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In security games, a defender commits to a mixed strategy for protecting a set of n targets
of values αi; an attacker, knowing the defender’s strategy, chooses which target to attack and for
how long. We study a natural version in which the attacker’s utility grows linearly with the time
he spends at the target, but drops to 0 if he is caught. The defender’s goal is to minimize the
attacker’s utility. The defender’s strategy consists of a schedule for visiting the targets; switching
between targets takes unit time. Such games naturally model a number of real-world scenarios,
including protecting computer networks from intruders, animals from poachers, etc.

We show that such security games, although played in continuous time, give rise to a combina-
torial question regarding the existence of infinite sequences over a finite alphabet, with the following
properties for each symbol i: (1) i constitutes a prescribed fraction pi of the sequence, and (2) the
occurrences of i are spread apart close to evenly, in that the ratio of the longest to shortest interval
between consecutive occurrences is bounded by some small constant K. We call such sequences K-
quasi-regular; 1-quasi-regular sequences are regular, in the sense that each symbol appears evenly
spaced. We show that regular sequences over the set of targets correspond to optimal strategies for
the defender, but that, in fact, 2-quasi-regular sequences already generate optimal strategies.

It is easy to see that K-quasi-regular sequences do not always exist when K < 2. We show that
2-quasi-regular random sequences always exist, and can be calculated efficiently. Using an ergodic
theoretical approach, we show that deterministic 3-quasi-regular sequences always exist, and can
likewise be calculated efficiently. We do not know if K < 3 is possible deterministically, but give
a sufficient condition on the pi for the existence of a deterministic 2-quasi-regular sequence. We
prove that our deterministic 3-regular sequences give rise to a ≈ 1.006-approximation algorithm for
defender’s optimal strategy.
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1 Introduction

Game Theory, by its nature, analyzes situations with conflicting objectives between parties [15].
Among the most pronounced such conflicts is that of a defender trying to use limited resources to
deter or intercept an attacker. This is the high-level topic of inspection games [2] and of security
games [20]. Inspection games model interactions as varied as arms control, accounting and auditing,
environmental controls, or data verification, while security games have recently become a popular
model for the protection of infrastructure (airports, ports, flights), deterrence of fare evasion and
smuggling, as well as protection of wildlife and plants.

Because the defender operates on a long time scale, while the attacker carries out one or a
few attacks only, in security games it is typically assumed that the attacker knows the defender’s
strategy; thus, the defender’s goal is to design optimal first-mover strategies, a scenario referred to
as a Stackelberg Game [4, 23]. Hence, the defender needs to randomize her1 strategy.

In the general model of security games, there are n targets of different values that the defender
is trying to protect with her limited resources. An attacker, perhaps constrained in his abilities,
chooses which target(s) to attack. Different assumptions and scenarios can lead to different inter-
esting combinatorial scenarios; see, e.g., [20] for an overview of much recent work on the topic.

In the present work, we are concerned with the fact that it is not instantaneous for the defender
to switch between the protection of different targets, leading to a timing component and a scheduling
problem. At a high level, this models many natural security settings, including:

1. Protection of computer networks (with multiple databases or account holders) from infiltra-
tors.

2. The protection of wildlife from poachers (e.g., [7, 6]), crops or other plants from thieves, or
homes in a neighborhood from burglars.

Stripping away details, we model these settings as follows: If the attacker has access to an
unprotected target, he gains utility in proportion to the value of the target and to the time he
spends at the target.2The game is zero-sum in that the attacker’s gain is the defender’s loss. If the
attack is interrupted by the defender at any time, both players receive utility 0. Due to physical
distances between targets or switching costs between databases, the defender requires one unit of
time to switch between any two targets. The problem of interest is to determine a schedule for
the defender that will minimize the expected time which the attacker gets to spend at his chosen
target before the defender visits that same target and halts the attack (or deters the attacker from
long attacks).

More formally, the problem parameters are the number of targets, n, and the values of the
targets, αi, 1 ≤ i ≤ n. We assume w.l.o.g. that

∑
i αi = 1. We also assume that that no target is

strictly more valuable than all other targets combined,3 so that αi ≤ 1/2. If the attacker spends
the interval [t, t′) at target i without the defender being at target i during this interval, he obtains

1For consistency, we always refer to the attacker with male and the defender with female pronouns.
2In the case of access to computer systems, this models a scenario observed in recent attacks where the attacker

lurks—whether in order to monitor legitimate users, create ongoing damage, or because file sizes or bandwidth
concerns make it impossible to download the entire database in a short amount of time, or in order to cause ongoing
damage.

3See Section 7 for a discussion of this choice; outside of this assumption is a different régime that requires different
analysis.
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a utility of U = (t′ − t) · αi, the defender receiving utility −U . If the defender visits the target at
any point during the interval, both players’ utilities are 0.

We assume that the attacker knows the defender’s distribution over patrol schedules. A patrol
schedule is a partial mapping from R≥0 to the set of targets, where undefined values (denoted by
⊥) capture times when the defender is in transit. The switching time constraint is modeled by the
constraint that visits to distinct targets are separated by at least one unit of time in transit.

Several generalizations are naturally of interest and are discussed briefly in Section 7. These
include non-uniform switching times between targets, non-zero sum games, non-linear attacker
rewards, and multiple defenders as in [13].

1.1 From Strategies to Distributions over Sequences

We first show (in Section 2) that w.l.o.g., the defender’s strategy (or schedule) is shift-invariant, in
the sense that regardless of his chosen start time t for his attack, the attacker will face the exact
same distribution over subsequent schedules. Furthermore, we prove that it suffices to consider
only defender strategies satisfying the following two properties: (1) The defender never waits at
any target, (2) The defender travels between targets within one time unit.

Properties (1) and (2) reduce the problem of constructing optimal defender strategies to one of
constructing sequences s : N → {1, . . . , n}; random sequences correspond to mixed strategies, and
shift-invariant random sequences correspond to shift-invariant mixed strategies.

We show that a random, shift-invariant sequence corresponds to an optimal schedule for the
defender if it is regular — i.e., each target appears in it evenly spaced, and P[sk = i] = αi

for all targets i.4 Our first result (Theorem 3.1) is that — perhaps surprisingly — it in fact
suffices for optimality that the sequence is 2-quasi-regular ; a shift-invariant random sequence s is
K-quasi-regular if, as before, P[sk = i] = αi, and if the ratio of the longest to shortest interval
between consecutive occurrences of i in s is bounded by K. Some intuition is derived from the
famous “Inspection Paradox” or “Waiting Time Problem”: passengers of a bus service which departs
a station with perfect regularity (e.g., 15 minutes apart) wait on average half as long as passengers
of a service with the same frequency of operation but Poisson departure times. In our case, higher
variance in the defender’s interarrival times make longer attacks more attractive.

We say that a deterministic sequence s : N → {1, . . . , n} is K-quasi-regular if the density5 of
i in s is equal to αi, and if s satisfies the same constraint on the intervals between consecutive
occurrences. Shift-invariant quasi-regular random sequences can be constructed from deterministic
quasi-regular ones, and therefore it is natural to ask when the latter exist. Similar questions have
a significant history of study, see, e.g., [1, 10, 21, 22]. The goal in previous work has been low
discrepancy : that up to any time t, the number of visits to target i approximates tαi as closely as
possible. For our application, the rate of convergence of the frequencies to αi is not essential; but
it is on the other hand crucial that the defender’s interarrival times at each target be as regular as
possible.

1.2 Our Main Result

It is fairly straightforward to show that there is some vector (αi)i such that there are no (2 − ε)-
quasi-regular sequences for any ε > 0; we do this in Section 3. It is then a natural question how

4By shift invariance, this probability is independent of k.
5The density of i in s is limt→∞

1
t
|s−1(i) ∩ [t]|.
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small K can be such that we can still obtain K-quasi-regular sequences.
Our main result (Theorem 4.1 in Section 4) is that for any values αi, there exists a 2-quasi-regular

random sequence, which can furthermore be efficiently computed from the αi. By the aforemen-
tioned Theorem 3.1, the corresponding defender mixed strategy is optimal.

1.3 Ergodic Schedules

The existence of quasi-regular sequences may be of interest in its own right, as fundamental com-
binatorial objects. One limitation of our main result (although it may not affect the application) is
that the resulting schedules are not ergodic: they randomize between different schedules in which
the items have frequencies differing from the desired αi. It is then a natural question whether
2-quasi-regular ergodic sequences can be obtained as well. This is equivalent to the following
combinatorial question: given densities αi, does there always exist a 2-quasi regular deterministic
sequence?

We provide two partial answers to this question. In Section 5, we analyze a very simple schedule
called the Golden Ratio Schedule (studied in the context of hashing [12, pp. 510,511,543], bandwidth
sharing [11, 16] and elsewhere). This schedule is generated by the following random sequence: label
the unit circle with intervals of size αi corresponding to the targets i. Choose a uniformly random
starting point in the unit interval. In each step, add 1/ϕ to the current point, wrapping around
from 1 to 0; here, ϕ = 1

2(1 +
√
5) is the golden ratio. In each time step, the defender visits the

target i into whose interval the current point falls.
This random sequence is shift-invariant and ergodic, and at worst 3-quasi-regular.6 Moreover,

for any choice of the random starting point, the deterministic sequence is 3-quasi-regular. Thus
we show that there always exist deterministic 3-quasi-regular sequences. We do not know if this is
true for any K < 3.

It is interesting that such a simple schedule achieves constant quasi-regularity, but the bound
is not strong enough to guarantee optimality of the schedule for the defender. However, we show
that the schedule is nearly optimal for the defender: the attacker’s utility is within a factor of at
most 1.006 of the minimum attacker utility. The proof of this approximation guarantee relies on
a theorem of Slater about simple dynamical systems like the Golden Ratio shift, and a somewhat
intricate analysis of the attacker’s response. We find it remarkable that such a simple policy comes
provably within 0.6% of the optimum, in particular compared to another very simple policy: as we
show in Appendix A, the simple i.i.d. schedule, which always chooses the next target i to visit with
probability αi, independent of the history, is only a 4/e-approximation.

As a second partial result towards obtaining an optimal ergodic schedule, in Section 6, we give
a sufficient condition for its existence. Let M be the smallest common denominator of all αi.
Whenever M < e(1/9−ε)·n for any ε > 0, a defender-optimal ergodic schedule exists and can be
found efficiently using a randomized algorithm that succeeds with high probability.

The algorithm is based on placing points for target i at uniform distance proportional to 1/αi

on the unit circle, with independent uniformly random offsets. Points can only be matched to
sufficiently close multiples of 1/M . An application of Hall’s Theorem, similar to [10], shows that
under the conditions of the theorem, this algorithm succeeds with high probability in producing a
2-quasi-regular sequence.

6When all αi ≤ 1− 1/ϕ, the bound improves to 8/3, and as αi → 0, it converges to ϕ2.
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2 Preliminaries

The n targets have values αi > 0 for all i. Because the units in which target values are measured
are irrelevant, we assume that

∑
i αi = 1. We assume that no target has value exceeding the sum

of all other targets’ values, meaning (after normalization) that αi ≤ 1
2 for all i.

A pure strategy (or schedule) for the defender is a measurable mapping ` : R≥0 → {1, 2, . . . , n,⊥
}, where ⊥ denotes that the defender is in transit. A schedule ` is valid if `(t) = i and `(t′) = j 6= i
implies that |t′ − t| ≥ 1. In other words, there is enough time for the defender to move from i to j
(or from j to i). We use S to denote the set of all valid pure defender strategies.

The defender moves first and commits to a mixed strategy, i.e., a distribution Λ over S, or a
random `. Then, the attacker chooses a target i and interval [t, t′). Subsequently, a mapping ` is
drawn from the defender’s distribution Λ. The attacker’s utility is

U(`, (i, t, t′)) =

{
0 if `(τ) = i for some t ≤ τ ≤ t′

αi · (t′ − t) otherwise.
(1)

Since we are considering a zero-sum game (see Section 7 for a discussion), the defender’s utility is
−U(`, (i, t, t′)).

Since a rational attacker will choose i, t, t′ so as to maximize E`∼Λ [U(`, (i, x, t))], the defender’s
goal is to choose Λ to minimize

U(Λ) = sup
i,t,t′

E`∼Λ

[
U(`, (i, t, t′))

]
.

2.1 Canonical, Shift-Invariant, and Ergodic Schedules

The general definition of defender schedules allows for strange schedules that are clearly suboptimal.
We would like to restrict our attention to “reasonable” schedules. In particular, we will assume
the two following conditions, which we later show is without loss of generality. (Here, we will be
slightly informal in our definitions. Precise definitions and constructions ensuring these properties
are given in Appendix B.)

• The defender does not spend time in transit unnecessarily. Specifically, the defender (1)
never visits the same target i both immediately before and after time in transit, (2) is never
in transit at time 0, and (3) never spends more than one unit consecutively in transit. We
call schedules satisfying (1)–(3) canonical.

• To the attacker, any two times t and t′ “look the same”, in that for any t, t′, τ ∈ R+, the
distributions of the defender’s schedule restricted to the time intervals [t, t+ τ ] and [t′, t′ + τ ]
are the same. We call such schedules shift-invariant.

In Appendix B, we show that an optimal mixed defender strategy exists (which is not a priori
obvious), and is w.l.o.g. canonical and shift-invariant. Therefore, for the remainder of this paper,
we will focus only on shift-invariant canonical schedules. Shift-invariance allows us to implicitly
assume that the attacker always attacks at time 0. We then simply write U(Λ, (i, t)) for the
attacker’s utility from attacking target i for t units of time.

An additional desirable property of shift-invariant mixed schedules Λ is ergodicity : Λ is ergodic
if Λ cannot be written as the convex combination Λ = λΛ1+(1−λ)Λ2 of two different shift-invariant
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mixed schedules. By the Ergodic Theorem, this is equivalent to Λ being the limit of a uniformly
random shift (over a larger and larger range of shifts) of a single pure schedule `0. (A formal
discussion is again given in Appendix B.)

2.2 Schedules from Sequences

All the constructions of mixed defender schedules in this paper will have Fi(0) = 0, i.e., the defender
never waits at any target. Canonical schedules without waiting are readily identified with schedules
defined only on integers, since the defender must only choose, after visiting a target, which target
she will visit next.

We call such schedules sequences, defined as s : N → {1, . . . , n}. A sequence, together with a
start time t0, naturally defines a canonical schedule, by setting `(t) = st−t0 if t−t0 ∈ N, and `(t) =⊥
otherwise. S denotes a distribution over sequences, or the distribution of a random sequence s.

Shift-invariance can be defined for random sequences as for (continuous) mixed schedules. When
s is a periodic sequence, i.e., there is a k such that st+k = st for all t, a shift-invariant random
sequence can be obtained particularly easily, by choosing a uniformly random κ ∈ {0, . . . , k−1}, and
defining s′ via s′t = st+κ. From a shift-invariant random sequence, we can obtain a shift-invariant
mixed schedule straightforwardly, by choosing the start time t0 ∈ [0, 1] uniformly.

2.3 Return Times and Target Visit Frequencies

Since the attacker chooses only the target i and the duration t of the attack, from his perspective,
the property of the defender’s strategy that matters is the distribution of her next return time to
target i, defined as Ri = min{t ≥ 0 | `(t) = i}. Given a target i, let Fi(t) = P[Ri ≤ t] denote the
CDF of Ri. In particular, notice that Fi(0) is the fraction of time the defender spends waiting at
target i. In terms of the distribution of return times Fi, the attacker’s utility can be expressed as
follows:

U(Fi, (i, t)) = αi · t · (1− Fi(t)). (2)

Several quantities are useful for reasoning about the Fi. First, for a random shift-invariant
sequence s, we let yi = P[s1 = i] denote the fraction of target visits devoted to target i. (The choice
of time t = 1 here is immaterial by shift-invariance.) We also define zi = 1/yi. If s is periodic,
then zi is the expected number of steps between consecutive occurrences of i. Generalizations of
these definitions to arbitrary mixed schedules are given in Appendix B; one can take yi = Fi(1)

and zi =
1−Fi(0)
yi−Fi(0)

.
The number of steps between consecutive occurrences of i is very useful for our analysis. Intu-

itively, we would like Bi to be the random variable capturing the time between consecutive visits
to target i. Defining the distribution precisely requires some care, and is done formally in Ap-
pendix B. The construction formalizes the following intuition: we can consider the limit as we shift
the random sequence s left by t → ∞. This extends a shift-invariant random sequence from the
natural numbers to all integers, and allows us to consider the random variable

Bi = (min{t > 0 | st = i})− (max{t ≤ 0 | st = i}).

The random variable Bi captures the time between consecutive visits before and after time 0 —
by shift-invariance, the time 0 is again arbitrary. Notice that the distribution of Bi “assigns higher
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probability to higher values”; as in the inspection paradox, larger gaps are more likely to appear
at a fixed time than on average over a long time stretch. Our constructions will always ensure that
Bi is finite. We can relate Fi, zi, yi, and Bi as follows.

Fi(t) =
1

E [Bi]
·
t−1∑
τ=0

P[Bi > τ ], (3)

yi = Fi(1) =
1

E [Bi]
· P[Bi > 0] =

1

E [Bi]
,

zi =
1

yi
= E [Bi] .

Equation (3), as well as the assertion that E [Bi] < ∞, follow from standard facts in the theory
of stationary renewal processes [5, Thm. 4]; the other equalities are derived directly from it. The
most useful facts about Fi are summarized by the following proposition:

Proposition 2.1 1. Fi(t) ≤ yi · t, with equality iff P[Bi > t− 1] = 1.

2. Fi is concave.

Proof. For the first part, we use Equation (3) to get

Fi(t) =
1

E [Bi]
·
t−1∑
τ=0

P[Bi > τ ] ≤ 1

E [Bi]
· t = yi · t,

with equality iff P[Bi > t] = 1.
For the second part, simply notice that P[Bi > τ ] is monotone non-increasing in τ .

2.4 Regular and Quasi-Regular Sequences

We say that a random sequence s is K-quasi-regular if the following two hold for each target i:

1. P[s1 = i] = αi.

2. There is some bi such that P[bi ≤ Bi ≤ K · bi] = 1.

In other words, each target is visited with frequency αi, and the maximum gap for consecutive
visits to target i is within a factor K of the minimum gap with probability 1. A random sequence
is regular if it is 1-quasi-regular, meaning that all visits to target i are spaced exactly zi apart. (All
definitions extend directly to canonical, mixed, shift-invariant schedules.)

A particularly straightforward way to obtain aK-quasi-regular random sequence S is to consider
the limit of uniformly random shifts of a sequence s in which the gaps between consecutive visits
to i are bounded between bi and Kbi, and the density of entries which are i is αi.

Combinatorial objects similar to quasi-regular sequences have been studied in the past (e.g., [21,
10]).
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3 The Attacker’s Response, and Optimal Schedules

In this section, we show the following main theorem, a sufficient condition for a random sequence
to be optimal for the defender.

Theorem 3.1 Consider a random shift-invariant sequence such that the following two hold for
each target i:

• zi = 1/αi.

• For each i, there exists an ηi such that P[ ηi
ηi+1zi ≤ Bi ≤ ηizi] = 1.

Then, the associated mixed strategy is optimal for the defender.
In particular, the second condition holds for 2-quasi-regular random sequences.

In Section 4, we show that there always exists a 2-quasi-regular sequence with zi = 1/αi for all
i.

With the eventual goal of proving Theorem 3.1, we fix a target i, and for now drop the subscript
i, so that

y = yi F (t) = Fi(t) z = zi.

We fix y and z and study which sequences — among all those with these y and z — are optimal.

Proposition 3.2 Consider any canonical shift-invariant mixed defender schedule (over the non-
negative real numbers). By choosing t = z/2, the attacker guarantees himself a utility of at least
1
4 · α · z.

Proof. By Equation (2), the attacker’s utility at time t = z/2 is α · (z/2) · (1 − F (z/2)). Using
Proposition B.4 (the straightforward generalization of Proposition 2.1 to mixed schedules), we can
bound

1− F (z/2) ≥ 1− F (0)− (y − F (0)) · (z/2) = (1− F (0)) ·
(
1− y − F (0)

1− F (0)
· (z/2)

)
=

1− F (0)

2
.

Hence, the attacker’s utility is at least α · 1−F (0)
4 · z.

Proof. By Equation (2), the attacker’s utility at time t = z/2 is α · z/2 · (1 − F (z/2)). Using
Proposition 2.1, we can bound

1− F (z/2) ≥ 1− y · z
2

=
1

2
.

Hence, the attacker’s utility is at least 1
4 · α · z.

We obtain the following simple corollary about random sequences that are worst for the attacker:

Corollary 3.3 Among random sequences with fixed z and y, any random sequence is optimal for
the defender if the attacker’s optimal attack duration guarantees him a payoff of 1

4 · α · z.
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The following corollary is particularly useful:

Corollary 3.4 Fix z and y, and choose a random sequence such that P[Bi > t] = 1, where t is
the attacker’s optimal attack duration. Then, this random sequence is optimal for the defender.
Furthermore, in this case, w.l.o.g., t = z/2.

Proof. By the assumption that P[Bi > t] = 1 and Proposition 2.1, we have that

Fi(t) = yi · t.

Hence, the attacker’s utility is

α · (1− y · t) · t = α · t · (z − t)

z
≤ α · z

4
.

Now, the claim follows directly from Corollary 3.3. That t = z/2 is a best response follows from
Proposition 3.2.

We can now apply these corollaries to show optimality for a single target for which the “quasi-
regularity” of return times holds.

Proposition 3.5 Fix z and y, and consider a random sequence such that for some η,

P[
ηi

ηi + 1
zi ≤ Bi ≤ ηizi] = 1.

Then, this schedule is optimal for the defender among schedules with the these z and y.

Proof. We write ξ = η
η+1 . By Proposition 3.2, choosing t = z/2, the attacker can guarantee

himself at least a utility of 1
4 · α · z. We will show below that the attacker’s utility for any attack

duration t ∈ [ξz,∞) is at most 1
4 · α · z.

Hence, the attacker has an optimal attack duration t ≤ ξz (either t = z/2 or a different t). By
the assumption and Proposition 2.1, F (ξz) = y · ξz. Using the concavity of F , this implies that
F (t) = y · t for all t ≤ ξz. Thus, whichever such t is optimal for the attacker, Corollary 3.4 implies
that F is worst for the attacker, and furthermore, that t = z/2 is optimal for the attacker after all.

It remains to prove the upper bound for t ≥ ξz. For any t ≥ ηz, the assumption that F (ηz) = 1
implies a utility of 0 for the attacker. So we focus on t ∈ [ξz, ηz], and show that in this range, the
maximum utility of the attacker is z/4.

By assumption and Proposition 2.1, F (ξz) = ξ and F (ηz) = 1. Since F is concave by Proposi-
tion 2.1, for t ∈ [ξz, ηz], F is bounded below by the line connecting (ξz, ξ) and (ηz, 1), so

F (t) ≥ ξ +
t− ξz

(η − ξ)z
· (1− ξ) =

(
ξ +

t− ξz

(η − ξ)z
· (1− ξ)

)
=

(
ξ · η − 1

η − ξ
+

1− ξ

(η − ξ)z
· t
)

=

(
η − 1

η
+

1

η2
· t
z

)
.

Hence, the attacker’s utility is upper-bounded by

α · t · (1− F (t)) ≤ α · t ·
(
1

η
− 1

η2
· t
z

)
.
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This is maximized at t∗ = ηz
2 , so we obtain that

α · t · (1− F (t)) ≤ α · t∗ ·
(
1

η
− 1

η2
· t

∗

z

)
= α · z

4
.

This completes the proof.

Proof of Theorem 3.1. To complete the proof of Theorem 3.1, we now consider multiple targets
i. By the assumptions of the theorem and Proposition 3.5, against the proposed class of random
sequences, the attacker can obtain utility of at most 1

4 , regardless of which target i he attacks and
for how long, by choosing zi = 1/yi = 1/αi.

We will show that no shift-invariant mixed defender schedule (now considered over the non-
negative real numbers) can achieve an expected attacker payoff strictly smaller than 1

4 . Focus on a
shift-invariant mixed defender schedule Λ. By Lemma B.2, we may assume that Λ is canonical.

Fix some index i such that αi/yi ≥ 1. Such an index must exist because
∑

i αi = 1 and∑
i yi ≤ 1. Because we assumed that αi ≤ 1

2 for all i, this also implies that yi ≤ 1
2 .

By Proposition 3.2, attacking target i for t = zi/2 units of time, the attacker can guarantee
himself a utility of at least

αi ·
1− Fi(0)

4
· zi = αi ·

(1− Fi(0))
2

4(yi − Fi(0))

yi≤ 1
2

≥ αi ·
1

4yi
≥ 1

4
,

where the final inequality followed because the chosen index i satisfied αi/yi ≥ 1. Hence, the
attacker can guarantee himself a payoff of at least 1

4 against any mixed defender schedule, proving
optimality of the proposed class of random sequences.

Finally, we show that this applies to 2-quasi-regular random sequences. Assume that there
exists a b such that P[b ≤ Bi ≤ 2b] = 1, and define ηi = 2b/zi. Then, ξizi =

ηi
ηi+1zi =

2b
2b/zi+1 . This

implies that b ≤ zi ≤ 2b, and thus ηi
ηi+1zi ≥ b. Therefore, we obtain that P[ ηi

ηi+1zi ≤ Bi ≤ ηizi] = 1,
completing the proof.

We end this section with a result that shows that the optimality result for 2-quasi-regular
random sequences cannot be improved.

Proposition 3.6 Let n = 3 and α = (1/2, 1/3, 1/6). Then, for every ε > 0, there are no (2 − ε)-
quasi-regular random sequences.

We prove this result in Appendix C. An immediate corollary is the following.

Corollary 3.7 Let n = 3 and α = (1/2, 1/3, 1/6). Then for every ε > 0, there exists no (2 − ε)-
quasi-regular deterministic sequence.

4 An Optimal Defender Strategy

In this section, we present Algorithm 1, constructing a 2-quasi-regular random sequence. Such a
random sequence is optimal for the defender by Theorem 3.1.

Notice that the sequence produced by Algorithm 1 is shift-invariant by construction, but not
ergodic, since it randomizes over different shift-invariant distributions.
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Algorithm 1 An optimal schedule for the defender

1: Let pi = αi for all i.
2: For each i, let mi be such that 2−mi ≤ pi < 21−mi . Let Ii = [2−mi , 21−mi ].
3: Use the algorithm from the proof of Lemma 4.3 for p and the Ii to randomly round p to a

probability vector q, such that all but at most one index i have qi = 2−mi or qi = 21−mi .
4: Use the algorithm from the proof of Lemma 4.5 to produce a periodic sequence s.
5: Return the random sequence obtained by choosing a uniform random shift of s.

Theorem 4.1 The random sequence generated by Algorithm 1 is 2-quasi-regular, and hence optimal
for the defender.

We begin with a simple technical lemma.

Lemma 4.2 Let S be a multiset of powers of 2, such that maxp∈S p ≤ 2−k ≤
∑

p∈S p. Then, there

exists a subset T ⊆ S with
∑

p∈T p = 2−k.

Proof. We prove this claim by induction on |S|. The claim is trivial for |S| = 1. Consider |S| ≥ 2,
and distinguish two cases.

1. If S contains two copies of some number p < 2−k, then construct S′ by replacing these two
copies with p′ = 2p. By induction hypothesis, S′ contains a subset T ′ adding up to 2−k. If
T ′ contained the newly constructed element p′, then replace it with the two copies of p. In
either case, we have the desired set T ⊆ S.

2. Otherwise, S contains at most one copy of each number p ≤ 2−k. If S did not contain 2−k,
then

∑
p∈S p <

∑∞
i=1 2

−(k+i) = 2−k, contradicting the assumptions of the lemma. Hence, S

contains 2−k, and the singleton set of that number is the desired subset.

Next, we show that distributions can be rounded “almost to powers of two.”

Lemma 4.3 Let p = (p1, p2, . . . , pn) be a probability distribution. For each i, let Ii = [`i, ri] 3 pi
be an interval. Then, there exists a distribution D over probability distributions q = (q1, q2, . . . , qn)
such that:

1. E [qi] = pi for all i,

2. qi ∈ Ii for all q in the support of D, and

3. For each q in the support of D, all but at most one of the qi are equal to `i or ri.

Proof. We will give a randomized “rounding” procedure that starts with p and produces a q,
satisfying all of the claimed properties, by making the pi equal to `i or ri one at a time. The
randomized rounding bears similarity to dependent randomized rounding algorithms in the ap-
proximation algorithms literature (e.g., [3, 8, 19]), though we do not require concentration bounds,
and allow one of the qi to be an interior point of its interval. In the rounding, we always consider
two indices i, j with pi = `i + εi, pj = `j + εj , such that 0 < εi < ri − `i, 0 < εj < rj − `j . (That is,
neither pi nor pj is on the boundary of its interval.) We probabilistically replace them with p′i, p

′
j ,

such that all of the following hold:
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• At least one of p′i, p
′
j is at the boundary of its interval.

• `i ≤ p′i ≤ ri and `j ≤ p′j ≤ rj .

• p′i + p′j = pi + pj .

• E [p′i] = pi and E
[
p′j

]
= pj .

The rounding terminates when there is at most one pi that is not at the boundary of its
interval; let q be the vector of probabilities at that point. By iterating expectations, we obtain
that E [qi] = pi for all i. The upper and lower bounds on qi are maintained inductively, and the
termination condition ensures the third claimed property of q.

So consider arbitrary pi, pj as above. Let δi = min(εi, rj − `j − εj) and δj = min(εj , ri− `i− εi).

With probability
δj

δi+δj
, round pi to p′i = pi− δi and pj to p′j = pj + δi. With probability 1− δj

δi+δj
=

δi
δi+δj

, round pi to p′i = pi + δj and pj to p′j = pj − δj .

First, it is clear that p′i + p′j = pi + pj . Also, by definition of δi, δj , we get that `i ≤ p′i ≤ ri and
`j ≤ p′j ≤ rj . If we round according to the first case, then p′i = pi − δi and p′j = pj + δi. If δi = εi,
then we get that p′i = `i, while if δi = rj − εj , then p′j = `j + εj + (rj − `j − εj) = rj . Calculations
are similar in the other case. Finally,

E
[
p′i
]
=

δj
δi + δj

· (pi − δi) +
δi

δi + δj
· (pi + δj) = pi.

Hence, all the claimed properties hold in each step.

As a first step towards a 2-quasi-regular random sequence, we consider the case of probability
vectors in which all probabilities are powers of 2.7

Lemma 4.4 Assume that the probability vector p is such that each pi = 2−mi is a power of 2.
Then, there exists a regular sequence for p.

Proof. We will prove this claim by induction on the number of targets. If we have a single target,
then its probability must be 1, so it is visited at intervals of 1 and we set s to be the constant
sequence. Otherwise, the maximum probability of any target is 1

2 , and the sum of all probabilities
is 1. Lemma 4.2 therefore guarantees the existence of a subset S whose probabilities add up to 1

2 .
Consider instances obtained from S and S̄ by scaling up all probabilities by a factor of 2,

resulting in p′i = 2pi. By induction hypothesis, each of those instances can be scheduled such that
each target i is visited every 1/p′i = 1/(2pi) time steps. Now alternate between the two sequences.
In this new sequence, each target i is visited every 2/p′i = 1/pi steps, as desired.

Next, we show that sufficiently good sequences can also be achieved when at most one of the
probabilities is not a power of 2.

Lemma 4.5 Assume that the probability vector p is such that each pi = 2−mi is a power of 2,
except for (possibly) p1 = 2−m1 − ε, with 0 ≤ ε < 2−(m1+1). Then, there exists a (non-random)
sequence s with the following properties:

7Lemma 4.4 generalizes to powers of any integer, and in fact to any probabilities pi such that there are integers
a1, a2, . . . and indices ki such that pi = (

∏ki
j=1 aj)

−1 for all i.
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1. The time between consecutive visits to target i > 1 is always exactly 1/pi.

2. The time between consecutive visits to target 1 is always either 2m1 or 2m1+1.

3. The frequency of target i is pi for all i.

Proof. Without loss of generality, assume that p2 ≥ p3 ≥ · · · ≥ pn. Write ε =
∑

j 2
−kj , where

m1 + 1 < k1 < k2 < · · · , and the sum could be empty. First, we will show that for each j, there
is a subset Sj ⊆ {2, . . . , n} of targets such that

∑
i∈Sj

pi = 2−kj , and the Sj are pairwise disjoint.
We inductively construct these sets Sj .

First, notice that kj ≤ mn for all j; in particular, the sum representation of ε must be finite.
This is because

∑
i pi = 1 ≡ 0 mod pn. Now consider the largest j in the sum, and let T := {i ≥

2 | mi ≥ kj}. Because

2−kj +
∑
i∈T

pi = 1− ((p1 − 2−kj ) +
∑

i≥2,i/∈T

pi) ≡ 0 mod 21−kj ,

we get that
∑

i∈T pi ≥ 2−kj . Thus, by Lemma 4.2, there is a subset Sj ⊆ T summing up to exactly
2−kj . Consider an instance in which the targets in Sj have been removed, and ε has been replaced
with ε′ = ε − 2−kj . Since this instance has fewer targets, we can apply induction to construct the
remaining Sj′ . Eventually, we will have constructed the disjoint sets Sj , as claimed.

Now consider a revised instance, in which the targets 1 and all i ∈ Sj (for all j) have been
combined into a new target of probability p′1 = 2−m1 . This is now an instance in which the
probabilities still add up to 1, and each probability is a power of 2. By Lemma 4.4, this instance
admits a regular sequence. For all i 6= 1, i /∈ Sj (for all j), keep this sequence fixed.

Finally, we have to deal with the targets in the sets Sj . Notice that
∑

i∈Sj
pi = 2−kj for all

j. Consider the set T̂ of all the slots assigned to the “target” of probability p′1; without loss of
generality, T̂ = {k | k ≡ 0 mod 2m1}. Define T̂j = {k | k ≡ 2kj−1 mod 2kj}. Notice that the T̂j

are pairwise disjoint, and because kj > m1 +1, we have that T̂j ⊆ T̂ for all j. We will give all slots
in T̂j to targets in Sj , and all other slots in T̂ to target 1. By definition, the frequency of slots in
T̂j is 2−kj , and by Lemma 4.4, using the slots in Tj , the targets i ∈ Sj can be scheduled regularly.

Because kj ≥ k1 > m1 + 1, at least all slots in T̂m1+1 are assigned to target 1, and possibly
some of the other slots as well. Thus, the distance between consecutive visits to target 1 are either
2m1 or 21+m1 .

Finally, for all targets i 6= 1, exactly a pi fraction of slots are used for target i, so z1 = 1/y1 =
1/p1.

Proof of Theorem 4.1. Consider any target i. The rounding of Lemma 4.3 guarantees that
2−mi ≤ qi ≤ 21−mi . Therefore, the algorithm of Lemma 4.5 produces a random sequence Sq in
which the time intervals between consecutive occurrences of target i lie between 2mi−1 and 2mi .
Thus to verify that Sq is 2-quasi-regular is remains to show that the density of each target of the
targets are equal to αi. But this is guaranteed by (1) in Lemma 4.3. The optimality of Sq now
follows from Theorem 3.1.

5 Golden Ratio Scheduling

In this section, we present a very simple ergodic random sequence. The associated schedule may
in general be suboptimal, but we prove that it is provably within less than 0.6% of optimal.
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Let ϕ = 1
2(1 +

√
5) denote the golden ratio, solving ϕ2 = ϕ + 1. Given a desired frequency

vector p (which will equal the targets’ values, pi = αi), we identify the unit circle with [0, 1),
and equip it with addition modulo 1. We define the function h : [0, 1) → {1, . . . , n} via h−1(i) =
[
∑

i′<i pi′ , pi +
∑

i′<i pi′); that is, we assign consecutive intervals of length pi for the targets i.

Algorithm 2 The Golden Ratio Schedule

1: Let λ be uniformly random in [0, 1).
2: for t = 0, 1, 2, . . . do
3: In step t, set st = h((λ+ t/ϕ) mod 1).

We can think of advancing a “dial” by 1/ϕ at each step, and visiting the target whose interval
the dial falls into. This algorithm is nearly identical to one previously proposed for hashing [12,
pp. 510,511,543] and broadcast channel sharing [11, 16]. While the algorithm is simple, as stated,
it seems to require precise arithmetic with real numbers. This issue is discussed in more detail in
Appendix E.

That algorithm 2 returns an ergodic random sequence follows from the classical fact that the
action on the interval by an irrational rotation is ergodic. Our main theorem in this section is the
following:

Theorem 5.1 The Golden Ratio algorithm is a 2966−1290
√
5

81 ≈ 1.00583 approximation for the de-
fender.

The underlying reason that this schedule performs so well, and the reason for choosing this partic-
ular number, is related to the hardness of diophantine approximation of the golden ratio: it is an
irrational number that is hardest to approximate by rational numbers (see, e.g., [9]).

Our analysis relies heavily on various properties of Fibonacci numbers. We denote the kth

Fibonacci number by fk, indexed as f0 = 0, f1 = 1 and fk+2 = fk + fk+1. The following basic facts
about Fibonacci numbers are well-known, and easily proved directly or by induction.

Lemma 5.2 1. For any k, we have that fk+2fk − f2
k+1 = (−1)k+1.

2. For any k, we have that fk = ϕk−(−1/ϕ)k√
5

.

3. For any odd k, we have that fk+1/fk < ϕ.

4. For any even k, we have that fk+1/fk > ϕ.

To prove Theorem 5.1, we analyze the distribution of Bi for any target i. The proof of Theo-
rem 5.1 consists of two parts. First, Theorem 5.3 precisely characterizes the distribution of Bi for
every target i, i.e., it characterizes exactly, for each target i and τ , how frequently a visit to target
i is followed by another visit τ steps later. As a second part, we characterize the attacker’s best
response against this distribution, and calculate its cost to the defender.

Theorem 5.3 (Slater [17]) Assume that α ≤ 1
2 . Let k be smallest such that

|fk+1/ϕ− fk| ≤ α. (4)
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Then, the distribution of return times is

P[Bi = fk+1] = fk+1 · (α− (1/ϕ)k+2 · 1 + ϕ2

√
5

),

P[Bi = fk+2] = fk+2 · (α− (1/ϕ)k+3 · 1 + ϕ2

√
5

),

P[Bi = fk+3] = fk+3 · (−α+ (1/ϕ)k+1 · 1 + ϕ2

√
5

),

P[Bi = t] = 0 for all other t.

(5)

Theorem 5.3 shows, remarkably, that for each possible α, there are at most three possible
return times, and they are three consecutive Fibonacci numbers. Theorem 5.3 is a special case of
a theorem of Slater [17, Theorem 4] (see also [18]), which characterizes the distribution when the
Golden Ratio ϕ is replaced by an arbitrary real number. We give a self-contained proof for the
simpler case of the Golden Ratio in Appendix D.

As a direct corollary of Theorem 5.3, we obtain an upper bound on the regularity of the Golden
Ratio schedule.

Corollary 5.4 The Golden Ratio schedule is 3-quasi-regular. If αi ≤ 1 − 1/ϕ for all i, then it is
8/3-quasi-regular. As the frequencies αi → 0, the guarantee improves to ϕ2-quasi-regular.

Proof. Consider one target with desired frequency α, and define k as in Theorem 5.3. The
schedule is at worst (fk+3/fk+1)-quasi-regular. For all k, we have the bound fk+3/fk+1 ≤ 3. If
α < 1− 1/ϕ, then k ≥ 2, and for k ≥ 2, the ratio fk+3/fk+1 is upper-bounded by 8/3, converging
to ϕ2 as k → ∞.

5.1 The Optimal Attacker Response to 3-Point Distributions

Next, we characterize the optimal attacker response to defender strategies in which the return time
distribution to target i is supported on three points x1 < x2 < x3 only. Since we will apply this
result to Fibonacci numbers, we assume that x2 ≤ 2x1, x3 ≤ 2x2. Let qj = P[Bi = xj ] · E[Bi]

xj
, and

let X =
∑

j qjxj ; informally (but in a sense that can be formalized), the qj ’s are the return time
probabilities from the point of view of the defender, rather than those of the attacker at a fixed time
0. (The attacker’s distribution of Bi oversamples long return times, compared to the defender’s
distribution.) The attacker’s response and utility are summarized by the following lemma.

Lemma 5.5 Let t∗1 = X/2, and t∗2 = X−q1x1

2(1−q1)
. Let u∗1 = 1

4 ·X, and u∗2 = 1
4 · (X−q1x1)2

X(1−q1)
. Whenever

u∗2 > u∗1 and t∗2 > x∗1, the attacker’s best response is t∗2 and his utility u∗2; otherwise, his best response
is t∗1 and his utility u∗1.

Notice that whenever the attacker responds t∗1, this is optimal for the defender.

Proof. From the attacker’s perspective, when arriving at a target, by Equations (5) and (3), the
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CDF of the distribution of the defender’s next return time is

F (t) =


1
X · t for t ≤ x1
1
X · (t(1− q1) + q1x1) for x1 ≤ t ≤ x2
1
X · (t(1− q1 − q2) + q1x1 + q2x2) for x2 ≤ t ≤ x3

1 for t ≥ x3

Since the attacker’s utility for waiting for t steps is t(1 − F (t)), t ≥ x3 cannot be optimal for
him. By taking derivatives with respect to t, we obtain the following local optima for the functions
in the remaining three cases:

t∗1 =
X

2
t∗2 =

X − q1x1
2(1− q1)

t∗3 =
X − q1x1 − q2x2
2(1− q1 − q2)

=
x3
2
.

These are all local maxima because the functions are concave. Whenever a t∗i lies outside the
interval for which it optimizes, the actual maximum is attained at an interval boundary, which
means that it is also in the adjacent interval, and the interval can be ignored for the analysis. In
particular, this applies for t∗3, which is supposed to be in [x2, x3]. Under the assumption of the
theorem, we get that t∗3 = x3/2 ≤ x2.

For t∗2, we obtain the constraints that x1 ≤ t∗2 ≤ x2. The second constraint is always satisfied
under the assumptions of the theorem, because t∗2 ·

q2x2+q3x3

2(q2+q3)
≤ x3/2 ≤ x2. The first constraint may

or may not be satisfied. Next, we write the attacker’s utility in the two remaining cases.

u∗1 = t∗1 · (1− F (t∗1)) =
X

2
· 1
2

=
X

4
,

u∗2 = t∗2 · (1− F (t∗2)) =
X − q1x1
2(1− q1)

· (1− 1

X
· (X − q1x1

2
+ q1x1)) =

1

4
· (X − q1x1)

2

X(1− q1)
=

1

4
· (q2x2 + q3x3)

2

X(q2 + q3)
.

Whenever t∗2 > x1, the attacker will thus choose the better utility of u∗1, u
∗
2, and otherwise will

only get to choose utility u∗1.

5.2 The Attacker’s Response to the Golden Ratio Schedule

Proof of Theorem 5.1. According to Lemma 5.5, the attacker can obtain utility u∗1 (which is
optimal for the defender), and sometimes a higher utility of u∗2. To obtain the approximation
guarantee, we will bound the worst-case ratio of u∗2/u

∗
1 whenever the attacker responds with t∗2.

In applying Lemma 5.5, we have X = 1/α, x1 = fk+1, x2 = fk+2, x3 = fk+3, and the qj are

given via Equation (5) and qj = P[Bi = xj ] · E[Bi]
xj

. Then, the attacker’s utility from attacking for

t∗2 units of time (assuming feasibility, and ignoring the factor 1
4 throughout) is
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(X − q1x1)
2

X(1− q1)
=

α(q2fk+2 + q3fk+3)
2

q2 + q3

=

((
α− (1/ϕ)k+3 · 1+ϕ2

√
5

)
· fk+2 +

(
−α+ (1/ϕ)k+1 · 1+ϕ2

√
5

)
· fk+3

)2(
α− (1/ϕ)k+3 · 1+ϕ2

√
5

)
+
(
−α+ (1/ϕ)k+1 · 1+ϕ2

√
5

)
=

(
(1/ϕ)k+3 · (ϕ2 − 1) · 1+ϕ2

√
5

· fk+2 +
(
−α+ (1/ϕ)k+1 · 1+ϕ2

√
5

)
· fk+1

)2
(1/ϕ)k+3 · (ϕ2 − 1) · 1+ϕ2

√
5

.

=
1 + ϕ2

√
5

· (1/ϕ)k+2 ·

(
fk+2 + ϕfk+1 − α · ϕk+2

√
5

1 + ϕ2
· fk+1

)2

. (6)

Thus, the approximation ratio u∗2/u
∗
1 is α times the expression (6).

Treating everything except α as a constant, the ratio is thus of the form g(α) = aα · (c− bα)2.
g has a local maximum of 4ac3/27b at α = c/(3b), a local minimum of 0 at α = c/b, and goes to
infinity as α → ∞. Thus, the two candidates for α that we need to check are (1) the largest α
that is possible for a given k, and (2) the value c/(3b) if it is possible for given k. (If it is not, and
c/(3b) lies to the left of the feasible region, then we also need to check the smallest possible α.)

We therefore next work out what is the largest possible α for a given k. By recalling the
definition of k from Equation (4) (smallest such that |fk+1/ϕ − fk| ≤ α), and using Lemma D.1,
we can solve for α to determine the range in which we obtain a particular k, giving us that

α ∈
[
(1/ϕ)k+2 1 + ϕ2

√
5

, (1/ϕ)k+1 1 + ϕ2

√
5

]
.

1. If we substitute the upper bound α = (1/ϕ)k+1 1+ϕ2
√
5
, Equation (6) simplifies to

1 + ϕ2

√
5

· (1/ϕ)k+2 ·

(
fk+2 + ϕfk+1 − (1/ϕ)k+1 1 + ϕ2

√
5

· ϕk+2

√
5

1 + ϕ2
· fk+1

)2

=
1 + ϕ2

√
5

· (1/ϕ)k+2 · (fk+2 + ϕfk+1 − ϕfk+1)
2

=
1 + ϕ2

√
5

· (1/ϕ)k+2 · f2
k+2.

To obtain the approximation ratio, we multiply with α, obtaining

(1 + ϕ2)2

5
· (1/ϕ)2k+3 · f2

k+2 =
(1 + ϕ2)2

25
· (1/ϕ)2k+3 ·

(
ϕ2k+4 − 2ϕk+2(−1/ϕ)k+2 + (−1/ϕ)2k+4

)
=

(1 + ϕ2)2

25
· (1/ϕ)2k+3 ·

(
ϕ2k+4 − 2(−1)k + (1/ϕ)2k+4

)
≤ (1 + ϕ2)2

25
· (ϕ+ 3/ϕ2k+3)

≤ (1 + ϕ2)2

25
· (ϕ+ 3/ϕ5)

< 1.
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This shows that the attacker’s utility cannot be maximized by waiting for more than x1 steps
when α is as large as it can be for a given k.

2. Next, we investigate the local maximum of the cubic expression obtained from multiplying
Equation (6) with α. This local maximum is indeed always a feasible choice for α for a given
k, but since we are only interested in an upper bound, we omit the feasibility proof. (We can
only overestimate the approximation ratio this way.)

Substituting a = 1+ϕ2
√
5

· (1/ϕ)k+2, b = ϕk+2
√
5

1+ϕ2 · fk+1, and c = fk+2 + ϕfk+1, the attacker’s

utility is

4

27

(1 + ϕ2)2

5
· (1/ϕ)2k+4 · (fk+2 + ϕfk+1)

3

fk+1

=
4

27
· (1 + ϕ2)2

25
· (1/ϕ)2k+4 ·

(
ϕk+2 − (−1/ϕ)k+2 + ϕ · ϕk+1 − ϕ · (−1/ϕ)k+1

)3
ϕk+1 − (−1/ϕ)k+1

=
4

27
· (1 + ϕ2)2

25
· (1/ϕ)2k+4 ·

(
2ϕk+2 − (−1/ϕ)k+1

)3
ϕk+1 − (−1/ϕ)k+1

.

We will approximate the function
(
2ϕk+2−(−1/ϕ)k+1

)3
ϕk+1−(−1/ϕ)k+1 by 8ϕ2k+5, its highest-order term. We

therefore consider
(
2ϕk+2−(−1/ϕ)k+1

)3
ϕk+1−(−1/ϕ)k+1 /(8ϕ2k+5). When k is even, this ratio is always upper-

bounded by 1 (and increasing in k, converging to 1), so we can simply upper-bound it. When
k is odd, this ratio is lower-bounded by 1, and decreasing in k, also converging to 1. Thus,

it is maximized among feasible values of k for k = 3, where it equals 8ϕ15−12ϕ6+6ϕ−3−ϕ−12

8ϕ15−8ϕ7 .
Overall, we get an upper bound on the attacker’s utility of

(1 + ϕ2)2

25
· 4

27
· 8ϕ

15 − 12ϕ6 + 6ϕ−3 − ϕ−12

8ϕ15 − 8ϕ7
· (1/ϕ)2k+4 · (8ϕ2k+5)

=
ϕ(1 + ϕ2)2

25
· 4

27
· 8ϕ

15 − 12ϕ6 + 6ϕ−3 − ϕ−12

ϕ15 − ϕ7
.

To evaluate this ratio, we can repeatedly apply the fact that ϕ2 = 1+ϕ, then substitute that

ϕ = 1+
√
5

2 , make the denominator rational, and cancel out common factors. This shows that
ϕ(1+ϕ2)2

25 · 4
27 · 8ϕ15−12ϕ6+6ϕ−3−ϕ−12

ϕ15−ϕ7 = 2966−1290
√
5

81 ≈ 1.00583, completing the proof.

6 Scheduling via Matching

The strategies from Section 4 are optimal, but not ergodic. The strategies from Section 5 are
ergodic, but not optimal or periodic. In this section, we give a sufficient condition for the existence
of an optimal, ergodic, and periodic strategy for the defender.

In order to obtain a periodic strategy, it is clearly necessary for all target values αi (equaling
the visit frequencies) to be rational. Write αi = ai/bi, and let M = scm(b1, . . . , bn).

Our algorithm is based on embedding M slots for visits evenly on the unit circle, and matching
them with targets to visit. We identify the circle with the interval [0, 1] and use the distance
d(x, y) = min(|x− y|, |1− x− y|).
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Algorithm 3 A matching-based algorithm for a periodic defender strategy

1: For each i, let θi ∈ [0, 1] independently uniformly at random.
2: For each i, let Ai = M · ai/bi.
3: For each i and j = 0, . . . , Ai − 1, let yi,j = (θi + j/Ai) mod 1.
4: For each i, define δi =

1
6Ai

.
5: Let T = {0, 1, . . . ,M − 1} and V = {(i, j) | 0 ≤ j < Ai}. Define a bipartite graph G on T ∪ V

by including an edge between t ∈ T and (i, j) ∈ V iff d(yi,j , t/M) ≤ δi.
6: if G contains a perfect matching M then
7: Define a sequence s with period M as follows: For each time t, set st to be the (unique)

target i such that t is matched with (i, j) in M for some j.
8: else
9: Start from the beginning.

Theorem 6.1 Whenever M < e(1/9−ε)·n, Algorithm 3 succeeds with high probability. Whenever
Algorithm 3 succeeds, it produces 2-quasi-regular (and hence defender-optimal) sequence.

Remark 6.2 By changing the constant 6 in the definition of δi to a larger constant, and decreasing
the 1/9 in the theorem statement accordingly, we can improve the quasi-regularity to any arbitrary
constant c > 1, proving that when the common denominator of the target frequencies is small
enough, sequences arbitrarily close to regular exist.

We begin by proving the second part of the theorem. If t is matched with (i, j), by definition
of the edges, d(yi,j , t/M) ≤ δi =

1
6Ai

. Consider two occurrences j, j′ of target i, and let t, t′ be the
slots they are matched to. Then, by triangle inequality,

d(t/M, t′/M) ≥ d(yi,j , yi,j′)−
2

6Ai
≥ 1

Ai
− 1

3Ai
=

2

3Ai
.

Thus, |t− t′| ≥ 2
3ai

. On the other hand, specifically for consecutive occurences of target i, i.e., the
slots matched to yi,j and yi,j+1, we get

d(t/M, t′/M) ≤ d(yi,j , yi,j′) +
2

6Ai
=

1

Ai
+

1

3Ai
=

4

3Ai
,

and hence |t− t′| ≤ 4
3ai

.
In a perfect matching, exactly Ai of the M slots, i.e., an ai/bi fraction, are scheduled for target

i, giving that yi = ai/bi = αi. Thus, zi = 1/αi. Thus, the proposed sequence is 2-quasi-regular,
and the optimality of the schedule follows from Theorem 3.1.

To complete the proof, it remains to show that with high probability, the graph G contains a
perfect matching. We will prove this using Hall’s Theorem and a direct application of the Hoeffding
Bound:

Lemma 6.3 (Hoeffding Bound) Let Xi be independent random variables such that ai ≤ Xi ≤ bi
with probability 1. Let X =

∑
iXi. Then, for all t > 0,

P[X < E [X]− t],P[X > E [X] + t] < e
− 2t2∑

i(bi−ai)
2 .
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To establish the Hall condition of G, we begin with intervals T of slots, and then use the bounds
for intervals to derive the condition for arbitrary sets of slots. A similar style of proof was used by
Tijdeman [21] to construct a schedule with somewhat different specific combinatorial properties.

For any set T of slots, let Γ(T ) denote the neighborhood of T in G. Fix an interval T = [`, r) ⊆
[0,M) with `, r integers. Let the random variable YT = |Γ(T )| denote the number of neighbors in
G of slots in the interval T . For each target i, let XT,i be the number of j such that (i, j) ∈ Γ(T ).
Then, YT =

∑
iXT,i, and the XT,i are independent.

Lemma 6.4 Assume that |T | ≤ (1 − 2δi)M . Then, E [XT,i] = Ai · (2δi + (r − `)/M), and XT,i ∈
{bAi · (2δi + (r − `)/M)c, 1 + bAi · (2δi + (r − `)/M)c} always.

Proof. For each slot t ∈ T , let Jt = [(t/M − δi) mod 1, (t/M + δi) mod 1]. Then, slot (i, j) ∈
Γ({t}) iff yi,j ∈ Jt. Because δi ≥ 1/(2M), we get that Jt ∩ Jt+1 6= ∅ for all t. Hence, defining
J :=

⋃
t∈T Jt = [(`/M − δi) mod 1, (r/M + δi) mod 1], we get that Γ(T ) = {(i, j) | yi,j ∈ J}; the

fact that J is an interval follows from the non-overlapping property.
The length of J is 2δi + (r − `)/M . Because each yi,j is uniformly random in [0, 1], E [XT,i] =

Ai · (2δi + (r − `)/M). Furthermore, because d(yi,j , yi,j+1) = 1/Ai, there can be no more than

1 + b2δi+(r−`)/M
1/Ai

c pairs (i, j) with yi,j ∈ J , and no fewer than b2δi+(r−`)/M
1/Ai

c. Finally, note that
2δi+(r−`)/M

Ai
= Ai(2δi + (r − `)/M).

We use Lemma 6.4 to show that with high probability, G has a perfect matching.

Lemma 6.5 When M < e(1/9−ε)·n, with high probability, G contains a perfect matching.

Proof. First, we show that when the Hall condition holds for all intervals T of slots, it holds for
all sets T . We prove this by induction on the number of disjoint intervals that T comprises. The
base case of T being an interval is true by definition. For the induction step, suppose that k ≥ 2
and T =

⋃k
j=1 Tj , where the Tj are disjoint intervals.

If the neighborhoods of all the Tj are disjoint, then |Γ(T )| =
∑

j |Γ(Tj)| ≥
∑

j |Tj | = |T |, where
the inequality was from the base case (intervals). Otherwise, w.l.o.g., Γ(Tk) ∩ Γ(Tk−1) 6= ∅. Then,
there exists an interval I ′ ⊃ Tk ∪ Tk−1 with Γ(I ′) = Γ(Tk)∪ Γ(Tk−1). Let T

′ = T ∪ I ′. We get that
|Γ(T )| = |Γ(T ′)| ≥ |T ′| ≥ |T |, where the first inequality was by induction hypothesis (because T ′

has at least one fewer intervals).
Next, we establish that the Hall Condition holds with high probability for all M2 intervals.

First, focus on one interval T = [`, r), with `, r ∈ N. If |T | > (1 − 2δi)M , then Γ(T ) contains all
pairs (i, j), so the Hall Condition is satisfied. So focus on |T | ≤ (1− 2δi)M . From Lemma 6.4, we
get that

E [YT ] =
∑
i

Ai · (2δi + (r − `)/M) = 2
∑
i

Aiδi + (r − `).

Furthermore, YT is the sum of independent random variables XT,i which each takes on one of
two adjacent values. From the Hoeffding Bound (Lemma 6.3), we get that

P[YT < (r − `) + 2
∑
i

Aiδi − τ ] < e−2τ2/n.
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Because |T | = r − `, choosing τ = 2
∑

iAiδi = n/3, we get that

|Γ(T )| = YT ≥ (r − `) + 2
∑
i

Aiδi − τ = r − `.

Taking a union bound over all M2 candidate intervals T , we obtain that the probability of
having a perfect matching is at least

1−M2e−2n/9 > 1− e2n(1/9−ε)−2n/9 = 1− e−2εn.

Thus, with high probability, G contains a perfect matching. This completes the proof of Lemma 6.5
and thus also Theorem 6.1.

7 Future Work

Our work suggests a number of directions for future work. Most immediately, it suggests trying
to find optimal ergodic schedules for all value vectors (not only those covered by Theorem 6.1). A
promising approach toward this goal is to use the randomized rounding of Section 4, but re-round
the probabilities every T steps, for some sufficiently large “epoch size” T . The difficulty with this
approach is “stitching together” the schedules for different rounded frequencies at the boundary of
epochs, without violating the conditions of Theorem 3.1.

Throughout, we assumed that no target had value more than the sum of all other targets’
values, i.e., αi ≤ 1

2 for all i. When this assumption is violated, the optimal schedule will wait at the
highest-value target. In the specific case of two targets of values α1 < α2, it is fairly straightforward

to calculate that the wait time at target 2 is 2(
√

α2
α1

− 1). We anticipate that this analysis will

extend to more than two targets. The difficulty is that the waiting time at one target will result in
qualitatively different schedules, likely to complicate the analysis.

We assumed here that the game is zero-sum. In general, the utilities of the attacker and defender
may be different. A general treatment is likely quite difficult. One special case is motivated directly
by the wildlife protection application, and appears quite amenable to analysis. Specifically, when
a poacher kills animals (or chops down trees), even if the poacher is captured, the damage is not
reversed. Thus, while the attacker’s utility is as before, the defender’s utility from visiting target i
at time τ when the attacker intends to stay for t units of time is −αi ·min(τ, t). One can show that
in this case, whenever the attacker attacks target i for t ≤ zi/2 units of time, the defender’s utility
is −3

2U(Fi, (i, t)). Since the optimal defender strategies of Section 4 and 6 ensure such a choice of
t by the attacker, the algorithms in those sections are optimal in the non-zero sum model as well.

Among the other natural generalizations are the attacker’s (and defender’s) utility function
and more complex constraints on the defender’s schedule. Throughout, we have assumed that the
attacker’s utility grows linearly in the time spent at a target. The security game formulations
studied in much of the prior work in the area [20] correspond to a step function at 0: when
the attacker reaches an unprotected target, he immediately causes the maximum target-specific
damage αi (e.g., by blowing up the target). Other natural utility functions suggest themselves: if
the resources to collect at targets are limited, the utility function would be linear with a cap. If a
destructive attack takes a non-zero amount of time to set up, one obtains a step function at a time
other than 0. The latter leads to a scheduling problem with a harder constraint on the inter-visit
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absence time from targets i — as in some of the prior security games literature, the defender may
“sacrifice” some low-value targets to be able to fully protect the others.

The other natural generalization is to relax the assumption of uniform travel time between
targets. If an arbitrary metric is defined between targets, the problem becomes significantly more
complex: even if all targets have value 1, the attacker’s utility will be proportional to the cost of a
minimum TSP tour, and thus the defender’s optimization problem is NP-hard. However, it is far
from obvious how to adapt standard TSP approximation techniques to the general problem with
non-uniform values: high-value targets should be visited more frequently, and TSP approximation
algorithms are not suited to enforce constraints that these visits be spaced out over time.

As with TSP problems and past work on security games, a further natural generalization is to
consider multiple defenders.
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A Utility of an i.i.d. Defender

One of the most natural random sequences to consider is the i.i.d. one, in which at each step t,
the defender visits target i with probability pi, independent of any past choices. Intuitively, this
strategy is suboptimal because it may visit a target i several times in close succession, or go for
a long time without visiting target i. Here, we calculate the approximation ratio of this strategy,
showing:

Proposition A.1 The i.i.d. strategy is a 4/e-approximation for the defender, and this is tight.

Proof. From the attacker’s viewpoint, the defender’s next arrival time at target i is the sum of
two independent random variables geom(pi)+unif([0, 1]). Given a t, the defender will return within
at most t steps if and only if geom(pi) ≤ btc or geom(pi) = 1 + btc and unif([0, 1]) ≤ (t mod 1).
The two events are disjoint, the first one having probability 1− (1− pi)

btc, and the second having
probability pi · (1− pi)

btc · (t mod 1). Hence, Fi(t) = 1− (1− pi · (t mod 1)) · (1− pi)
btc, and the

attacker’s utility from attacking target i for t time units is

αi · t · (1− Fi(t)) = αi · t · (1− pi · (t mod 1)) · (1− pi)
btc.

Writing t = x+k for an integer k = btc and x = (t mod 1) ∈ [0, 1], a derivative test shows that the
expression is monotone decreasing in x for any k ≥ 1, whereas for k = 0, it has a local maximum
at x = 1

2pi
≥ 1. Because the latter is not feasible, we only need to consider the case (t mod 1) = 0

for the remainder, so the attacker’s utility simplifies to αi · t · (1− pi)
btc.

Taking a derivative with respect to t and setting it to 0 gives us that the unique local extremum
is at t = −1

ln(1−pi)
, where the attacker’s utility is pi

e·ln(1/(1−pi))
. This local extremum is a maximum

because the attacker’s utility at t = 0 and t = ∞ is 0.
A derivative test and Taylor series bound shows that pi

e·ln(1/(1−pi))
is monotone decreasing in pi,

so it is maximized as pi → 0, where it converges to 1/e. Notice that as pi → 0, there are infinitely
many values of pi for which

−1
ln(1−pi)

is an integer, so the choice of t in our previous optimization is
indeed valid.

Under an optimal schedule, the attacker’s expected utility is 1
4 , completing the proof of the

approximation guarantee.

B Formalization of Notions about Schedules

B.1 Canonical Schedules

The general definition of defender schedules allows for strange schedules that are clearly suboptimal,
such as the defender leaving a target i and returning to it shortly afterwards, or visiting a target
infinitely often within a bounded time interval with shorter and shorter return times. For ease of
notation and analysis, we would like to rule out such schedules. The following definition captures
“reasonable” schdules.

Definition B.1 (canonical schedules) We say that a valid schedule ` is canonical if R+ can be
partitioned into countably many disjoint intervals I1, I2, I3, . . . with the following properties:

1. All odd intervals I2k−1 are open and of length exactly 1, and `(t) =⊥ if and only if t ∈⋃
k I2k−1.
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2. All even intervals I2k are closed. (Even intervals could consist of a single point.) For all k
and t ∈ I2k, t

′ ∈ I2k+2, we have that `(t) 6= `(t′).

A defender mixed schedule Λ is canonical if it is a distribution over canonical deterministic
schedules.

Note that it follows from validity that any canonical ` is constant on the even intervals.
Intuitively, a canonical schedule is one in which the defender travels as quickly as possible (in

one unit of time) from one target to the next target, visits it for some (possibly zero) time, then
travels to the next (necessarily different) target, etc. That we may focus on canonical schedules
w.l.o.g. is captured by the following proposition:

Proposition B.2 For each schedule `, there exists a canonical schedule `′ that is at least as good
for the defender, in the sense for any choice i,t,t′ of the attacker,

U(`′, (i, t, t′)) ≤ U(`, (i, t, t′)).

Proof. Given `, define `′ as follows.

1. For every t with `(t) 6=⊥ let `′(t) = `(t).

2. For every t with `(t) =⊥

(a) If t is in the closure of `−1(i), set `′(t) = i.

(b) Denote by i(t) the last target visited before time t (setting i(t) = 1 if none exists) and
j(t) the first target visited after time t (again setting j(t) = 1 if none exists). Note that
i(t) and j(t) are well-defined because ` is valid; this would not in generally be true for
an arbitrary ` : R+ → {1, . . . , n,⊥}.

(c) If i(t) = j(t) then set `′(t) = i(t). That is, if in `, the defender leaves a target i and then
comes back to it without visiting another, then in `′, the defender just stays at i.

(d) If i(t) 6= j(t) and the difference between t and inf{τ > t | `(τ) = j(t)} is at least 1,
then set `′(t) = i(t). That is, if the defender took more than one unit of time to reach
target j(t) from i(t), then she might as well have stayed at i(t) until one time unit before
getting to j(t).

(e) Otherwise, set `′(t) =⊥.

It is easy to verify that `′ is indeed canonical. Consider any choice of schedule by the attacker.
Because the above transformations only replaced ⊥ (i.e., transit) times with times at targets,
whenever the attacker is not caught in `′, he was not caught in `′, so his utility can only decrease:

U(`′, (i, t, t′)) ≤ U(`, (i, t, t′)).
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B.2 Shift Invariance

To simplify the analysis, we would like to restrict our attention to shift invariant schedules for the
defender: schedules such that the attacker’s and defender’s utility depends only on the duration
t′ − t of the attack, but not on the start time t. We formally define this notion as follows, and
show that this restriction is without loss of generality, as there is always an optimal shift-invariant
schedule. For each τ ∈ R+, define the shift operator Mτ : S → S by

[Mτ (`)](t) = `(t+ τ).

That is, the pure schedule Mτ (`) is equal to `, but leaves out the first τ time units of `, shifting
the remainder of the schedule forward in time. Note that

U(Mτ (`), (i, t, t
′)) = U(`, (i, t+ τ, t′ + τ)). (7)

The operator Mτ extends naturally to act on mixed schedules Λ.8 We say that a mixed schedule
Λ is shift-invariant if Mτ (Λ) = Λ for all τ ∈ R+. The following lemma shows that an optimal
schedule exists, and that we may focus on shift-invariant schedules without loss of generality.

Lemma B.3 The defender has an optimal mixed schedule that is shift-invariant.

Proof. To prove this lemma, we introduce a natural topology on S, the space of valid canonical
pure strategies. Given a ` ∈ S, define ¯̀: R+ → {1, . . . , n,⊥} by setting ¯̀(t) to be either `(t), if
`(t) 6=⊥, or else setting it to be the first target visited after time t. Thus ¯̀(t) is the target visited
at time t, or the target that the defender is en route to visiting. Note that ¯̀−1(i) is the union of a
countable set of intervals of length at least 1, each open on the left and closed on the right. Note
also that the map ` 7→ ¯̀ is “almost” invertible; since travel times are always 1, we know when each
visit to each target began. The exception is the first visit, and so ` is determined by ¯̀, together
with the time of the beginning of the first target visit, which is always at most 1.

The topology on S is the topology of convergence in L1 on compact sets. Specifically, for any
t1, t2 ∈ R+, define ∆t1,t2(`n, `) to be the measure of the subset of [t1, t2] on which at least one of
the following two holds: (1) `n 6= `, or (2) ¯̀

n 6= ¯̀. Then, we say that the limit of `n is equal to ` iff
∆t1,t2(`n, `) → 0 for all t1, t2 ∈ R+. It is straightforward to verify that this topology is compact and
metrizable.9 Hence the corresponding weak* topology on mixed strategies is also compact. Note
also that the shift operator Mτ : S → S is continuous in this topology.

Note that if `n →n `, and if target i is visited in [t1, t2] in every `n, then it is also visited in
[t1, t2] in `. Hence,

lim
n→∞

U(`n, (i, t, t
′)) ≥ U(`, (i, t, t′)),

and so U(·, (i, t, t′)) is a lower semi-continuous map from S to R+. It follows that

Λ 7→ E`∼Λ

[
U(`, (i, t, t′))

]
8A measurable map P : X → X can be extended to a linear operator on probability measures on X as follows:

For any measurable subset A ⊆ X, define [P (µ)](A) = µ(P−1(A)). This defines a mapping µ 7→ P (µ).
9The metric is

∑∞
n=1 2

−ndn(`1, `2), where dn(`1, `2) is the measure of the subset of [0, n] in which either `1 and
`2 differ, or ¯̀

1 and ¯̀
2 differ.
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is lower semi-continuous as well. Hence

U(Λ) = sup
i,t,t′

E`∼Λ

[
U(`, (i, t, t′))

]
is also lower-semicontinuous, and thus attains a minimum on the compact space of mixed strategies.
Thus we have shown that an optimal schedule exists.

When the attacker can obtain expected utility u against Mτ (`) by choosing i, t, t′, he can obtain
the same utility u against Λ by choosing i, t+ τ, t′+ τ . Therefore, the defender’s utility is (weakly)
monotone in τ , in the following sense:

U(Mτ (Λ)) ≤ U(Λ). (8)

Let Λ1 and Λ2 be mixed strategies, and let Λ = αΛ1+(1−α)Λ2 be the schedule in which Λ1 is
carried out with probability α and Λ2 with probability 1− α. Since suprema are subadditive, the
attacker’s utility is convex:

U(Λ) ≤ αU(Λ1) + (1− α)U(Λ2). (9)

Let Λ be an optimal mixed schedule. For n ∈ N let

Λn =
1

n

∫ n

0
Mτ (Λ) dτ.

By the monotonicity (Eq. (8)) and convexity (Eq. (9)) of U(Λ), we have that U(Λn) ≤ U(Λ).
Since S is compact, the sequence {Λn} has a converging subsequence that converges to some

Λ∞. By the lower semi-continuity of U(Λ),

U(Λ∞) ≤ lim
n→∞

U(Λn) ≤ U(Λ);

therefore Λ∞ is also optimal. Finally, Λ∞ is by construction shift-invariant.

B.3 Transitive and Ergodic Schedules

We say that a shift-invariant mixed schedule Λ is transitive if there is a single pure schedule `0 that
is periodic with period τ (i.e., Mτ (`0) = `0) such that

Λ =
1

τ

∫ τ

0
δMt(`0) dt,

where δ` is the point mass on `. Intuitively, Λ simply repeats the same periodic schedule, with a
phase chosen uniformly at random.

A weaker property of a shift-invariant mixed schedule Λ is ergodicity : Λ is ergodic if there is a
single pure schedule `0 such that

Λ = lim
τ→∞

1

τ

∫ τ

0
δMt(`0) dt.

In fact, this is not the usual definition of an ergodic measure, but the conclusion of the Ergodic
Theorem. An equivalent property is that Λ cannot be written as the convex combination Λ =
λΛ1 + (1 − λ)Λ2 of two different shift-invariant measures. That is, Λ is an extremal point in the
convex set (simplex, in fact) of shift-invariant measures.
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B.4 Time Spent on targets in general schedules

We generalize the definition of yi from random sequences to mixed schedules. The right notion here
is captured by considering the time that the defender spends at target i or in transit to target i.

Formally, for a canonical pure schedule `, recall the definition ¯̀ from the proof of Lemma B.3:
¯̀ is obtained from ` by replacing each transit interval with the next visited target. While ¯̀ is thus
not a valid schedule, it naturally captures the amount of time spent on the targets.

In particular, we can define yi = P`∼Λ[¯̀(0) = i] to be the probability that at time 0, the defender
is in transit to (or at) target i. Because of shift-invariance, the choice of time 0 was immaterial.
Because Λ is canonical,

∑
i yi = 1. Then, we can generalize the definition of zi as well, to:

zi =
1− Fi(0)

yi − Fi(0)
. (10)

B.5 Times Between Visits to Targets

We now more formally define the notion of the (random) time between visits to a target i. While
the notion is intuitively clear, for arbitrary defender strategies Λ, a precise definition requires some
subtlety. We give a general definition for arbitrary mixed schedules, not just random sequences.

Having defined schedules on R+, we now extend the definition to schedules on [−τ,∞) and even-
tually to R. We define a modified shift operator M̃τ (·), mapping schedules (` : R+ → {1, . . . , n,⊥})
to τ -schedules `′ : [−τ,∞) → {1, . . . , n,⊥}, via [M̃τ (`)](t) = `(t+τ) Thus, M̃τ (`) is simply a version
of ` shifted τ units to the left. The map M̃τ () extends to a map on mixed schedules in the obvious
way. For any shift-invariant mixed schedule Λ, M̃τ (Λ) is also shift-invariant, and furthermore, for
any τ ′ < τ , the distribution M̃τ ′(Λ), projected to [−τ ′,∞), is the same distribution as M̃τ (Λ). It
follows that

Λ∞ = lim
τ→∞

M̃τ (Λ) (11)

is a well defined measure on pure schedules that are functions `∞ : R → {1, . . . , n,⊥}. We call Λ∞
the bi-infinite extension of Λ. It is straightforward to verify that it, too, is shift-invariant. Note
that the distribution of the first visit to i at non-negative times, Ri = min{t ≥ 0 | `(t) = i}, has
the same distribution under Λ∞ as under Λ, since the restriction of Λ∞ to non-negative times is
equal to Λ.

Given a target i and a shift-invariant mixed schedule Λ, let ˜̀: (−∞,∞) → {1, . . . , n,⊥} be a
random schedule with distribution Λ∞. Let Bi be the (random) time between the last visit to i
before time zero, until the first visit to i after time zero:

Bi = (inf{t ≥ 0 | ˜̀(t) = i})− (sup{t ≤ 0 | ˜̀(t) = i}).

The choice of time 0 here is immaterial because of shift invariance. Bi could be infinite, but this
will never happen in an optimal Λ, because it would imply that the attacker’s expected utility for
choosing i is infinite; we hence assume henceforth P[Bi = ∞] = 0. Finally, contrary to what one
might intuitively guess, even for transitive Λ, the distribution of Bi is not the same as the long-
run empirical distribution of times between visits, as gaps are chosen at time 0 with probability
proportional to their length. The same holds for general Λ.
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B.6 Characterizing Fi(t) in terms of Bi

Here, we generalize the characterization of Fi in terms of the distribution of Bi to arbitrary shift-
invariant mixed schedules, in particular allowing Fi(t) 6= 0. First, we can generalize Equation 3 as
follows:

Fi(t) = P[Bi = 0] +
1− P[Bi = 0]

E [Bi]

∫ t

0
P[Bi > τ ] dτ. (12)

Thus, Fi(0) = P[Bi = 0], and

yi = Fi(1) = Fi(0) +
1− Fi(0)

E [Bi]

∫ 1

0
P[Bi > τ ] dτ.

In canonical schedules, either Bi = 0 or Bi ≥ 2, so P[Bi > τ ] = 1− Fi(0) for all τ ≤ 1. Thus,

yi = Fi(0) +
(1− Fi(0))

2

E [Bi]
.

Also,

zi =
1− Fi(0)

yi − Fi(0)
=

E [Bi]

1− Fi(0)
.

Proposition 2.1 can be readily generalized as follows:

Proposition B.4

Fi(t) ≤ Fi(0) + (yi − Fi(0)) · t,

with equality iff

P[Bi = 0 or Bi > t] = 1. (?)

Proof. For all τ ≤ t, we have that

P[Bi > τ ] ≤ P[Bi 6= 0] = 1− Fi(0),

with equality when (?) holds. Substituting this inequality into (3), we get

Fi(t) ≤ Fi(0) +
(1− Fi(0))

2

E [Bi]
· t = Fi(0) + (yi − Fi(0)) · t,

with equality iff (?) holds.

C Tightness of the 2-Quasi-Regularity Result

Proof of Proposition 3.6. Let s be a (2 − ε)-quasi-regular random sequence. We claim that
B1 = 2 with probability 1, and B2 = 3 with probability 1. For suppose that with positive probability
B1 ≤ 1. Then, because z1 = 2, we also would have to have B1 ≥ 3 with positive probability, and
vice versa. Similarly, B2 ≤ 2 with positive probability iff B2 ≥ 4 with positive probability. Either
of those cases would lead to a ratio (3/1 or 4/2) larger than 2− ε, violating (2− ε)-quasi-regularity.

Hence, with probability one, target 1 appears in every other time period and target 2 appears
in every third time period, which is impossible.
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D Proof of Theorem 5.3

We begin with a few simple, but useful, technical lemmas. First, we give a closed form for expres-
sions of the form

fk+1

ϕ − fk.

Lemma D.1 For any k, we have that

fk+1

ϕ
− fk = (−1/ϕ)k+2 · 1 + ϕ2

√
5

.

Proof. Using the closed-form expression for Fibonacci Numbers (Part 2 of Lemma 5.2), we can
write

fk+1

ϕ
− fk =

(
ϕk+1/ϕ− (−1/ϕ)k+1/ϕ

)
−
(
ϕk − (−1/ϕ)k

)
√
5

=
(−1/ϕ)k+2 + (−1/ϕ)k√

5

= (−1/ϕ)k+2 1 + ϕ2

√
5

.

Lemma D.2 1. For all δ ∈ (−1
2 ,

1
2 ] and integers n > 1,m ≥ 0, the following two are equivalent:

• δ = ((n+m)/ϕ−m/ϕ) mod 1.

• There exists a positive integer D with n/D − ϕ = δϕ/D.

2. Let δ = (fk/ϕ) mod 1 for k ≥ 3 (where we consider the range of the mod operation to be
(−1

2 ,
1
2 ]). Then, δ = fk/ϕ− fk−1.

Proof. 1. The first condition can be rewritten as n/ϕ = δ + D for some integer D ≥ 0.
Multiplying by ϕ/D now gives equivalence with the second condition.

2. In the first part of the lemma, set m = 0 and n = fk. Then, the condition is equivalent to
the existence of a positive integer D with fk/D−ϕ = δϕ/D, implying that |fk/ϕ−D| = |δ|.
By choosing D = fk−1, according to Lemma D.1, we get that

|fk/ϕ− fk−1| = (1/ϕ)k+1 · 1 + ϕ2

√
5

≤ 1 + ϕ2

√
5ϕ4

<
1

2
.

Therefore, for any D 6= fk−1, we get that |fk/ϕ−D| > 1− 1
2 = 1

2 , meaning that no D 6= fk−1

can satisfy fk/D − ϕ = δϕ/D. By substituting the unique choice D = fk−1, we obtain the
second part of the lemma.

Because the Fibonacci numbers are the convergents of the Golden Ratio, they provide the best
rational approximation, in the following sense.

Theorem D.3 Let M ≥ 1 be arbitrary. Let k be the largest even number with fk ≤ M , and k′ the
largest odd number with fk′ ≤ M . Then, for all m ≤ M and all n, we have the following:
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1. n/m > ϕ implies fk+1/fk ≤ n/m.

2. n/m < ϕ implies fk′+1/fk′ ≥ n/m.

Theorem D.3 follows directly from standard results stating that the convergents provide the
best approximation to real numbers (e.g., [14, p.11]), noting that the second (intermediate) case
cannot happen for the Golden Ratio.

We are now ready to prove the characterization of the distribution of Bi under the Golden Ratio
schedule.

Proof of Theorem 5.3. We begin by showing that the support of return times consists only of
Fibonacci Numbers. Consider the interval I = [0, α). Let m be a return time. Because α ≤ 1

2 by
assumption, we get that m ≥ 2. Let x ∈ I be arbitrary, and y = (x+m/ϕ) mod 1, which is in I
by assumption. Define δ = y − x. Because both x, y ∈ I, we have that δ ∈ [−x, α− x). By Part 1
of Lemma D.2, there is a positive integer D such that

m/D − ϕ = δϕ/D ∈ [−xϕ/D, (α− x)ϕ/D).

We now distinguish two cases:

• If m/D−ϕ > 0, then Case 1 of Theorem D.3 implies that the largest even j such that fj ≤ D
satisfies fj+1/fj − ϕ > 0 and fj+1/fj ≤ m/D. Thus, (x + fj/ϕ) mod 1 ∈ I, meaning that
the defender returns to the target in fj steps. Unless m = fj , this contradicts the definition
of m as a return time, so we have shown that m is a Fibonacci number.

• Similarly, if m/D − ϕ < 0, then Case 2 of Theorem D.3 implies that the largest odd j such
that fj ≤ D satisfies fj+1/fj −ϕ < 0 and fj+1/fj ≥ m/D. By the same argument, we obtain
now that m = fj .

Next, we prove the second part of the theorem. First, notice that the k defined in the theorem

actually exists. By Lemma D.1, we get that |fk+1

ϕ − fk| = (1/ϕ)k+2 · 1+ϕ2
√
5

→ 0 as k → ∞, so there

exists a k (and thus a smallest k) with |fk+1/ϕ− fk| ≤ α.
We show that there cannot be a return time m < fk+1. If there were, then by the previous part

of the proof, m would be a Fibonacci number, say, m = f`. And because m ≥ 2, we get that ` ≥ 3.
By Part 2 of Lemma D.2, that means that f`/ϕ−f`−1 = y−x, and hence |f`/ϕ−f`−1| = |y−x| < α,
contradicting the definition of k as smallest with that property.

Consider a return to I, starting from x ∈ I and ending at y ∈ I, so that δ` := y − x satisfies
|δ`| < α, and within m steps, for m = f`, ` ≥ k + 1 by the previous analysis. Again, by Part 2 of
Lemma D.2, we obtain that δ` = f`/ϕ− f`−1.

When δ` < 0, the x ∈ I with x+ δ` ∈ I are exactly captured by the interval J` := [|δ`|, α], while
for δ` > 0, they are exactly the interval J` := [0, α − δ`). In either case, the interval J` has size
exactly |J`| = α− |δ`|.

We will show that Jk+2∪Jk+3 = I. By Lemma 5.2, the signs of δ` are alternating, meaning that
the intervals J` alternate being of the form [0, x] and [y, α). In particular, to show that Jk+2∪Jk+3 =
I, it suffices to show that |Jk+2|+ |Jk+3| ≥ α. Because |Jk+2|+ |Jk+3| = 2α− |δk+2| − |δk+3|, this
is equivalent to showing that |δk+2|+ |δk+3| ≤ α. We distinguish two cases, based on whether k is
even or odd.
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• If k is even, then δk+2 = fk+2/ϕ− fk+1 < 0 and δk+3 = fk+3/ϕ− fk+2 > 0, so we obtain that

|δk+3|+ |δk+2| = fk+3/ϕ− fk+2 − fk+2/ϕ+ fk+1 = fk+1/ϕ− fk = |fk+1/ϕ− fk| ≤ α,

by the definition of k.

• If k is odd, then δk+2 = fk+2/ϕ− fk+1 > 0 and δk+3 = fk+3/ϕ− fk+2 < 0, so we obtain that

|δk+2|+ |δk+3| = fk+2/ϕ− fk+1 − fk+3/ϕ+ fk+2 = fk − fk+1/ϕ = |fk+1/ϕ− fk| ≤ α.

Thus, we have shown that the support of the distribution is indeed contained in {fk+1, fk+2, fk+3}.
Finally, we can work out the frequencies. Conditioned on being in the interval of size α, the proba-
bility of being in J` is q` = |J`|/α. To arrive at the attacker’s observed distribution of Bi, we notice
that the probability of time 0 being in an interval of length f` is

q`f`∑
j qjfj

=
q`f`
1/α

= f` · |J`|.

Thus, we obtain that

P[Bi = fk+1] = fk+1 · |Jk+1| = fk+1 · (α− |fk+1/ϕ− fk|),
P[Bi = fk+2] = fk+2 · |Jk+2| = fk+2 · (α− |fk+1 − fk+2/ϕ|),
P[Bi = fk+3] = 1− q1 − q2

= fk+3 · (−α+ |fk+1/ϕ− fk + fk+1 − fk+2/ϕ|)
= fk+3 · (−α+ |fk−1 − fk/ϕ|).

Notice that we arranged the terms inside absolute values such that for even k, they are all
positive, while for odd k, they are all negative. This allowed us to simply add inside the absolute
value. Applying Lemma D.1 to all three terms now completes the proof.

E Computational Considerations for the Golden Ratio Schedule

As phrased, Algorithm 2 requires precise arithmetic on irrational numbers, and drawing a uniformly
random number from [0, 1]. Here, we discuss how to implement the algorithm such that each target
i visited in step t can be computed in time polynomial in the input size.

Let αi = ai/bi for each i, and write M = scm(b1, . . . , bm) for the common denominator. Notice
that logM ≤

∑
i log bi is polynomial in the input size.

For each i, the number Pi =
∑

i′<i pi′ is rational. To decide whether target i is visited in step
t, the algorithm needs to decide if (λ+ t/ϕ) mod 1 ∈ [Pi, Pi+1], or — equivalently — if there is an
integer D with λ+t/ϕ ∈ [D+Pi, D+Pi+1]. To decide whether λ+t/ϕ < D+Pj or λ+t/ϕ > D+Pj

(for j ∈ {i, i+1}), the algorithm needs to decide if ϕ < t
D+Pj−λ or ϕ > t

D+Pj−λ . The key question

is how many digits of ϕ the algorithm needs to evaluate for this decision, and how many digits of
the uniformly random offset λ it needs to decide on.

Suppose that the algorithm has generated the first k random digits of λ, having committed
to `

10k
≤ λ < `+1

10k
for some ` ∈ {0, 1, . . . , 10k − 1}. Writing Pj = Nj/M (using the denominator
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M defined above), a decision about target Pj can be made whenever ϕ < tM10k

10k·MD+10kNj−M ·` or

ϕ > tM10k

10k·MD+10kNj−M ·(`+1)
. In both cases, the right-hand side is a rational approximation to ϕ

with denominator bounded by M̂ := 2 · 10k ·MD.

It is well known (see, e.g., [9, Theorems 193–194]) that |ϕ − N̂
M̂
| ≥ 1

(
√
5−ε)M̂2

for all ε > 0. In

particular, this implies that evaluating ϕ to within O(log M̂2) = O(k + logM + logD) digits is

sufficient to test whether ϕ < tM10k

10k·MD+10kNj−M ·` , and whether ϕ > tM10k

10k·MD+10kNj−M ·(`+1)
. In either

of these cases, the algorithm has resolved whether ϕ < t
D+Pj−λ .

The only case where the algorithm cannot resolve whether ϕ < t
D+Pj−λ is when

tM10k

10k ·MD + 10kNj −M · (`+ 1)
< ϕ <

tM10k

10k ·MD + 10kNj −M · `
.

In this case, the number of digits for λ is insufficient. Notice that there is a unique value of ` for
which this happens, so the probability of failure is at most 10−k. Taking a union bound over all
n interval boundaries and all t rounds, we see that in order to succeed with high probability, the
number of digits of λ the algorithm needs to generate is O(log n+ log t).

In particular, the computation and required randomness are polynomial.
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