1Ē) =

|{(x, y) ∈ φ̂W̄nm : πnm(x, y) ∈ Em}|
|W̄nm |

.

By Claim 3.4 there is some b such that for all n, coordinates {−n, . . . , n}
of both φ̂(x, y) and φ̂−1(x, y) are determined by coordinates (−n −
b, . . . , n+ b) of (x, y). For m > b, the set of word-pairs Um ⊆ Wnm that
have a unique extension to Wnm+m is at least a 1− o(1) fraction of the
word-pairs in Wnm . Let Ūm ⊂ W̄nm be the subset of W̄nm that projects
to Um. Since Ūm is almost all of W̄nm , we can substitute it for W̄nm

and only incur a vanishing error:

νm(φ̂
−1Ē) =

|{(x, y) ∈ φ̂Ūm : πnm(x, y) ∈ Em}|
|W̄nm|

+ o(1).

The key observation is that because of the unique extension prop-
erty, for (w1, w2) ∈ Um there is a (w′

1, w
′
2) such that (x, y) projects to

(w1, w2) if and only if φ̂(x, y) projects to (w′
1, w

′
2). This holds because

these projections are determined by (x−nm−b, . . . , xnm+b), which by the
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unique extension property is determined by (x−nm , . . . , xnm). Hence
the restriction of πnm to φ̂Ūm is injective. Hence

νm(φ̂
−1Ē) =

|Em ∩ πnm(φ̂Ūm)|
|Wnm|

+ o(1).

Since Ūm includes 1− o(1) of the elements of W̄mn , and since πnm ◦ φ̂ is
injective on it, we can replace Ūm by Wnm while again only incurring
an additional vanishing error:

νm(φ̂
−1Ē) =

|Em ∩Wnm |
|Wnm|

+ o(1).

Finally, Em is a subset of Wnm , and so

νm(φ̂
−1Ē) =

|Em|
|Wnm |

+ o(1) = νm(Ē) + o(1).

By taking the limit m → ∞ it follows that ν(φ̂−1Ē) = ν(Ē), and so ν
is φ̂-invariant. □

6. Proof of Theorem 1

The proof of Theorem 1 is an immediate consequence of Claim 3.5
and Proposition 5.1: By Proposition 5.1, there is an Aut(Σ)-invariant
probability measure on CA(Σ), provided that CA(Σ) is non-empty,
which holds if Σ no periodic points, and provided that Σ is zero en-
tropy. By Claim 3.5, there exists an associated drift homomorphism
Φν satisfies Φν(σ) = 1.

7. Examples and further notes

The author would like to thank Joshua Frisch and Ville Salo for
drawing his attention to the following examples.

As an example of an asymptotic pair, let S ⊂ {0, 1}Z be the sunny
side up shift: S = {x ∈ {0, 1}Z :

∑
n xn ≤ 1}. That is, S is the σ-orbit

closure of x̄, where x̄0 = 1 and x̄n = 0 for n ̸= 0. Let z̄n = 0 for all n.
Then (x̄, z̄) is a calibrated asymptotic pair in S. In fact, there is only
one more: (z̄, x̄).

The topological full group of Σ is the set of homeomorphisms ϕ of Σ
for which there exists a continuous orbit cocycle Nϕ : Σ → Z for which
ϕ(x) = σNϕ(x)(x) (see, e.g., Katzlinger’s survey [14]). Topological full
groups admit drift homomorphisms that closely resemble our construc-
tion: they arise as expectations of the orbit cocycle Nϕ with respect to
a shift-invariant measure on Σ.

Indeed, the relation to this paper can be made more explicit. Given
any shift Σ, let Σ′ = Σ × S. The topological full group embeds as
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a subgroup of Aut(Σ′): given an element of the full group ϕ, define
ϕ̄ ∈ Aut(Σ′) as follows. An element of Σ′ is either of the form (y, σmx̄)
for m ∈ Z or of the form (y, z̄). In the latter case let ϕ̄(y, z̄) = (y, z̄).
In the former case let

ϕ̄(y, σmx̄) = (y, σm+Nϕ(σ
−my)x̄).

Consider calibrated asymptotic pairs of the form ((y, x̄), (y, z̄)) ∈ CA(Σ′).
On such pairs, the drift cocycle c equals to Nϕ. Hence, if we choose
y at random according to a shift-invariant probability measure on Σ,
the expectation of the drift cocycle c(ϕ, ((y, x̄), (y, z̄))) will equal the
expectation of the orbit cocycle Nϕ(y).

Yet another similar construction of a drift homomorphism (which
we will not explain in detail) is the “average movement” of Turing
machines of shifts, as defined by Barbieri, Kari and Salo [2]; this is a
generalization of the drift homomorphisms of full groups.
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