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Quasi-regular sequences and optimal schedules for security games
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We study security games in which a defender commits to a mixed strategy for protecting a
finite set of targets of different values. An attacker, knowing the defender’s strategy, chooses which
target to attack and for how long. If the attacker spends time t at a target i of value αi, and if
he leaves before the defender visits the target, his utility is t · αi; if the defender visits before he
leaves, his utility is 0. The defender’s goal is to minimize the attacker’s utility. The defender’s
strategy consists of a schedule for visiting the targets; it takes her unit time to switch between
targets. Such games are a simplified model of a number of real-world scenarios such as protecting
computer networks from intruders, crops from thieves, etc.

We show that optimal defender play for such security games, although played in continuous time,
reduces to the solution of a combinatorial question regarding the existence of infinite sequences over
a finite alphabet, with the following properties for each symbol i: (1) i constitutes a prescribed
limiting fraction pi of the sequence. (2) The occurrences of i are spread apart close to evenly, in
that the ratio of the longest to shortest interval between consecutive occurrences is bounded by a
parameter K. We call such sequences K-quasi-regular; a 1-quasi-regular sequence is one in which
the occurrences of each symbol form an arithmetic sequence.

As we show, a 1-quasi-regular sequence ensures an optimal defender strategy for these security
games: the intuition for this fact lies in the famous “inspection paradox.” However, as we demon-
strate, for K < 2 and general pi, K-quasi-regular sequences may not exist. Fortunately, this does
not turn out to be an obstruction: we show that, surprisingly, 2-quasi-regular sequences also suffice
for optimal defender play. What is more, even randomized 2-quasi-regular sequences suffice for
optimality. We show that such sequences always exist, and can be calculated efficiently. Thus, we
can ensure optimal defender play for these security games.

The question of the least K for which deterministic K-quasi-regular sequences exist is fascinat-
ing. Using an ergodic theoretical approach, we proceed to show that deterministic 3-quasi-regular
sequences always exist (and can be calculated efficiently). We also show that these deterministic
3-regular sequences give rise to a ≈ 1.006-approximation algorithm for the defender’s optimal strat-
egy. For 2 ≤ K < 3 we do not know whether deterministic K-quasi-regular sequences always exist;
however, when the pi are all small, improved bounds are possible, and in fact, (1 + ǫ)-quasi-regular
deterministic sequences exist for any ǫ > 0 for sufficiently small pi.
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1 Introduction

One of the most successful real-world applications at the intersection of game theory and computer
science has been security games. Security games have been used recently to model and address
problems including the protection of infrastructure (airports, seaports, flights), deterrence of fare
evasion and smuggling, as well as the protection of wildlife and plants. The related model of
inspection games [4] has been used to model interactions as varied as arms control, accounting and
auditing, environmental controls, or data verification.

In general models of security games, there are n targets of various values that the defender tries
to protect with her limited resources.1 Different assumptions and scenarios can lead to different
interesting combinatorial constraints; see [31] for an overview of much recent work.

In the present work, we are concerned with a defender who cannot switch instantaneously
between different targets, which introduces a timing component and a scheduling problem. At a
high level, such constraints arise in many natural security settings, including:

1. Protection of computer networks (with multiple databases or account holders) from infiltra-
tors.

2. Protection of wildlife from poachers (e.g., [13, 12]), crops or other plants from thieves, or
homes in a neighborhood from burglars.

Stripping away details, we propose the following simplified model for these types of settings:
If the attacker has access to an unprotected target, he gains utility in proportion to the value of
the target and to the time he spends at the target.2 The game is zero-sum, i.e., the attacker’s
gain is the defender’s loss. If the attack is interrupted by the defender at any time, both players
receive utility 0. Due to physical distances between targets or switching costs between databases,
the defender requires one unit of time to switch between any two targets. The problem of interest is
to determine a schedule for the defender that will lead to minimum expected defender loss against
a best-responding attacker.

More formally, each of the n targets has value αi ≥ 0, scaled so that
∑

i αi = 1. We assume
that no target is strictly more valuable than all other targets combined,3 so that αi ≤ 1/2. Time
is continuous, and the game has an infinite time horizon. A defender strategy is a schedule of
which target is visited at each point in time, with some time spent in transit. An attacker strategy
consists of a choice of a single time interval [t0, t0 + t] and a target i to attack. If the defender does
not visit target i during this interval, the attacker obtains a utility of U = t · αi, and the defender
receives −U . If the defender visits the target at any point during the interval, both players’ utilities
are 0.

In our modeling of the security setting, an attack is a sufficiently disruptive event that it
effectively ends the game, by which we mean that the defender will subsequently re-randomize her
schedule. Thus, the entire game is concluded after one attack. We assume that the defender’s
mixed strategy (but not randomness) is known to the attacker who will best-respond by choosing

1For consistency, we always refer to the attacker with male pronouns and the defender with female pronouns.
2In the case of access to computer systems, this models a scenario observed in recent attacks where the attacker

lurks — whether in order to monitor legitimate users, create ongoing damage, or because file sizes or bandwidth
concerns make it impossible to download the entire database in a short amount of time.

3See Section 7 for a discussion of this choice; outside of this assumption is a different régime that requires different
analysis.
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an attack (i, t0, t), comprising the target i and the start time and duration4 of the attack, t0 and t.
Accordingly, the defender chooses a Min-Max strategy: a strategy which minimizes the maximum
expected return of any attack (i, t0, t).

Although the game is played in continuous time, we show (in Section 2) that under the as-
sumption that αi ≤ 1/2 for all i, optimal defender strategies can be obtained as follows: choose a
suitable (random) discrete sequence s0, s1, s2, . . . of targets and a uniformly random τ ∈ [0, 1]; then
visit each target st at time t+ τ ∈ R

+. At all other times, the defender is in transit, so that each
target is visited instantaneously, with the next target visited exactly one time unit later.

It is not difficult to show that if each target i occupies a αi fraction of the sequence and is
exactly evenly spaced in the sequence, the resulting defender schedule is optimal. Some intuition
is derived from the famous “Inspection Paradox” or “Waiting Time Problem:” passengers of a bus
service which departs a station with perfect regularity (e.g., 15 minutes apart) wait on average
half as long as passengers of a service with the same frequency of operation but Poisson departure
times. In our case, higher variance in the defender’s interarrival times lengthens the expected time
until the next defender visit, making longer attacks more attractive.

We call sequences in which each target i is exactly evenly spaced regular ; generalizing this
notion, we call a sequence s K-quasi-regular (with respect to frequencies pi; in our applications, we
typically choose pi = αi) if, as before, each target i takes up a pi fraction of the sequence, and the
ratio of the longest to shortest interval between consecutive occurrences of i in s is bounded by K.
Our first result (Theorem 3.1) is that — surprisingly — it suffices for optimality that the sequence
is 2-quasi-regular.

1.1 Our Main Result

It is fairly straightforward to show that there is some vector (pi)i such that there are no (2−ǫ)-quasi-
regular sequences for any ǫ > 0; we do this in Section 4. Our main result (Theorem 4.1 in Section 4)
is that for any values pi, there exists a 2-quasi-regular random sequence, which can furthermore be
efficiently computed from the pi. By the aforementioned Theorem 3.1, the corresponding defender
mixed strategy is optimal.

1.2 Ergodic Schedules

Quasi-regular sequences are basic combinatorial objects, quite apart from our application of them.
One limitation of our work (although it does not affect the application) is that the resulting sched-
ules are not ergodic: they randomize between different schedules in which the targets have fre-
quencies differing from the desired pi. It is then a natural question whether 2-quasi-regular ergodic
sequences can be obtained as well. This is related to the following combinatorial question: given
densities pi, does there always exist a 2-quasi-regular deterministic sequence?

We provide two partial answers to this question. In Section 5, we analyze a very simple schedule
called the Golden Ratio Schedule (variations of which have been studied in the context of hash-
ing [22, pp. 510,511,543], bandwidth sharing [21, 26] and elsewhere). This schedule is generated
by the following random sequence: partition the circle of circumference 1 into intervals of size pi

4One could consider an “adaptive” attacker, who initially only chooses the start time t0, and decides on t on the
fly. The resulting model would be equivalent, as such an adaptive attacker at any time t′ > t0 has learned no new
information aside from the fact that he has not yet been caught; any attacker who under these conditions will decide
to wait for exactly t units of time (if not caught) is exactly equivalent to one who chooses the attack (i, t0, t) at once.
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corresponding to the targets i. Choose a uniformly random starting point on the circle. In each
step, add ϕ to the current point; here, ϕ = 1

2 (1 +
√
5) is the Golden Ratio. In each time step, the

defender visits the target i into whose interval the current point falls.
This random sequence is ergodic, and at worst 3-quasi-regular.5 Moreover, for any choice of

the random starting point, the deterministic sequence is 3-quasi-regular. Thus we show that there
always exist deterministic 3-quasi-regular sequences. We do not know if this is true for any K < 3.

It is interesting that such a simple schedule achieves constant quasi-regularity, but the bound is
not strong enough to guarantee optimality of the schedule for the defender. However, we show that
the schedule is nearly optimal for the defender: the attacker’s utility is within a factor of at most
1.006 of the minimum attacker utility (and this bound is tight). The proof of this approximation
guarantee relies on a theorem of Slater about simple dynamical systems like the Golden Ratio shift,
and a somewhat intricate analysis of the attacker’s response. We find it remarkable that such a
simple policy comes provably within 0.6% of the optimum, in particular compared to another very
simple policy: as we show in Appendix A, the simple i.i.d. schedule, which always chooses the next
target i to visit with probability αi, independent of the history, is only a 4/e-approximation.

As a second partial result towards obtaining an optimal ergodic schedule, in Section 6, we show
a sufficient condition for the existence of (1+ ǫ)-quasi-regular sequences, for any ǫ > 0. Specifically,
let M be the smallest common denominator of all pi. If pi = O( ǫ√

n logM
) for all i, then a (1 + ǫ)-

quasi-regular periodic schedule exists and can be found efficiently using a randomized algorithm
that succeeds with high probability.

The algorithm is based on placing points for target i at uniform distance proportional to 1/pi
on the unit circle, with independent uniformly random offsets. Points can only be matched to
sufficiently close multiples of 1/M . An application of Hall’s Theorem, similar to [32, 17], shows
that under the conditions of the theorem, this algorithm succeeds with high probability in producing
a (1 + ǫ)-quasi-regular sequence.

Related Work

Several notions of “sequences in which elements i are roughly regularly spaced, with given frequen-
cies pi” have been studied in different contexts.

Dating back to the work of Tijdeman [32, 33], several papers [1, 17, 32, 33, 9] (see also an
overview in [8]) have studied sequences with low discrepancy in the following sense: up to any
time t, the number of occurrences of element i approximates t · pi as closely as possible. For our
application, the rate of convergence of the frequencies to pi is not essential; but it is crucial that
the defender’s interarrival times at each target be as regular as possible. Consequently, methods
from this literature are not sufficient to optimally solve our problem.

In the Pinwheel Problem [18, 19, 6, 24, 14], one is given integers n1, n2, . . . , nk ≥ 2, whose density
is defined by β :=

∑

i 1/ni ≤ 1. The goal is to produce a sequence s of the elements {1, . . . , k} such
that for each i, each subsequence (st, st+1, . . . , st+ni−1) of length ni contains at least one occurrence
of the symbol i. One of the main questions in this area is what values β are sufficient to guarantee
the existence of such a sequence. Currently, it is known that β ≤ 5/6 is necessary (i.e., there are
examples with β = 5/6+ ǫ such that no s exists), and β ≤ 7/10 is sufficient. In our case, we always
have desired frequencies adding up to 1, and we have not only (looser) upper bounds, but also
lower bounds on the distance between consecutive occurrences. While some of the basic techniques

5When all pi ≤ 1 − 1/ϕ, the quasi-regularity guarantee improves to 8/3, and as pi → 0, it converges to ϕ2.
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in the context of the Pinwheel Problem are similar to the ones we use (in Section 4), solutions for
one problem do not imply solutions to the other.

In concurrent and independent work, Immorlica and Kleinberg [20] — motivated in part also
by applications to preventing wildlife poaching — defined a “Recharging Bandits” problem in
which the available reward at targets grows according to (unknown) concave functions. In the
full-information setting (in which the functions are known), (near-)optimal solutions correspond to
schedules that visit targets with given frequencies at roughly evenly spaced intervals. The precise
definition of “roughly evenly spaced” differs from ours, and while some of the techniques used in
[20] are similar to ours, optimality results and approximation guarantees do not imply each other
in either direction.

Our work is related to the inspection games literature (see, e.g., [4, 35]). Specifically, several
articles [11, 2, 3] consider models in which an inspectee indulges in illegal activity once or multiple
times within a finite time interval. An inspector distributes optimally the times at which she
performs a fixed number of inspections, and suffers a loss that is proportional to the time that has
elapsed between the beginning of illegal activity and the next inspection. In these models, as in
ours, the inspector wants to visit inspectees regularly while keeping the inspectee uncertain about
visit times. The lack of travel time restrictions as well as the lack of a need to catch the inspectee
at the time of his action make the models mathematically incomparable.

Finally, our work is also related to the literature on patrol games. Here, as in our model, a
defender (or multiple cooperating defenders) must decide on a schedule of visits to targets facing
attacks. However, unlike our model, the attacker observes the past locations of the defender(s)
before deciding whether and where to attack (see, e.g., [5, 36]).

2 Preliminaries

The n targets have values αi > 0 for all i. Because the units in which target values are measured
are irrelevant, we assume that

∑

i αi = 1. We assume that no target has value exceeding the sum
of all other targets’ values, meaning (after normalization) that αi ≤ 1

2 for all i.
A pure strategy (schedule) for the defender is a measurable mapping ℓ : R≥0 → {1, 2, . . . , n,⊥},

where ⊥ denotes that the defender is in transit. A schedule ℓ is valid if ℓ(t) = i and ℓ(t′) = j 6= i
implies that |t′ − t| ≥ 1. In other words, there is enough time for the defender to move from i to j
(or from j to i). We use L to denote the set of all valid pure defender strategies.

The defender moves first and chooses a mixed strategy, i.e., a distribution Λ over L, or a random
ℓ. Then, the attacker chooses an attack (i, t0, t) consisting of a target i, a start time t0, and an
attack duration t. Subsequently, a mapping ℓ is drawn from the defender’s distribution Λ. The
attacker’s utility is

U(ℓ, (i, t0, t)) =

{

0 if ℓ(τ) = i for some τ ∈ [t0, t0 + t]

αi · t otherwise.
(1)

Since we are considering a zero-sum game (see Section 7 for a discussion), the defender’s utility is
−U(ℓ, (i, t0, t)). Note that the attacker attacks only once.

A rational attacker will choose (i, t0, t) so as to maximize Eℓ∼Λ [U(ℓ, (i, t0, t))]; therefore, the
defender’s goal is to choose Λ to minimize

U(Λ) = sup
i,t0,t

Eℓ∼Λ [U(ℓ, (i, t0, t))] .
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The fact that we assume an infinite time horizon is primarily an idealization, in order to avoid
mathematical inconveniences at the end of the time horizon. The reader is encouraged to think of
the “infinite” time horizon as one or a few days, long enough that a significant schedule needs to
be planned and boundary effects can be ignored at small cost; but short enough that the attacker
cannot observe early parts of the schedule to infer which schedule ℓ was drawn from Λ.

2.1 Canonical, Shift-Invariant, and Ergodic Schedules

The general definition of defender schedules allows for strange schedules that are clearly suboptimal.
We would like to restrict our attention to “reasonable” schedules. In particular, we will assume the
two following conditions, which we later show to hold without loss of generality. (Here, we will be
slightly informal in our definitions. Precise definitions and constructions ensuring these properties
are given in Appendix B.)

• Whenever the defender transitions from one target i to a target i′ (i′ = i is possible), she
spends exactly one time unit in transit. We call such schedules canonical.

• To the attacker, any two times t and t′ “look the same,” in that for any t, t′, τ ∈ R
+, the

distributions of the defender’s schedule restricted to the time intervals [t, t+ τ ] and [t′, t′ + τ ]
are the same. We call such schedules shift-invariant or stationary.

Because the strategy spaces of both players are infinite, it is not clear a priori that a Min-Max
schedule for the defender exists. In Appendix B, we show that an optimal mixed Min-Max defender
strategy does exist, and is w.l.o.g. canonical and shift-invariant. Therefore, for the remainder of
this paper, we will focus only on shift-invariant canonical schedules. When the defender’s strategy
is shift-invariant, the start time t0 of the attack does not matter, so shift-invariance allows us to
implicitly assume that the attacker always attacks at time t0 = 0. We then simply write U(Λ, (i, t))
for the attacker’s expected utility from attacking target i for t units of time.

One may additionally be interested in constructing ergodic shift-invariant mixed schedules: Λ
is ergodic if Λ cannot be written as the convex combination Λ = λΛ1 + (1 − λ)Λ2 of two different
shift-invariant mixed schedules (see the formal discussion in Appendix B). While we are not aware
of game-theoretical implications of ergodicity, the question is mathematically natural, and may be
important in some extensions of our model.

2.2 Return Times and Target Visit Frequencies

For the following definitions, recall that we are focusing only on shift-invariant canonical schedules.
Accordingly, we assume without loss of generality that the attacker starts his attack at time 0.
Since the attacker chooses only the target i and the duration t of the attack, from his perspective,
the property of the defender’s strategy that matters is the distribution of her next return time to
target i, defined as Ri = min{t ≥ 0 | ℓ(t) = i}. Given a target i and a defender strategy, let
Fi(t) = P[Ri ≤ t] denote the CDF of Ri. In particular, notice that Fi(0) is the fraction of time the
defender spends waiting at target i. In terms of the distribution of return times Fi, the attacker’s
utility can be expressed as follows:

U(Fi, (i, t)) = αi · t · (1− Fi(t)). (2)

5



Next, we define a random variable Bi capturing the (random) duration between consecutive
visits to the same target i. Notice the subtle difference between this quantity and the time from the
defender’s perspective between leaving a target and returning to it. By comparison, the distribution
of Bi should assign higher probability to higher values: as in the inspection paradox, at a random
point in time, the attacker is more likely to find himself in a large gap. In other words, larger gaps
are more likely to appear at a fixed time than on average over a long time stretch.

Defining the distribution for Bi precisely requires some care, and is done formally in Appendix B.
The construction formalizes the following intuition: we can consider the limit as we shift the random
schedule ℓ left by a real number t → ∞. This extends a shift-invariant random schedule from the
non-negative reals to all reals, and allows us to consider the random variable

Bi = (inf{t ∈ R, t > 0 | ℓ(t) = i})− (sup{t ∈ R, t ≤ 0 | ℓ(t) = i}).
The random variable Bi captures the time between consecutive visits before and after time 0 — by
shift-invariance, the time 0 is arbitrary here. Our constructions will always ensure that Bi is finite.

We can write Fi in terms of Bi. First, we note that conditioned on Bi = τ , the distribution of
Ri is uniform between 0 and τ . Hence, its conditional CDF is P[Ri ≤ t | Bi = τ ] = min(1, t/τ).
The unconditional CDF of Ri for t > 0 is then

Fi(t) = EBi
[min(1, t/Bi)] =

∫ 1

0
P[t/Bi ≥ τ ]dτ =

∫ 1

0
P[Bi ≤ t/τ ]dτ = t ·

∫ ∞

t

P[Bi ≤ τ ]

τ2
dτ ;

(3)

the final equality uses a change of integration variable. For t = 0, we have that Fi(0) = P[Bi = 0]
is the probability that the defender is at target i at time 0. Two key quantities for our analysis are

pi = Fi(1), Ti =
1− Fi(0)

pi − Fi(0)
.

In every canonical schedule, pi is the fraction of time that the defender is either at target i or in
transit to i. Thus,

∑

i pi = 1 in every canonical schedule. Ti intuitively captures the “expected
time” between consecutive visits to target i, as seen by the defender. However, this intuition
formally holds only for periodic schedules, necessitating the preceding more complex definition for
arbitrary schedules. The most useful facts about Fi are summarized by the following proposition:

Proposition 2.1 1. Fi(·) is concave.

2. Fi(t) ≤ Fi(0) + (pi − Fi(0)) · t, with equality iff P[Bi = 0 or Bi > t] = 1.

Proof. 1. For each x, the function min(1, t/x) is concave in t. Hence, Fi(t) = Ex [min(1, t/x)],
being a convex combination of concave functions, is concave.

2. Rearranging and applying (3), we want to show that

t ·
∫ ∞

1

P[Bi ≤ τ ]

τ2
dτ − t ·

∫ ∞

t

P[Bi ≤ τ ]

τ2
dτ ≥ (t− 1) · Fi(0).

Combining the two integrals and lower-bounding P[Bi ≤ τ ] ≥ Fi(0) yields that the left hand
side is at least

Fi(0) · t ·
∫ t

1

1

τ2
dτ = Fi(0) · (t− 1),

with the lower bound holding with equality iff P[Bi = 0 or Bi > t] = 1.
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2.3 Schedules from Sequences

All the constructions of mixed defender schedules in this paper will have the property that the
defender never waits at any target, instead traveling immediately to the next target. That such
schedules are optimal (and hence the focus on such constructions is w.l.o.g.) is a consequence of
our main Theorem 3.1, and hinges on the restriction that αi ≤ 1/2 for all i. A brief discussion of
what happens when this assumption is relaxed is given in Section 7.

Canonical schedules without waiting are readily identified with schedules defined only on integer
times, since the defender must only choose, after visiting a target, which target she will visit next.
We call such schedules sequences, defined as s : N → {1, . . . , n}. A sequence, together with a start
time t0, naturally defines a canonical schedule, by setting ℓ(t) = st−t0 if t − t0 ∈ N, and ℓ(t) =⊥
otherwise. Σ denotes a distribution over sequences, or the distribution of a random sequence s.

Shift-invariance (or stationarity) can be defined for random sequences as for (continuous) mixed
schedules. When s is a periodic sequence, i.e., there is a k such that st+k = st for all t, a shift-
invariant random sequence can be obtained particularly easily, by choosing a uniformly random
κ ∈ {0, . . . , k − 1}, and defining s′ via s′t = st+κ; for aperiodic sequences, we give a construction
in Appendix B. From a shift-invariant random sequence, we can obtain a shift-invariant mixed
schedule straightforwardly, by choosing the start time t0 ∈ [0, 1] uniformly.

For the special case of random sequences, the definitions of pi and Ti simplify to pi = P[s1 = i]
(which is now exactly the fraction of target visits devoted to target i), and Ti = 1/pi (since
Fi(0) = 0).

2.4 Regular and Quasi-Regular Sequences

We say that a shift-invariant random sequence s is K-quasi-regular (with respect to target frequen-
cies pi) if the following two hold for each target i:

1. P[s1 = i] = pi.

2. There is some bi such that P[bi ≤ Bi ≤ K · bi] = 1.

In other words, each target i is visited with frequency pi, and the maximum gap for consecutive
visits to target i is within a factor K of the minimum gap with probability 1. A random sequence
is regular if it is 1-quasi-regular, meaning that all visits to target i are spaced exactly Ti apart. (All
definitions extend directly to canonical, mixed, shift-invariant schedules.)

A particularly straightforward way to obtain aK-quasi-regular random sequence Σ is to consider
the a subsequential limit of uniformly random shifts of a deterministic sequence s in which the gaps
between consecutive visits to i are bounded between bi and Kbi, and the density of entries which
are i is pi.

3 The Attacker’s Response, and Optimal Schedules

In this section, we show the following main theorem, a sufficient condition for a random sequence
to be optimal for the defender.

Theorem 3.1 Consider a random shift-invariant sequence such that the following two hold for
each target i:

7



• Ti = 1/αi.

• For each i, there exists an ηi such that P[ ηi
ηi+1Ti ≤ Bi ≤ ηiTi] = 1.

Then, the associated mixed strategy is optimal for the defender.
In particular, these conditions hold for 2-quasi-regular random sequences with respect to αi.

In Section 4, we show that there always exists a 2-quasi-regular sequence. With the eventual
goal of proving Theorem 3.1, we fix a target i, and for now drop the subscript i, so that

p = pi F (t) = Fi(t) T = Ti B = Bi.

We fix p and T and study which sequences — among all those with given p and T— are optimal
for the defender. Our algorithmic constructions will choose pi = αi for all i; however, in order to
show the optimality of this choice, the following proposition and corollary are proved for general
p, T .

Proposition 3.2 Consider any canonical shift-invariant mixed defender schedule (over the non-
negative real numbers). By choosing t = T/2, the attacker guarantees himself a utility of at least

α · 1−F (0)
4 · T .

Proof. By Equation (2), the attacker’s utility at time t = T/2 is α · (T/2) · (1− F (T/2)). Using
Proposition 2.1, we can bound

1−F (T/2) ≥ 1−F (0)− (p−F (0)) · (T/2) = (1−F (0)) ·
(

1− p− F (0)

1− F (0)
· (T/2)

)

=
1− F (0)

2
.

Hence, the attacker’s utility is at least α · 1−F (0)
4 · T .

Recalling that a random sequence by definition does not involve waiting at any target, we obtain
the following simple corollary about random sequences that are worst for the attacker:

Corollary 3.3 Among random sequences with fixed T and p, any random sequence is optimal for
the defender if the attacker’s payoff is upper-bounded by 1

4 · α · T .

The following corollary is particularly useful:

Corollary 3.4 Fix T and p, and consider a random sequence in which the attacker’s optimal
attack duration t satisfies P[B > t] = 1. Then, this random sequence is optimal for the defender.
Furthermore, in this case, w.l.o.g., t = T/2.

Proof. By the assumption that P[B > t] = 1 and Proposition 2.1, we have that F (t) = p · t.
Hence, the attacker’s utility is α · (1− p · t) · t = α · t·(T−t)

T ≤ α · T
4 . Now, the claim follows directly

from Corollary 3.3. That t = T/2 is a best response follows from Proposition 3.2.

We can now apply these corollaries to show optimality for a single target for which the “quasi-
regularity” of return times holds.

8



Proposition 3.5 Fix T and p, and consider a random sequence such that for some η,

P[
η

η + 1
T ≤ B ≤ ηT ] = 1.

Then, this schedule is optimal for the defender among schedules with these T and p.

Proof. We write ξ = η
η+1 . By Proposition 3.2, choosing t = T/2, the attacker can guarantee

himself at least a utility of 1
4 · α · T . We will show below that the attacker’s utility for any attack

duration t ∈ [ξT,∞) is at most 1
4 · α · T .

Hence, the attacker has an optimal attack duration t ≤ ξT (either t = T/2 or a different t). By
the assumption that P[ξT ≤ B] = 1 and Proposition 2.1, F (ξT ) = p · ξT . Using the concavity of
F , this implies that F (t) = p · t for all t ≤ ξT . Thus, whichever such t is optimal for the attacker,
Corollary 3.4 implies that F is optimal for the defender, and furthermore, that t = T/2 is optimal
for the attacker after all.

It remains to prove the upper bound for t ≥ ξT . For any t ≥ ηT , the assumption that B ≤ ηT
with probability 1 implies that F (ηT ) = 1, and hence a utility of 0 for the attacker. So we focus on
t ∈ [ξT, ηT ], and show that in this range, the maximum utility of the attacker is at most α · T/4.

We proved above that F (ξT ) = ξ, and by the assumption P[B ≤ ηT ] = 1, we get that F (ηT ) =
1. Since F is concave by Proposition 2.1, for t ∈ [ξT, ηT ], F is bounded below by the line connecting
(ξT, ξ) and (ηT, 1), so

F (t) ≥ ξ +
t− ξT

(η − ξ)T
· (1− ξ) = ξ · η − 1

η − ξ
+

1− ξ

(η − ξ)T
· t =

η − 1

η
+

1

η2
· t

T
.

Hence, the attacker’s utility is upper-bounded by α · t · (1 − F (t)) ≤ α · t ·
(

1
η − 1

η2
· t
T

)

. This is

maximized at t∗ = ηT
2 , so we obtain that α · t · (1− F (t)) ≤ α · t∗ ·

(

1
η − 1

η2
· t∗

T

)

= α · T
4 .

Proof of Theorem 3.1. To complete the proof of Theorem 3.1, we now consider multiple targets
i. By the assumptions of the theorem and Proposition 3.5, against the proposed class of random
sequences, the attacker can obtain utility at most 1

4 , regardless of which target i he attacks and for
how long; this follows by substituting Ti = 1/pi = 1/αi.

We will show that no shift-invariant mixed defender schedule (now considered over the non-
negative real numbers) can achieve an expected attacker payoff strictly smaller than 1

4 . Focus on a
shift-invariant mixed defender schedule Λ. By Lemma B.2, we may assume that Λ is canonical.

Fix some index i such that αi/pi ≥ 1. Such an index must exist because
∑

i αi = 1 and
∑

i pi ≤ 1. Because we assumed that αi ≤ 1
2 for all i, this also implies that pi ≤ 1

2 .
By Proposition 3.2, attacking target i for t = Ti/2 units of time, the attacker can guarantee

himself a utility of at least

αi ·
1− Fi(0)

4
· Ti = αi ·

(1− Fi(0))
2

4(pi − Fi(0))

pi≤ 1
2≥ αi ·

1

4pi
≥ 1

4
,

where the final inequality followed because the chosen index i satisfied αi/pi ≥ 1. Hence, the
attacker can guarantee himself a payoff of at least 1

4 against any mixed defender schedule, proving
optimality of the proposed class of random sequences.
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Finally, we show that this applies to 2-quasi-regular random sequences. Assume that there
exists a b such that P[b ≤ Bi ≤ 2b] = 1, and define ηi = 2b/Ti. First, this definition directly
implies that Bi ≤ ηiTi with probability 1. Second, because Bi ≤ 2b with probability 1, we get that
Ti ≤ 2b, and hence ηi

ηi+1Ti =
2b

2b/Ti+1 ≤ b. Hence, the fact that Bi ≥ b with probability 1 implies

that Bi ≥ ηi
ηi+1Ti with probability 1, completing the proof.

4 An Optimal Defender Strategy

In this section, we present Algorithm 1, constructing a 2-quasi-regular random sequence. Such
a random sequence is optimal for the defender by Theorem 3.1. We begin with the high-level
algorithm, and fill in the details of the key steps below.

Algorithm 1 An optimal schedule for the defender

1: Let pi = αi for all i.
2: For each i, let mi be such that 2−mi ≤ pi < 21−mi . Let Ii = [2−mi , 21−mi ].
3: Use the algorithm from the proof of Lemma 4.3 for p and the Ii to randomly round p to a

probability vector q, such that all but at most one index i have qi = 2−mi or qi = 21−mi .
4: Use the algorithm from the proof of Lemma 4.5 to produce a periodic sequence s.
5: Return the random sequence obtained by choosing a uniform random shift of s.

Notice that the sequence produced by Algorithm 1 is shift-invariant by construction, but not
ergodic, since it randomizes over different shift-invariant distributions.

Theorem 4.1 The random sequence generated by Algorithm 1 is 2-quasi-regular, and hence optimal
for the defender.

We begin with a simple technical lemma.

Lemma 4.2 Let S be a multiset of powers of 2, such that maxp∈S p ≤ 2−k ≤ ∑

p∈S p. Then, there

exists a submultiset T ⊆ S with
∑

p∈T p = 2−k.

Proof. We prove this claim by induction on |S|. The claim is trivial for |S| = 1. Consider |S| ≥ 2,
and distinguish two cases.

1. If S contains two copies of some number p < 2−k, then construct S′ by replacing these two
copies with p′ = 2p. By induction hypothesis, S′ contains a subset T ′ adding up to 2−k. If
T ′ contained the newly constructed element p′, then replace it with the two copies of p. In
either case, we have the desired set T ⊆ S.

2. Otherwise, S contains at most one copy of each number p ≤ 2−k. If S did not contain 2−k,
then

∑

p∈S p <
∑∞

i=1 2
−(k+i) = 2−k, contradicting the assumptions of the lemma. Hence, S

contains 2−k, and the singleton set of that number is the desired subset.

Lemma 4.3 Let p = (p1, p2, . . . , pn) be a probability distribution. For each i, let Ii = [ℓi, ri] ∋ pi
be an interval. Then, there exists a distribution D over probability distributions q = (q1, q2, . . . , qn)
such that:
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1. E [qi] = pi for all i,

2. qi ∈ Ii for all q in the support of D, and

3. For each q in the support of D, all but at most one of the qi are equal to ℓi or ri.

Proof. We will give a randomized “rounding” procedure that starts with p and produces a q,
satisfying all of the claimed properties, by making the pi equal to ℓi or ri one at a time. The random-
ized rounding bears similarity to dependent randomized rounding algorithms in the approximation
algorithms literature (e.g., [7, 15, 30]), though we do not require concentration bounds, and allow
one of the qi to be an interior point of its interval. In the rounding, we always consider two indices
i, j with pi = ℓi + ǫi, pj = ℓj + ǫj, such that 0 < ǫi < ri − ℓi, 0 < ǫj < rj − ℓj . (That is, neither pi
nor pj is on the boundary of its interval.) We probabilistically replace them with p′i, p

′
j, such that

all of the following hold:

• At least one of p′i, p
′
j is at the boundary of its interval.

• ℓi ≤ p′i ≤ ri and ℓj ≤ p′j ≤ rj .

• p′i + p′j = pi + pj.

• E [p′i] = pi and E

[

p′j

]

= pj.

The rounding terminates when there is at most one pi that is not at the boundary of its
interval; let q be the vector of probabilities at that point. By iterating expectations, we obtain
that E [qi] = pi for all i. The upper and lower bounds on qi are maintained inductively, and the
termination condition ensures the third claimed property of q.

So consider arbitrary pi, pj as above. Let δi = min(ǫi, rj − ℓj − ǫj) and δj = min(ǫj , ri − ℓi− ǫi).

With probability
δj

δi+δj
, round pi to p′i = pi− δi and pj to p′j = pj + δi. With probability 1− δj

δi+δj
=

δi
δi+δj

, round pi to p′i = pi + δj and pj to p′j = pj − δj.

First, it is clear that p′i + p′j = pi + pj. Also, by definition of δi, δj , we get that ℓi ≤ p′i ≤ ri and
ℓj ≤ p′j ≤ rj . If we round according to the first case, then p′i = pi − δi and p′j = pj + δi. If δi = ǫi,
then we get that p′i = ℓi, while if δi = rj − ǫj, then p′j = ℓj + ǫj + (rj − ℓj − ǫj) = rj . Calculations

are similar in the other case. Finally, E [p′i] =
δj

δi+δj
· (pi − δi) +

δi
δi+δj

· (pi + δj) = pi. Hence, all

the claimed properties hold in each step.

As a first step towards a 2-quasi-regular random sequence, we consider the case of probability
vectors in which all probabilities are powers of 2.6

Lemma 4.4 Assume that the probability vector p is such that each pi = 2−mi is a power of 2.
Then, there exists a regular sequence for p.

6Lemma 4.4 generalizes to powers of any integer, and in fact to any probabilities pi such that for any i, j, we have
that pi|pj or pj |pi. The existence of a schedule for powers of 2 (and the generalization) has been previously observed
in the context of the Pinwheel Problem in [18].

11



Proof. We will prove this claim by induction on the number of targets. If we have a single target,
then its probability must be 1, so it is visited at intervals of 1 and we set s to be the constant
sequence. Otherwise, the maximum probability of any target is 1

2 , and the sum of all probabilities
is 1. Lemma 4.2 therefore guarantees the existence of a subset S whose probabilities add up to 1

2 .
Consider instances obtained from S and S̄ by scaling up all probabilities by a factor of 2,

resulting in p′i = 2pi. By induction hypothesis, each of those instances can be scheduled such that
each target i is visited every 1/p′i = 1/(2pi) time steps. Now alternate between the two sequences.
In this new sequence, each target i is visited every 2/p′i = 1/pi steps, as desired.

Next, we show that sufficiently good sequences can also be achieved when at most one of the
probabilities is not a power of 2.

Lemma 4.5 Assume that the probability vector p is such that each pi = 2−mi is a power of 2,
except for (possibly) p1 = 2−m1 − ǫ, with 0 ≤ ǫ < 2−(m1+1). Then, there exists a (non-random)
periodic sequence s with the following properties:

1. The time between consecutive visits to target i > 1 is always exactly 1/pi.

2. The time between consecutive visits to target 1 is always either 2m1 or 2m1+1.

3. The frequency of target i is pi for all i.

Proof. We distinguish two cases7:

1. If p1 ≤ 1
2 , then by Lemma 4.2, there exists a subset S ⊆ {2, . . . , n} with

∑

i∈S pi = 1
2 .

Schedule the targets in S regularly in the odd time slots, and set p′i = 2pi for all i /∈ S. The
p′i satisfy the conditions of the lemma, so we inductively find a schedule for all the i /∈ S
satisfying the conclusion of the lemma, then stretch this schedule by a factor of 2 and use all
the even time slots for it.

2. If p1 >
1
2 , then we schedule target 1 in all odd time slots, and set p′1 = 2(p1 − 1

2) and p′i = 2pi
for all i ≥ 2. The new p′i sum to 1 and satisfy the conditions of the lemma. So we inductively
find a schedule for the frequencies p′i, stretch it by a factor of 2, and use all the even time
slots for it. Notice that item 1 is scheduled at distance at most 2, and at least 1, while all
other items are scheduled regularly.

That the resulting schedule is periodic is seen inductively over the applications of the two cases.

Proof of Theorem 4.1. Consider any target i. The rounding of Lemma 4.3 guarantees that
2−mi ≤ qi ≤ 21−mi . Therefore, the algorithm of Lemma 4.5 produces a random sequence Σq in
which the time intervals between consecutive occurrences of target i lie between 2mi−1 and 2mi .
Thus to verify that Σq is 2-quasi-regular is remains to show that the expected density of each target
is equal to αi. But this is guaranteed by (1) in Lemma 4.3. The optimality of Σq now follows from
Theorem 3.1.

The second part of Theorem 4.1 shows that 2-quasi regular random sequences exist; here, we
remark that this result cannot be improved, in the following sense (proved in Appendix C).

7We would like to thank an anonymous reviewer for suggesting this elegant proof.
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Proposition 4.6 Let n = 3 and α = (1/2, 1/3, 1/6). Then, for every ǫ > 0, there are no (2 − ǫ)-
quasi-regular random sequences.

5 Golden Ratio Scheduling

In this section, we present a very simple ergodic random sequence. The associated schedule may
in general be suboptimal, but we prove that it is within less than 0.6% of optimal.

Let ϕ = 1
2(1 +

√
5) denote the Golden Ratio, solving ϕ2 = ϕ + 1. Given a desired frequency

vector p (which will equal the targets’ values, pi = αi), we identify the unit circle with [0, 1),
and equip it with addition modulo 1. We define the function h : [0, 1) → {1, . . . , n} via h−1(i) =
[
∑

i′<i pi′ , pi +
∑

i′<i pi′); that is, we assign consecutive intervals of length pi for the targets i.

Algorithm 2 The Golden Ratio Schedule

1: Let λ be uniformly random in [0, 1).
2: for t = 0, 1, 2, . . . do
3: In step t, set st = h((λ + ϕt) mod 1).

We can think of advancing a “dial” by ϕ (or ϕ − 1) at each step, and visiting the target
whose interval the dial falls into. This algorithm is nearly identical to one previously proposed
for hashing [22, pp. 510,511,543] and broadcast channel sharing [21, 26]. While the algorithm is
simple, as stated, it seems to require precise arithmetic with real numbers. This issue is discussed
in more detail in Appendix E.

That Algorithm 2 returns an ergodic random sequence follows from the classical fact that the
action on the interval by an irrational rotation is ergodic. Our main theorem in this section is the
following:

Theorem 5.1 The Golden Ratio algorithm is a 2966−1290
√
5

81 ≈ 1.00583 approximation for the de-
fender.

The underlying reason that this schedule performs so well, and the reason for choosing specifically
the Golden Ratio, is related to the hardness of diophantine approximation of the Golden Ratio: it
is an irrational number that is hardest to approximate by rational numbers (see, e.g., [16]).

Our analysis relies heavily on various properties of Fibonacci numbers. We denote the kth

Fibonacci number by fk, indexed as f0 = 0, f1 = 1 and fk+2 = fk + fk+1. The following basic facts
about Fibonacci numbers are well-known, and easily proved directly or by induction.

Lemma 5.2 1. For any k, we have that fk+2fk − f2
k+1 = (−1)k+1.

2. For any k, we have that fk = ϕk−(−1/ϕ)k√
5

.

3. For any odd k, we have that fk+1/fk < ϕ.

4. For any even k, we have that fk+1/fk > ϕ.

To prove Theorem 5.1, we analyze the distribution of Bi for any target i. The proof of Theo-
rem 5.1 consists of two parts. First, Theorem 5.3 precisely characterizes the distribution of Bi for
every target i, i.e., it characterizes exactly, for each target i and τ , how frequently a visit to target
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i is followed by another visit τ steps later. (We call such a τ a return time.) As a second part,
we characterize the attacker’s best response against this distribution, and calculate its cost to the
defender.

Theorem 5.3 (Slater [28]) Assume that p ≤ 1
2 . Let k be smallest such that

|fk+1 − ϕfk| ≤ ϕp (4)

Then, the distribution of return times is

P[Bi = fk+1] = fk+1 ·
(

p− (1/ϕ)k+1
)

,

P[Bi = fk+2] = fk+2 ·
(

p− (1/ϕ)k+2
)

,

P[Bi = fk+3] = fk+3 ·
(

−p+ (1/ϕ)k
)

,

P[Bi = t] = 0 for all other t.

(5)

Theorem 5.3 shows, remarkably, that for each possible p, there are at most three possible return
times, and they are three consecutive Fibonacci numbers. Theorem 5.3 is a special case of a theorem
of Slater [28, Theorem 4] (see also [29]), which characterizes the distribution when the Golden Ratio
ϕ is replaced by an arbitrary real number. We give a self-contained proof for the simpler case of
the Golden Ratio in Appendix D.

As a direct corollary of Theorem 5.3, we obtain an upper bound on the quasi-regularity of the
Golden Ratio schedule.

Corollary 5.4 The Golden Ratio schedule is 3-quasi-regular. If pi ≤ 1 − 1/ϕ for all i, then it is
8/3-quasi-regular. As the frequencies pi → 0, the regularity guarantee improves to ϕ2-quasi-regular.

Proof. Consider one target i with desired frequency pi, and define k as in Theorem 5.3. The
schedule is at worst (fk+3/fk+1)-quasi-regular. For all k, we have the bound fk+3/fk+1 ≤ 3. If
pi < 1− 1/ϕ, then k ≥ 2, and for k ≥ 2, the ratio fk+3/fk+1 is upper-bounded by 8/3, converging
to ϕ2 as k → ∞.

5.1 The Optimal Attacker Response to 3-Point Distributions

Next, we characterize the optimal attacker response to defender strategies in which the return time
distribution to target i is supported on three points 1 ≤ x1 < x2 < x3 only, so that with probability
one, Bi ∈ {x1, x2, x3}. In the remainder of this section, we omit the subscript i, as we will always
analyze one target only.

Recall that T = 1/F (1), and let qj = P[B = xj ] · T
xj
. Note that

∑

j qjxj =
∑

j P[B = xj] ·T = T .

Informally (but in a sense that can be formalized), the qj’s are the return time probabilities from
the point of view of the defender, rather than those of the attacker at a fixed time 0. (The attacker’s
distribution of Bi oversamples long return times, compared to the defender’s distribution.) The
attacker’s response and utility are summarized by the following lemma.

Lemma 5.5 Assume that x2 ≤ 2x1, x3 ≤ 2x2 (as is the case with Fibonacci numbers). Let u∗1 =
1
4 · α · T , and u∗2 = 1

4 · α (T−q1x1)2

T (1−q1)
. Then, against the given three-point distribution, the attacker’s

utility is at most max(u∗1, u
∗
2). Against any distribution with expected defender absence T , the

attacker’s utility is at least u∗1.
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Proof. The lower bound of u∗1 is simply the statement of Corollary 3.3. So we focus on the upper
bound of max(u∗1, u

∗
2) for the remainder of the proof.

From the attacker’s perspective, when arriving at a target, by Equations (5) and (3), the CDF
of the distribution of the defender’s next return time is

F (t) =























1
T · t for t ≤ x1,
1
T · (t(1− q1) + q1x1) for x1 ≤ t ≤ x2,
1
T · (t(1− q1 − q2) + q1x1 + q2x2) for x2 ≤ t ≤ x3,

1 for t ≥ x3.

Since the attacker’s utility for waiting for t steps is t(1 − F (t)), t ≥ x3 cannot be optimal for
him. By taking derivatives with respect to t, we obtain the following local optima for the functions
in the remaining three cases:

t∗1 =
T

2
t∗2 =

T − q1x1
2(1− q1)

t∗3 =
T − q1x1 − q2x2
2(1− q1 − q2)

=
x3
2
.

These are all local maxima because the functions are concave. Under the assumption of the
theorem, t∗3 = x3/2 ≤ x2. Therefore, t

∗
3 does not lie in the interval it optimized for, and can never

be optimal. As a result, the attacker’s best response8 will always be t∗1 or t∗2. The attacker’s utility
for these two attack times will be

u∗1 = α · t∗1 · (1− F (t∗1)) =
αT

2
· 1
2

=
αT

4
,

u∗2 = α · t∗2 · (1− F (t∗2)) = α · T − q1x1
2(1− q1)

·
(

1− 1

T
·
(

T − q1x1
2

+ q1x1

))

=
α

4
· (T − q1x1)

2

T (1− q1)
=

α

4
· (q2x2 + q3x3)

2

T (q2 + q3)
.

The attacker’s utility will thus be at most the maximum of u∗1, u
∗
2.

5.2 The Attacker’s Response to the Golden Ratio Schedule

Proof of Theorem 5.1. Applying Lemma 5.5, it is our goal to upper-bound
max(u∗

1,u
∗
2)

u∗
1

. If

max(u∗2, u
∗
1) = u∗1, the approximation ratio is 1; hence, it suffices to upper-bound u∗2/u

∗
1.

In applying Lemma 5.5, we have T = 1/α, x1 = fk+1, x2 = fk+2, x3 = fk+3, and the qj are given
via Equation (5) and qj = P[Bi = xj ] · T

xj
. Then, u∗2/u

∗
1 can be written as follows:

8It is possible that one of t∗1, t
∗
2 also lies outside its interval. But our goal here is only to derive an upper bound.
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(T − q1x1)
2

T 2(1− q1)
= α2 · (q2fk+2 + q3fk+3)

2

q2 + q3

= α ·
((

α− (1/ϕ)k+2
)

· fk+2 +
(

−α+ (1/ϕ)k
)

· fk+3

)2

(α− (1/ϕ)k+2) + (−α+ (1/ϕ)k)

= α ·
(

(1/ϕ)k+2 · (ϕ2 − 1) · fk+2 +
(

−α+ (1/ϕ)k
)

· fk+1

)2

(1/ϕ)k+2 · (ϕ2 − 1)
.

= α · (1/ϕ)k+1 ·
(

fk+2 + ϕfk+1 − α · ϕk+1 · fk+1

)2
. (6)

Treating everything except α as a constant, the approximation ratio is thus of the form g(α) =
aα · (c− bα)2. g has a local maximum of 4ac3/27b at α = c/(3b), a local minimum of 0 at α = c/b,
and goes to infinity as α → ∞. Thus, the two candidates for α that we need to check are (1) the
largest α that is possible for a given k, and (2) the value α = c/(3b).

We therefore next calculate the largest possible α for a given k. By recalling the definition of k
from Equation (4) (smallest such that |fk+1/ϕ− fk| ≤ α), and using Lemma D.1, we can solve for
α to determine the range in which we obtain a particular k, giving us that α ∈

[

(1/ϕ)k+1, (1/ϕ)k
]

.

1. If we substitute the upper bound α = (1/ϕ)k , Equation (6) simplifies to

α · (1/ϕ)k+1 ·
(

fk+2 + ϕfk+1 − (1/ϕ)k · ϕk+1 · fk+1

)2

= (1/ϕ)k · (1/ϕ)k+1 · (fk+2 + ϕfk+1 − ϕfk+1)
2

=
1

5
· (1/ϕ)2k+1 ·

(

ϕ2k+4 − 2ϕk+2(−1/ϕ)k+2 + (−1/ϕ)2k+4
)

=
1

5
· (1/ϕ)2k+1 ·

(

ϕ2k+4 − 2(−1)k + (1/ϕ)2k+4
)

≤ 1

5
· (ϕ3 + 3/ϕ2k+1) ≤ 1

5
· (ϕ3 + 3/ϕ3) < 1.

This shows that the attacker’s utility cannot be maximized by waiting for more than x1 steps
when α is as large as it can be for a given k.

2. Next, we investigate the local maximum9 of Equation (6). Substituting a = (1/ϕ)k+1, b =
ϕk+1 · fk+1, and c = fk+2 + ϕfk+1, the approximation ratio is

4

27
· (1/ϕ)2k+2 · (fk+2 + ϕfk+1)

3

fk+1

=
4

27
· 1
5
· (1/ϕ)2k+2 ·

(

ϕk+2 − (−1/ϕ)k+2 + ϕ · ϕk+1 − ϕ · (−1/ϕ)k+1
)3

ϕk+1 − (−1/ϕ)k+1

=
4

27
· 1
5
· (1/ϕ)2k+2 ·

(

2ϕk+2 − (−1/ϕ)k+1
)3

ϕk+1 − (−1/ϕ)k+1
.

9This local maximum is indeed always a feasible choice for α for a given k, but since we are only interested in an
upper bound, we omit the feasibility proof.
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We will approximate the function
(2ϕk+2−(−1/ϕ)k+1)

3

ϕk+1−(−1/ϕ)k+1 by 8ϕ2k+5, its highest-order term. We

therefore consider
(2ϕk+2−(−1/ϕ)k+1)

3

ϕk+1−(−1/ϕ)k+1 /(8ϕ2k+5). When k is even, this ratio is always upper-

bounded by 1 (and increasing in k, converging to 1). When k is odd, this ratio is lower-bounded
by 1, and decreasing in k, also converging to 1. Thus, it is maximized among feasible values

of k for k = 3, where it equals 8ϕ15−12ϕ6+6ϕ−3−ϕ−12

8ϕ15−8ϕ7 . Overall, we get an upper bound on the
attacker’s utility of

1

5
· 4

27
· 8ϕ

15 − 12ϕ6 + 6ϕ−3 − ϕ−12

8ϕ15 − 8ϕ7
· (1/ϕ)2k+2 · (8ϕ2k+5)

=
ϕ3

5
· 4

27
· 8ϕ

15 − 12ϕ6 + 6ϕ−3 − ϕ−12

ϕ15 − ϕ7
.

To evaluate this ratio, we can repeatedly apply the fact that ϕ2 = 1+ϕ, then substitute that

ϕ = 1+
√
5

2 , make the denominator rational, and cancel out common factors. This shows that
ϕ3

5 · 4
27 · 8ϕ15−12ϕ6+6ϕ−3−ϕ−12

ϕ15−ϕ7 = 2966−1290
√
5

81 ≈ 1.00583, completing the proof.

Remark 5.6 The analysis of Theorem 5.1 is actually tight. By choosing k = 3, b = ϕ4 · f4, and
c = f5 + ϕf4, we obtain that the worst-case value of a target is α = c/(3b) = 23

18 −
√
5
2 ≈ 0.1597.

Substituting k = 3 into the attacker’s utility in Case (2) (before the lower bound is applied) gives

us exactly a ratio of 2966−1290
√
5

81 ≈ 1.00583.

6 Scheduling via Matching

In this section, we show that for every ǫ > 0, if the individual probabilities αi are small enough (as
a function of ǫ), then (1 + ǫ)-quasi-regular ergodic, periodic schedules exist.

In order to obtain a periodic strategy, it is clearly necessary for all target values αi (equaling
the visit frequencies) to be rational. Write αi = ai/bi, and let M = lcm(b1, . . . , bn). Our algorithm
is based on embedding M slots for visits evenly on the unit circle, and matching them with targets
to visit. We identify the circle with the interval [0, 1] and use the distance d(x, y) = min(|x−y|, 1−
|x− y|).

Theorem 6.1 Fix ǫ > 0, and assume that αi ≤ ǫ
4+2ǫ ·

√

2
n logM for all i. Then, Algorithm 3

succeeds with high probability. Whenever Algorithm 3 succeeds, it produces a (1 + ǫ)-quasi-regular
(and hence defender-optimal) sequence.

We begin by proving the second part of the theorem. First, in a perfect matching, exactly Ai

of the M slots, i.e., an αi fraction, are scheduled for target i, giving that pi = ai/bi = αi. Thus,
Ti = 1/αi.

If t is matched with (i, j), by definition of the edges, d(yi,j , t/M) ≤ δ. Consider two occurrences
j, j′ of target i, and let t, t′ be the slots they are matched to. Then, by triangle inequality,

d(t/M, t′/M) ≥ d(yi,j, yi,j′)− 2δ ≥ 1

Ai
− 2δ. (7)

On the other hand, specifically for consecutive occurrences of target i, i.e., the slots matched
to yi,j and yi,j+1, we get
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Algorithm 3 A matching-based algorithm for a periodic defender strategy

1: for each target i do
2: Let θi ∈ [0, 1] independently uniformly at random.
3: Let Ai = M · αi.
4: For j = 0, . . . , Ai − 1, let yi,j = (θi + j/Ai) mod 1.

5: Let δ = 1
M ·

√

n logM
2 .

6: Let Z = {0, 1, . . . ,M−1} be the set of slots and let Y = {(i, j) | 0 ≤ j < Ai}. Define a bipartite
graph G on Z ∪ Y by including an edge between t ∈ Z and (i, j) ∈ Y iff d(yi,j , t/M) ≤ δ.

7: if G contains a perfect matching M then
8: Define a sequence s with period M as follows: For each time t, set st to be the (unique)

target i such that t is matched with (i, j) in M for some j.
9: else

10: Start from the beginning.

d(t/M, t′/M) ≤ d(yi,j, yi,j′) + 2δ ≤ 1

Ai
+ 2δ. (8)

Using that δ = 1
M ·

√

n logM
2 , as well as 1

Ai
= 1

M ·αi
and αi ≤ ǫ

4+2ǫ ·
√

2
n logM , we obtain that

1
Ai

+ 2δ
1
Ai

− 2δ
=

1
αi

+ 2
√

n logM
2

1
αi

− 2
√

n logM
2

≤
4+2ǫ
ǫ ·

√

n logM
2 + 2

√

n logM
2

4+2ǫ
ǫ ·

√

n logM
2 − 2

√

n logM
2

=
4+2ǫ
ǫ + 2

4+2ǫ
ǫ − 2

= 1 + ǫ,

proving that the resulting sequence is (1 + ǫ)-quasi-regular.

To complete the proof, it remains to show that with high probability, the graph G contains a
perfect matching. We will prove this using Hall’s Theorem and a direct application of the Hoeffding
Bound:

Lemma 6.2 (Hoeffding Bound) Let Xi be independent random variables such that ai ≤ Xi ≤ bi
with probability 1. Let X =

∑

iXi. Then, for all t > 0,

P[X < E [X]− t],P[X > E [X] + t] < e
− 2t2

∑
i(bi−ai)

2 .

To establish the Hall condition of G, we begin with intervals W ⊆ Z of slots, and then use
the bounds for intervals to derive the condition for arbitrary sets of slots. A similar style of proof
was used by Tijdeman [32] to construct a schedule with somewhat different specific combinatorial
properties.

For any set W ⊆ Z of slots, let Γ(W ) denote the neighborhood of W in G. Fix an interval
W = {ℓ, ℓ+1, . . . , r− 1} ⊆ [0,M) with ℓ, r integers. Let the random variable XW = |Γ(W )| denote
the number of neighbors in G of slots in the interval W . For each target i, let XW,i be the number
of j such that (i, j) ∈ Γ(W ). Then, XW =

∑

iXW,i, and the XW,i are independent.

Lemma 6.3 Fix a target i, and assume that |W | ≤ (1−2δ)M , and write xi = Ai ·(2δ+(r−ℓ)/M).
Then, E [XW,i] = xi and XW,i ∈ {⌊xi⌋, ⌊xi⌋+ 1}.
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Proof. For each slot t ∈ W , let Jt be the interval [(t/M − δ) mod 1, (t/M + δ) mod 1]. Then,
(i, j) is adjacent to t iff yi,j ∈ Jt. Define J :=

⋃

t∈W Jt; then, (i, j) is adjacent to a slot in W

iff yi,j ∈ J . Because δ = 1
M ·

√

n logM
2 ≥ 1/(2M), J is an interval, of the form [(ℓ/M − δ)

mod 1, (r/M + δ) mod 1].
The length of the interval is |J | = 2δ+(r−ℓ)/M . Because each yi,j is uniformly random in [0, 1],

E [XW,i] = Ai ·|J |. Furthermore, because d(yi,j , yi,j+1) = 1/Ai, there can be no more than 1+⌊ |J |
1/Ai

⌋
pairs (i, j) with yi,j ∈ J , and no fewer than ⌊ |J |

1/Ai
⌋. Finally, note that |J |

1/Ai
= Ai(2δ+(r−ℓ)/M) = xi.

We use Lemma 6.3 to show that with high probability, G has a perfect matching.

Lemma 6.4 Whenever αi ≤ ǫ
4+2ǫ ·

√

2
n logM for all i, with probability at least 1−1/M2, G contains

a perfect matching.

Proof. First, we show that when the Hall condition holds for all intervals W of slots, it holds for
all sets W . We prove this by induction on the number of disjoint intervals that W comprises. The
base case of W being an interval is true by definition. For the induction step, suppose that k ≥ 2
and W =

⋃k
j=1Wj, where the Wj are disjoint intervals.

If the neighborhoods of all the Wj are disjoint, then |Γ(W )| = ∑

j |Γ(Wj)| ≥
∑

j |Wj | = |W |,
where the inequality was from the base case (intervals). Otherwise, w.l.o.g., Γ(Wk)∩Γ(Wk−1) 6= ∅.
Then, there exists an interval I ′ ⊃ Wk∪Wk−1 with Γ(I ′) = Γ(Wk)∪Γ(Wk−1). Let W

′ = W ∪I ′. We
get that |Γ(W )| = |Γ(W ′)| ≥ |W ′| ≥ |W |, where the first inequality was by induction hypothesis
(because W ′ has at least one less interval).

Next, we establish that the Hall Condition holds with high probability for all M2 intervals.
First, focus on one interval W = [ℓ, r), with ℓ, r ∈ N. If |W | > (1 − 2δ)M , then Γ(W ) contains all
pairs (i, j), so the Hall Condition is satisfied. So focus on |W | ≤ (1− 2δ)M . From Lemma 6.3, we
get that

E [XW ] =
∑

i

Ai · (2δ + (r − ℓ)/M) = 2δM + (r − ℓ) =
√

2n logM + (r − ℓ).

Furthermore, XW is the sum of independent random variables XW,i which each takes on one of
two adjacent values. From the Hoeffding Bound (Lemma 6.2), we get that

P[XW < (r − ℓ) + 2
∑

i

Aiδ − τ ] < e−2τ2/n.

Because |W | = r − ℓ, choosing τ = 2
∑

iAiδ = 2Mδ =
√
2n logM , we get that

|Γ(W )| = XW ≥ (r − ℓ) + 2
∑

i

Aiδ − τ = r − ℓ,

with probability at least 1− e−4n logM/n = 1− 1/M4.
Taking a union bound over all M2 candidate intervals W , we obtain that the probability of

having a perfect matching is at least 1− 1/M2. Thus, with high probability, G contains a perfect
matching. This completes the proof of Lemma 6.4 and thus also Theorem 6.1.
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7 Future Work

Our work suggests a number of directions for future work. Most immediately, it suggests trying
to find optimal ergodic schedules for all value vectors (not only those covered by Theorem 6.1). A
promising approach toward this goal is to use the randomized rounding of Section 4, but re-round
the probabilities every T steps, for some sufficiently large “epoch size” T . The difficulty with this
approach is “stitching together” the schedules for different rounded frequencies at the boundary of
epochs, without violating the conditions of Theorem 3.1.

Throughout, we assumed that no target had value more than the sum of all other targets’
values, i.e., αi ≤ 1

2 for all i. When this assumption is violated, the optimal schedule will wait at
the highest-value target. In the specific case of two targets of values α1 >

1
2 and α2 = 1− α1, it is

fairly straightforward to calculate that the wait time at target 1 is 2(
√

α1
α2

− 1). We anticipate that

a similar analysis will extend to more than two targets. The difficulty is that the waiting time at
one target will result in qualitatively different schedules, likely to complicate the analysis.

We assumed here that the game is zero-sum. In general, the utilities of the attacker and defender
may be different. A general treatment is likely quite difficult. One special case is motivated directly
by the wildlife protection application, and appears quite amenable to analysis. Specifically, when
a poacher kills animals (or chops down trees), even if the poacher is captured, the damage is not
reversed. Thus, while the attacker’s utility is as before, the defender’s utility from visiting target
i at time τ when the attacker intends to stay for t units of time is −αi · min(τ, t). Because the
sum of utilities is thus not constant (and typically negative), the defender’s goal becomes more
strongly that of deterring (rather than just capturing) the attacker. As a result, the ability to
commit to a strategy first (i.e., treating the game as a Stackelberg Game [34, 10]) may now carry
some advantage for the defender. One can show that in the model in this paragraph, whenever the
attacker attacks target i for t ≤ Ti/2 units of time, the defender’s utility is −3

2U(Fi, (i, t)). Since
the optimal defender strategies of Section 4 and 6 ensure such a choice of t by the attacker, the
algorithms in those sections are optimal in the non-zero sum model as well.

Among the other natural generalizations are the attacker’s (and defender’s) utility function
and more complex constraints on the defender’s schedule. Throughout, we have assumed that the
attacker’s utility grows linearly in the time spent at a target. The security game formulations
studied in much of the prior work in the area [31] correspond to a step function at 0: when
the attacker reaches an unprotected target, he immediately causes the maximum target-specific
damage αi (e.g., by blowing up the target). Other natural utility functions suggest themselves: if
the resources to collect at targets are limited, the utility function would be linear with a cap. If a
destructive attack takes a non-zero amount of time to set up, one obtains a step function at a time
other than 0. The latter leads to a scheduling problem with a harder constraint on the inter-visit
absence time from targets i — as in some of the prior security games literature, the defender may
“sacrifice” some low-value targets to be able to fully protect the others.

The other natural generalization is to relax the assumption of uniform travel time between
targets. If an arbitrary metric is defined between targets, the problem becomes significantly more
complex: even if all targets have value 1, the attacker’s utility will be proportional to the cost of a
minimum TSP tour, and thus the defender’s optimization problem is NP-hard. However, it is far
from obvious how to adapt standard TSP approximation techniques to the general problem with
non-uniform values: high-value targets should be visited more frequently, and TSP approximation
algorithms are not suited to enforce constraints that these visits be spaced out over time.
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As with TSP problems and past work on security games, a further natural generalization is to
consider multiple defenders, as, e.g., in [23].
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A Utility of an i.i.d. Defender

One of the most natural random sequences to consider is the i.i.d. one, in which at each step t,
the defender visits target i with probability pi, independent of any past choices. Intuitively, this
strategy is suboptimal because it may visit a target i several times in close succession, or go for
a long time without visiting target i. Here, we calculate the approximation ratio of this strategy,
showing:

Proposition A.1 The i.i.d. strategy is a 4/e-approximation for the defender, and this is tight.

Proof. From the attacker’s viewpoint, the defender’s next arrival time at target i is the sum of
two independent random variables geom(pi)+unif([0, 1]). Given a t, the defender will return within
at most t steps if and only if geom(pi) ≤ ⌊t⌋ or geom(pi) = 1 + ⌊t⌋ and unif([0, 1]) ≤ (t mod 1).
The two events are disjoint, the first one having probability 1− (1− pi)

⌊t⌋, and the second having
probability pi · (1− pi)

⌊t⌋ · (t mod 1). Hence, Fi(t) = 1− (1− pi · (t mod 1)) · (1− pi)
⌊t⌋, and the

attacker’s utility from attacking target i for t time units is

αi · t · (1− Fi(t)) = αi · t · (1− pi · (t mod 1)) · (1− pi)
⌊t⌋.

Writing t = x+k for an integer k = ⌊t⌋ and x = (t mod 1) ∈ [0, 1), a derivative test shows that the
expression is monotone decreasing in x for any k ≥ 1, whereas for k = 0, it has a local maximum
at x = 1

2pi
≥ 1. Because the latter is not feasible, we only need to consider the case (t mod 1) = 0

for the remainder, so the attacker’s utility simplifies to αi · t · (1− pi)
⌊t⌋.

Taking a derivative with respect to t and setting it to 0 gives us that the unique local extremum
is at t = −1

ln(1−pi)
, where the attacker’s utility is pi

e·ln(1/(1−pi))
. This local extremum is a maximum

because the attacker’s utility at t = 0 and t = ∞ is 0.
A derivative test and Taylor series bound shows that pi

e·ln(1/(1−pi))
is monotone decreasing in pi,

so it is maximized as pi → 0, where it converges to 1/e. Notice that as pi → 0, there are infinitely
many values of pi for which

−1
ln(1−pi)

is an integer, so the choice of t in our previous optimization is
indeed valid.

Under an optimal schedule, the attacker’s expected utility is 1
4 , completing the proof of the

approximation guarantee.

B Formalization of Notions about Schedules

B.1 Canonical Schedules

The general definition of defender schedules allows for strange schedules that are clearly suboptimal,
such as the defender leaving a target i and returning to it shortly afterwards, or visiting a target
infinitely often within a bounded time interval with shorter and shorter return times. For ease of
notation and analysis, we would like to rule out such schedules. The following definition captures
“reasonable” schedules.

Definition B.1 (canonical schedules) We say that a valid schedule ℓ is canonical if R+ can be
partitioned into countably many disjoint intervals I1, I2, I3, . . . with the following properties:

1. All odd intervals I2k−1 are open and of length exactly 1, and ℓ(t) =⊥ if and only if t ∈
⋃

k I2k−1.
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2. All even intervals I2k are closed. (Even intervals could consist of a single point.)

A defender mixed schedule Λ is canonical if it is a distribution over canonical deterministic
schedules.

Note that it follows from validity that any canonical ℓ is constant on the even intervals.
Intuitively, a canonical schedule is one in which the defender travels as quickly as possible (in

one unit of time) from one target to the next target, visits it for some (possibly zero) time, then
travels to the next (necessarily different) target, etc. That we may focus on canonical schedules
w.l.o.g. is captured by the following proposition:

Proposition B.2 For each valid schedule ℓ, there exists a canonical schedule ℓ′ that is at least as
good for the defender, in the sense that for any choice (i, t0, t) of the attacker,

U(ℓ′, (i, t0, t)) ≤ U(ℓ, (i, t0, t)).

Proof. Given ℓ, define ℓ′ as follows.

1. For every t with ℓ(t) 6=⊥ let ℓ′(t) = ℓ(t).

2. For every t with ℓ(t) =⊥

(a) If t is in the closure of ℓ−1(i), set ℓ′(t) = i.

(b) Denote by i(t) the last target visited before time t (setting i(t) = 1 if none exists) and
by j(t) the first target visited after time t (again setting j(t) = 1 if none exists). Note
that i(t) and j(t) are well-defined because ℓ is valid; this would not in general be true
for an arbitrary ℓ : R+ → {1, . . . , n,⊥}.

(c) If i(t) = j(t) then set ℓ′(t) = i(t). That is, if in ℓ, the defender leaves a target i and
then comes back to it without visiting another, then in ℓ′, the defender just stays at i.
(In addition to the defining property of being canonical, this ensures that no target i is
visited twice in a row.)

(d) If i(t) 6= j(t) and the difference between t and inf{τ > t | ℓ(τ) = j(t)} is at least 1,
then set ℓ′(t) = i(t). That is, if the defender took more than one unit of time to reach
target j(t) from i(t), then she might as well have stayed at i(t) until one time unit before
getting to j(t).

(e) Otherwise, set ℓ′(t) =⊥.

It is easy to verify that ℓ′ is indeed canonical. Consider any choice of attack (i, t0, t). Because the
preceding transformations only replaced ⊥ (i.e., transit) times with times at targets, whenever the
attacker is not caught in ℓ′, he was not caught in ℓ, so his utility can only decrease:

U(ℓ′, (i, t0, t)) ≤ U(ℓ, (i, t0, t)).
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B.2 Shift Invariance

To simplify the analysis, we would like to restrict our attention to shift invariant schedules for the
defender: schedules such that the attacker’s and defender’s utilities depend only on the duration
t′ − t of the attack, but not on the start time t. We formally define this notion as follows, and
show that this restriction is without loss of generality, as there is always an optimal shift-invariant
schedule. For each τ ∈ R

+, define the shift operator Mτ : L → L by

[Mτ (ℓ)](t) = ℓ(t+ τ).

That is, the pure schedule Mτ (ℓ) is equal to ℓ, but leaves out the first τ time units of ℓ, shifting
the remainder of the schedule forward in time. Note that

U(Mτ (ℓ), (i, t0, t)) = U(ℓ, (i, t0 + τ, t)). (9)

The operator Mτ extends naturally to act on mixed schedules Λ.10 We say that a mixed
schedule Λ is shift-invariant if Mτ (Λ) = Λ for all τ ∈ R

+. The following lemma shows that an
optimal schedule for the defender exists, and that we may focus on shift-invariant schedules without
loss of generality.

Lemma B.3 The defender has an optimal mixed schedule that is shift-invariant.

Proof. To prove this lemma, we introduce a natural topology on L, the space of valid canonical
pure strategies. This topology is related to the Skorohod topology [27]. Given a ℓ ∈ L, define
ℓ̄ : R+ → {1, . . . , n} by setting ℓ̄(t) to be either ℓ(t), if ℓ(t) 6=⊥, or else setting it to be the first
target visited after time t. Thus, ℓ̄(t) is the target visited at time t, or the target that the defender
is en route to visiting. Note that ℓ̄−1(i) is the union of a countable set of intervals of length at
least 1, each open on the left and closed on the right. Note also that the map ℓ 7→ ℓ̄ is “almost”
invertible; since travel times are always 1, we know when each visit to each target began. The
exception is the first visit, and so ℓ is determined by ℓ̄, together with the time of the beginning of
the first target visit, which is always at most 1.

The topology on L is the topology of convergence in L1 on compact sets. Specifically, for any
t1, t2 ∈ R

+, define ∆t1,t2(ℓ
′, ℓ) to be the measure of the subset of [t1, t2] on which at least one of

the following two holds: (1) ℓ′ 6= ℓ, or (2) ℓ̄′ 6= ℓ̄. Then, we say that the limit of ℓm for m → ∞ is
equal to ℓ iff ∆t1,t2(ℓm, ℓ) → 0 for all t1, t2 ∈ R

+. It is straightforward to verify that this topology
is compact and metrizable.11 Hence the corresponding weak* topology on mixed strategies is also
compact. Note also that the shift operator Mτ : S → S is continuous in this topology.

Note that if ℓm →m→∞ ℓ, and if target i is visited in [t0, t0+ t] in every ℓm, then it is also visited
in [t0, t0 + t] in ℓ. Hence,

lim
m→∞

U(ℓm, (i, t0, t)) ≥ U(ℓ, (i, t0, t)),

and so U(·, (i, t0, t)) is a lower semi-continuous map from L to R
+. It follows that

Λ 7→ Eℓ∼Λ [U(ℓ, (i, t0, t))]

10A measurable map P : X → X can be extended to a linear operator on probability measures on X as follows:
For any measurable subset A ⊆ X, define [P (µ)](A) = µ(P−1(A)). This defines a mapping µ 7→ P (µ).

11The metric is
∑∞

m=1 2−mdm(ℓ1, ℓ2), where dm(ℓ1, ℓ2) is the measure of the subset of [0, m] in which either ℓ1 and
ℓ2 differ, or ℓ̄1 and ℓ̄2 differ.
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is lower semi-continuous as well. Hence

U(Λ) = sup
i,t0,t

Eℓ∼Λ [U(ℓ, (i, t0, t))]

is also lower-semicontinuous, and thus attains a minimum on the compact space of mixed strategies.
Thus we have shown that an optimal schedule exists.

When the attacker can obtain expected utility u against Mτ (ℓ) by choosing (i, t0, t), he can
obtain the same utility u against Λ by choosing (i, t0 + τ, t). Therefore, the defender’s utility is
(weakly) monotone in τ , in the following sense:

U(Mτ (Λ)) ≤ U(Λ). (10)

Let Λ1 and Λ2 be mixed strategies, and let Λ = βΛ1 + (1− β)Λ2 be the schedule in which Λ1 is
carried out with probability β and Λ2 with probability 1− β. Since suprema are subadditive, the
attacker’s utility is convex:

U(Λ) ≤ βU(Λ1) + (1− β)U(Λ2). (11)

Let Λ be an optimal mixed schedule. For m ∈ N let

Λm =
1

m

∫ m

0
Mτ (Λ) dτ.

By the monotonicity (Eq. (10)) and convexity (Eq. (11)) of U(Λ), we have that U(Λm) ≤ U(Λ).
Since L is compact, the sequence (Λm)m has a converging subsequence that converges to some

Λ∞. By the lower semi-continuity of U(Λ),

U(Λ∞) ≤ lim
m→∞

U(Λm) ≤ U(Λ);

therefore Λ∞ is also optimal. Finally, Λ∞ is by construction shift-invariant.

B.3 Transitive and Ergodic Schedules

We say that a shift-invariant mixed schedule Λ is transitive if almost every pure schedule ℓ0 chosen
from Λ is periodic with some period τ (i.e., Mτ (ℓ0) = ℓ0) and

Λ =
1

τ

∫ τ

0
δMt(ℓ0) dt,

where δℓ is the point mass on ℓ. Intuitively, Λ simply repeats the same periodic schedule, with a
phase chosen uniformly at random.

A weaker property of a shift-invariant mixed schedule Λ is ergodicity : Λ is ergodic if almost
every pure schedule ℓ0 chosen from Λ satisfies

Λ = lim
τ→∞

1

τ

∫ τ

0
δMt(ℓ0) dt.

In fact, this is not the usual definition of an ergodic measure, but the conclusion of the Ergodic
Theorem. An equivalent property is that Λ cannot be written as the convex combination Λ =
βΛ1 + (1 − β)Λ2 of two different shift-invariant measures. That is, Λ is an extremal point in the
convex set (simplex, in fact) of shift-invariant measures.
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B.4 Times Between Visits to Targets

We now more formally define the notion of the (random) time between visits to a target i. While
the notion is intuitively clear, for arbitrary defender strategies Λ, a precise definition requires some
subtlety. We give a general definition for arbitrary mixed schedules, not just random sequences.

Having defined schedules on R
+, we now extend the definition to schedules on [−τ,∞) and

eventually to R, using a standard construction called the bi-infinite extension. We define a modified
shift operator M̃τ (·), mapping schedules (ℓ : R+ → {1, . . . , n,⊥}) to τ -schedules ℓ′ : [−τ,∞) →
{1, . . . , n,⊥}, via [M̃τ (ℓ)](t) = ℓ(t + τ). Thus, M̃τ (ℓ) is simply a version of ℓ shifted τ units to
the left. The map M̃τ (·) extends to a map on mixed schedules in the obvious way. For any shift-
invariant mixed schedule Λ, M̃τ (Λ) is also shift-invariant, and furthermore, for any τ ′ < τ , the
distribution M̃τ (Λ), projected to [−τ ′,∞), is the same distribution as M̃τ ′(Λ). It follows that

Λ∞ = lim
τ→∞

M̃τ (Λ) (12)

is a well defined measure on pure schedules that are functions ℓ∞ : R → {1, . . . , n,⊥}. We call Λ∞
the bi-infinite extension of Λ. It is straightforward to verify that it, too, is shift-invariant. Note
that the distribution of the first visit to i at non-negative times, Ri = min{t ≥ 0 | ℓ(t) = i}, has
the same distribution under Λ∞ as under Λ, since the restriction of Λ∞ to non-negative times is
equal to Λ.

Given a target i and a shift-invariant mixed schedule Λ, let ℓ̃ : (−∞,∞) → {1, . . . , n,⊥} be a
random schedule with distribution Λ∞. Let Bi be the (random) time between the last visit to i
before time zero, until the first visit to i after time zero:

Bi = (inf{t ≥ 0 | ℓ̃(t) = i})− (sup{t ≤ 0 | ℓ̃(t) = i}).

The choice of time 0 here is immaterial because of shift invariance. Bi could be infinite, but this
will never happen in an optimal Λ, because it would imply that the attacker’s expected utility for
choosing i is infinite; we hence assume henceforth that P[Bi = ∞] = 0. Finally, contrary to what
one might intuitively guess, even for transitive Λ, the distribution of Bi is not the same as the long-
run empirical distribution of times between visits, as gaps are chosen at time 0 with probability
proportional to their length. The same holds for general Λ.

C Tightness of the 2-Quasi-Regularity Result

In this section, we prove Proposition 4.6. For convenience, we restate the proposition here:

Proposition 4.6 Let n = 3 and p = (1/2, 1/3, 1/6). Then, for every ǫ > 0, there are no
(2− ǫ)-quasi-regular random sequences.

Proof. Let s be a (2− ǫ)-quasi-regular random sequence. We claim that B1 = 2 with probability
1, and B2 = 3 with probability 1. For suppose that with positive probability B1 ≤ 1. Then, because
T1 = 2, we also would have to have B1 ≥ 3 with positive probability, and vice versa. Similarly,
B2 ≤ 2 with positive probability iff B2 ≥ 4 with positive probability. Either of those cases would
lead to a ratio (3/1 or 4/2) larger than 2− ǫ, violating (2− ǫ)-quasi-regularity.

Hence, with probability one, target 1 appears in every other time period and target 2 appears
in every third time period, which is impossible.
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D Proof of Theorem 5.3

In this section, we prove Theorem 5.3, restated here for convenience:

Theorem 5.3 (Slater [28]) Assume that p ≤ 1
2 . Let k be smallest such that

|fk+1/ϕ− fk| ≤ p.

Then, the distribution of return times is

P[Bi = fk+1] = fk+1 ·
(

p− (1/ϕ)k+1
)

,

P[Bi = fk+2] = fk+2 ·
(

p− (1/ϕ)k+2
)

,

P[Bi = fk+3] = fk+3 ·
(

−p+ (1/ϕ)k
)

,

P[Bi = t] = 0 for all other t.

We begin with a few simple, but useful, technical lemmas. First, we give a closed form for
expressions of the form fk+1 − ϕfk.

Lemma D.1 For any k, we have that fk+1 − ϕfk = (−1/ϕ)k.

Proof. Using the closed-form expression for Fibonacci Numbers (Part 2 of Lemma 5.2), we can
write

fk+1 − ϕfk =

(

ϕk+1 − (−1/ϕ)k+1
)

−
(

ϕk+1 − ϕ(−1/ϕ)k
)

√
5

=
−(−1/ϕ)k+1 + ϕ(−1/ϕ)k√

5

= (−1/ϕ)k · 1/ϕ+ ϕ√
5

= (−1/ϕ)kϕ.

Lemma D.2 1. For all δ ∈ (−1
2 ,

1
2 ] and integers N ≥ 1, the following two are equivalent:

• δ = (ϕN) mod 1.

• There exists a positive integer D with N/D − ϕ = δϕ/D.

2. Let δ = (ϕfk) mod 1 for k ≥ 2 (where we consider the range of the mod operation to be
(−1

2 ,
1
2 ]). Then, δ = fk/ϕ− fk−1.

Proof. 1. Because ϕ = 1 + 1/ϕ, the first condition can be rewritten as (1 + 1/ϕ)N = δ +D′

for some integer D′. When δ < 0, we must have D′ > N ; when δ ≥ 0, because N/ϕ > 1
2 ≥ δ,

we again have D′ > N . The preceding equality can therefore be rearranged to N/ϕ =
δ + (D′ −N). Multiplying by ϕ/(D′ −N) now gives equivalence with the second condition,
writing D = D′ −N .
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2. In the first part of the lemma, set N = fk. Then, the condition is equivalent to the existence
of a positive integer D with fk/D−ϕ = δϕ/D, implying that |fk −Dϕ| = |δ|ϕ. By choosing
D = fk−1, according to Lemma D.1, we get that

|fk/ϕ− fk−1| = (1/ϕ)k
k≥2
≤ 1

2
.

Therefore, for any D 6= fk−1, we get that |fk/ϕ−D| > 1− 1
2 = 1

2 , meaning that no D 6= fk−1

can satisfy fk/D − ϕ = δϕ/D. By substituting the unique choice D = fk−1, we obtain the
second part of the lemma.

Because the Fibonacci numbers are the convergents of the Golden Ratio, they provide the best
rational approximation, in the following sense.

Theorem D.3 Let M̂ ≥ 1 be arbitrary. Let k be the largest even number with fk ≤ M̂ , and k′ the
largest odd number with fk′ ≤ M̂ . Then, for all M ≤ M̂ and all N , we have the following:

1. N/M > ϕ implies fk+1/fk ≤ N/M .

2. N/M < ϕ implies fk′+1/fk′ ≥ N/M .

Theorem D.3 follows directly from standard results stating that the convergents provide the
best approximation to real numbers (e.g., [25, p. 11], noting that the second (intermediate) case
cannot happen for the Golden Ratio).

We are now ready to prove the characterization of the distribution of Bi under the Golden Ratio
schedule.

Proof of Theorem 5.3. We begin by showing that the support of return times consists only of
Fibonacci Numbers. Consider the interval I = [0, p). Let m ≥ 1 be a return time. Let x ∈ I be
arbitrary, and y = (x+ ϕm) mod 1, which is in I by assumption. Define δ = y − x. Because both
x, y ∈ I, we have that δ ∈ [−x, p− x). By Part 1 of Lemma D.2, there is a positive integer D such
that

m/D − ϕ = δϕ/D ∈ [−xϕ/D, (p − x)ϕ/D).

We now distinguish two cases:

• If δ > 0, then m/D > ϕ, so Case 1 of Theorem D.3 implies that the largest even j such that
fj ≤ D satisfies fj+1/fj > ϕ and fj+1/fj ≤ m/D. Thus, (x + ϕfj+1) mod 1 ∈ I, meaning
that the defender returns to the target in fj+1 steps. Because D ≥ fj and m/D ≥ fj+1/fj ,
we get that m ≥ fj+1; unless m = fj+1, this would contradict the definition of m as a return
time, so we have shown that m is a Fibonacci number.

• Similarly, if δ < 0, and thus m/D − ϕ < 0, then Case 2 of Theorem D.3 implies that the
largest odd j such that fj ≤ D satisfies fj+1/fj − ϕ < 0 and fj+1/fj ≥ m/D. By the same
argument, we obtain now that m = fj+1.
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Next, we prove the second part of the theorem. First, notice that the k defined in the theorem
actually exists. By Lemma D.1, we get that |fk+1 − ϕfk| = (1/ϕ)k → 0 as k → ∞, so there exists
a k (and thus a smallest k) with |fk+1 − ϕfk| ≤ ϕp.

We show that there cannot be a return time m < fk+1. If there were, then by the previous part
of the proof, m would be a Fibonacci number, say, m = fℓ. And because m ≥ 1, we get that ℓ ≥ 2.
By Part 2 of Lemma D.2, that means that fℓ/ϕ−fℓ−1 = y−x, and hence |fℓ/ϕ−fℓ−1| = |y−x| < p,
contradicting the definition of k as smallest with that property.

Consider a return to I within m steps, starting from x ∈ I and ending at y ∈ I, so that
δℓ := y − x satisfies |δℓ| < p. By the preceding analysis, m = fℓ for some ℓ ≥ k + 1. Again, by
Part 2 of Lemma D.2, we obtain that δℓ = fℓ/ϕ− fℓ−1.

When δℓ < 0, the x ∈ I with x+ δℓ ∈ I are exactly captured by the interval Jℓ := [|δℓ|, p], while
for δℓ > 0, they are exactly the interval Jℓ := [0, p − δℓ). In either case, the interval Jℓ has size
exactly |Jℓ| = p− |δℓ|.

We will show that Jk+2∪Jk+3 = I. By Lemma 5.2, the signs of δℓ are alternating, meaning that
the intervals Jℓ alternate being of the form [0, x] and [y, p). In particular, to show that Jk+2∪Jk+3 =
I, it suffices to show that |Jk+2|+ |Jk+3| ≥ p. Because |Jk+2| + |Jk+3| = 2p − |δk+2| − |δk+3|, this
is equivalent to showing that |δk+2|+ |δk+3| ≤ p. We distinguish two cases, based on whether k is
even or odd.

• If k is even, then δk+2 = fk+2/ϕ− fk+1 < 0 and δk+3 = fk+3/ϕ− fk+2 > 0, so we obtain that

|δk+3|+ |δk+2| = fk+3/ϕ− fk+2 − fk+2/ϕ+ fk+1 = fk+1/ϕ− fk = |fk+1/ϕ− fk| ≤ p,

by the definition of k.

• If k is odd, then δk+2 = fk+2/ϕ− fk+1 > 0 and δk+3 = fk+3/ϕ− fk+2 < 0, so we obtain that

|δk+2|+ |δk+3| = fk+2/ϕ− fk+1 − fk+3/ϕ+ fk+2 = fk − fk+1/ϕ = |fk+1/ϕ− fk| ≤ p.

Thus, we have shown that the support of the distribution is indeed contained in {fk+1, fk+2, fk+3}.
Finally, we can work out the frequencies. Conditioned on being in the interval of size p, the proba-
bility of being in Jℓ is qℓ = |Jℓ|/p. To arrive at the attacker’s observed distribution of Bi, we notice
that the probability of time 0 being in an interval of length fℓ is

qℓfℓ
∑

j qjfj
=

qℓfℓ
1/p

= fℓ · |Jℓ|.

Thus, we obtain that

P[Bi = fk+1] = fk+1 · |Jk+1| = fk+1 · (p− |fk+1/ϕ− fk|),
P[Bi = fk+2] = fk+2 · |Jk+2| = fk+2 · (p− |fk+1 − fk+2/ϕ|),
P[Bi = fk+3] = 1− q1 − q2

= fk+3 · (−p+ |fk+1/ϕ− fk + fk+1 − fk+2/ϕ|)
= fk+3 · (−p+ |fk−1 − fk/ϕ|).

Notice that we arranged the terms inside absolute values such that for even k, they are all
positive, while for odd k, they are all negative. This allowed us to simply add inside the absolute
value. Applying Lemma D.1 to all three terms now completes the proof.

29



E Computational Considerations for the Golden Ratio Schedule

As phrased, Algorithm 2 requires precise arithmetic on irrational numbers, and drawing a uniformly
random number from [0, 1]. Here, we discuss how to implement the algorithm such that each target
i visited in step t can be computed in time polynomial in the input size.

Let pi = ai/bi for each i, and write M = lcm(b1, . . . , bm) for the common denominator. Notice
that logM ≤ ∑

i log bi is polynomial in the input size.
For each i, the number Pi =

∑

i′<i pi′ is rational. To decide whether target i is visited in step
t, the algorithm needs to decide if (λ+ t/ϕ) mod 1 ∈ [Pi, Pi+1], or — equivalently — if there is an
integer D with λ+t/ϕ ∈ [D+Pi,D+Pi+1]. To decide whether λ+t/ϕ < D+Pj or λ+t/ϕ > D+Pj

(for j ∈ {i, i+1}), the algorithm needs to decide if ϕ < t
D+Pj−λ or ϕ > t

D+Pj−λ . The key question

is how many digits of ϕ the algorithm needs to evaluate for this decision, and how many digits of
the uniformly random offset λ it needs to decide on.

Suppose that the algorithm has generated the first k random digits of λ, having committed
to ℓ

10k
≤ λ < ℓ+1

10k
for some ℓ ∈ {0, 1, . . . , 10k − 1}. Writing Pj = Nj/M (using the denominator

M defined above), a decision about target Pj can be made whenever ϕ < tM10k

10k·MD+10kNj−M ·ℓ or

ϕ > tM10k

10k ·MD+10kNj−M ·(ℓ+1)
. In both cases, the right-hand side is a rational approximation to ϕ

with denominator bounded by M̂ := 2 · 10k ·MD.

It is well known (see, e.g., [16, Theorems 193–194]) that |ϕ − N̂
M̂
| ≥ 1

(
√
5−ǫ)M̂2

for all ǫ > 0. In

particular, this implies that evaluating ϕ to within O(log M̂2) = O(k + logM + logD) digits is

sufficient to test whether ϕ < tM10k

10k ·MD+10kNj−M ·ℓ , and whether ϕ > tM10k

10k ·MD+10kNj−M ·(ℓ+1)
. In either

of these cases, the algorithm has resolved whether ϕ < t
D+Pj−λ .

The only case where the algorithm cannot resolve whether ϕ < t
D+Pj−λ is when

tM10k

10k ·MD + 10kNj −M · ℓ < ϕ <
tM10k

10k ·MD + 10kNj −M · (ℓ+ 1)
.

In this case, the number of digits for λ is insufficient. Notice that there is a unique value of ℓ for
which this happens, so the probability of failure is at most 10−k. Taking a union bound over all
n interval boundaries and all t rounds, we see that in order to succeed with high probability, the
number of digits of λ the algorithm needs to generate is O(log n+ log t).

In particular, the computation and required randomness are polynomial.
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