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1 Introduction

Most human decisions are made under uncertainty and in a social context. Understanding
how economic agents use their private and social information to form beliefs is a prerequisite
for the understanding of important phenomena such as the diffusion of ideas, the adoption of
technologies, or the formation of political opinions. In particular, agents’ beliefs about their
peers’ information is an important factor that can play a decisive role in the social outcome.

We study the effect of condescension on social learning outcomes: What happens when
agents, through misspecification, underestimate the quality of the information that their
peers have? Our main result is that condescension can lead to improved social outcomes, as
long as it is mild. In contrast, anti-condescension, in which agents overestimate their peers’
quality of information, leads to bad outcomes, as does too much condescension.

We study a misspecified version of the classical sequential social learning model of
Bikhchandani et al. (1992) and Banerjee (1992), with unbounded signals, as introduced by
Smith and Sørensen (2000). Our notion of a good social learning outcome is that of efficient
learning (Rosenberg and Vieille, 2019), which is said to occur when the number of agents who
choose the incorrect action has finite expectation. In the well-specified setting, the number of
agents who choose the incorrect action is always finite (Smith and Sørensen, 2000), but its
expectation can be finite or infinite (Rosenberg and Vieille, 2019).

In our misspecified setting agents perfectly understand and interpret their own signal but
misperceive the quality of their predecessors’ signals. When agents are mildly condescending,
efficient learning occurs. Because agents underestimate the quality of others’ signals, they put
too little weight on their predecessors’ actions. In consequence, their actions are suboptimal,
but reveal more of their own private information. When this is done in moderation more
is gained than lost, and in the long run, the result is quick convergence to the correct
action. This occurs even with signal distributions that would have induced inefficient learning
for well-specified agents. Of course, since agents are misspecified, each agent attains lower
expected utility than they would if they were not, ceteris paribus. Nevertheless, their behavior
has positive externalities on later agents, with improved asymptotic outcomes.

When agents are too condescending they put so little weight on their predecessors’ actions
that no herd forms and both actions are taken infinitely often, i.e., asymptotic learning
is not obtained. When agents are anti-condescending they put too much weight on their
predecessors’ actions. In consequence, wrong herds form with positive probability, and again
asymptotic learning is not obtained. Interestingly, it follows that asymptotic learning is
equivalent to efficient learning across all misspecified regimes.
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Our proof techniques follow those introduced by Hann-Caruthers et al. (2018) and
Rosenberg and Vieille (2019) who approximate the discrete time dynamics of the public belief
using a continuous time differential equation. Due to the misspecified nature of our model,
our analysis deviates from theirs in a number of places. For example, we need to circumvent
the fact that the misspecified belief is not a martingale. In their model, asymptotic learning
is guaranteed by this martingale property (Smith and Sørensen, 2000), whereas in our model
we need to prove it by other means.

Related Literature. A closely related paper is Bernardo and Welch (2001). They study a
cascade setting with binary signals, but where some fraction of the agents are overconfident:
They do not put enough weight (in Bayesian terms) on the public information. Through
mostly numerical analysis, the authors reach a conclusion that is similar to ours: Moderate
overconfidence is beneficial for society.

The empirical literature on social learning supports the idea of overweighting the private
information relative to the public information. For example, Weizsäcker (2010) finds in
a meta-analysis of 13 social learning experiments that subjects underweight their social
observations relative to the payoff-maximizing strategy. Duffy et al. (2021) find sizable
proportions of both behavioral types, i.e. relative over- and underweighting of the private
information. Condescension provides one possible mechanism which leads to individually
suboptimal low weights of public information. Other mechanisms that may cause a distortion
in the optimal weighting of private and public information are, for example, cursedness
(Eyster and Rabin, 2005) and naïveté (Eyster and Rabin, 2010).

Our paper is related to the literature on social learning with misspecification. Most of
this literature documents a detrimental effect of misspecification on asymptotic outcomes:
For example, the gambler’s fallacy leads to incorrect learning almost surely (He, 2022),
and misinterpreting peers’ preferences can lead to incorrect (Frick, Iijima, and Ishii, 2020)
and cyclical (Gagnon-Bartsch, 2016) learning, or entrenched disagreement (Bohren and
Hauser, 2019). Frick et al. (2023) analyze belief convergence in a general setting. They
demonstrate that in the sequential social learning environment arbitrarily small amounts of
misspecification can lead to extreme failures of learning. Bohren (2016) studies agents with
misspecification regarding the correlation between others’ actions, and shows that various
undesirable outcomes are possible, depending on the degree and direction of misspecification;
see also Bohren and Hauser (2021) for a more general setting that subsumes a number of
previous ones. Our results highlight potential positive welfare effects, i.e., misspecifications
may increase the efficiency of learning. Similarly to some of these papers, our results show
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that learning outcomes depend on the behavior of the signal distributions near the fixed
points of the learning dynamics, which in our case are the extremal beliefs.

The literature has identified other channels—not requiring misspecification—by which
agents may put more weight on their own signals, as compared to the signals of others. For
example, idiosyncratic taste shocks (see, e.g., Goeree et al., 2006; Lobel and Sadler, 2016)
imply that an agent’s own signal carries more information about their own payoff relevant
state than do the signals of the others. As in our model, this causes agents to reveal more
of their private information through their actions, which in turn can improve information
aggregation in the long term.

A paper that is slightly further away in its goal—but closer in techniques and some of
the results—is Chen (2022), who studies ambiguity in sequential social learning. In his
model, agents have ambiguity about the distributions of the other agents’ signals. The main
conclusion is that information cascades are a robust outcome that occurs whenever there is
sufficient ambiguity. Technically, similar observations to our Propositions 1 and 2 appear in
Chen (2022), but our paper is focused on the speed of learning (i.e., efficient learning), which
is not studied in that paper.

Our work also complements a burgeoning literature which analyzes the rationale for
the persistence of misspecifications (e.g., He and Libgober, 2020; Ba, 2021; Fudenberg and
Lanzani, 2022). That is, in a sequential learning environment misspecified agents might have
an evolutionary advantage over correctly specified agents by learning the true state of the
world faster. Consequently, misspecifications caused by intermediate levels of condescension
might persist in the long run.

2 Model

2.1 Social Learning with Misspecification

There is a binary state of nature θ P Θ “ tℓ, hu, chosen at time zero, and equal to h with
probability π P p0, 1q. A countably infinite set of agents “ t1, 2, . . .u arrive sequentially. Each
agent n, in turn, takes an action an P tℓ, hu, with utility 1 if a “ θ and 0 otherwise. Before
choosing her action, agent n observes her predecessors’ actions In “ pa1, . . . , an´1q.

Each agent also observes a private signal sn P S. Here S is some measurable set of possible
signal realizations. Signals are independent and identically distributed conditioned on the
state. We denote probabilities by P, and explicitly write Pπ when we want to highlight
varying values of the prior π. We further use the notation Ph to refer to Pp¨ | θ “ hq, the
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probability measure P conditional on the realized state being h. We define Pπ,h analogously.
Let qn “ Ppθ “ h|snq be the (random) private posterior : The belief induced by observing

the private signal of agent n. By a standard direct revelation argument, we can assume
that sn “ qn, since qn is a sufficient statistic for θ given sn. Denote by Fℓ and Fh the
cumulative distribution functions of qn, conditioned on θ “ ℓ and θ “ h, respectively. We
define F “ 1

2pFℓ`Fhq. This is the cumulative distribution function of qn, for prior π “ 1{2.
So far, this model matches the standard herding model (Bikhchandani et al., 1992;

Banerjee, 1992; Smith and Sørensen, 2000). We deviate from these models by introducing a
misspecification regarding others’ private signals: Agents correctly observe their own type
qn, but have a (common) misspecified prior about the distribution of types. Namely, each
agent believes that all the others’ private posteriors have conditional distributions rFℓ and rFh.
Furthermore, it is common knowledge that these are the agents’ beliefs. Note that agents still
interpret their own private signals correctly, with agent n calculating qn from sn according
to qn “ Ppθ “ h|snq. We denote by rP the posterior probabilities calculated according to the
agents’ misspecified beliefs.

In equilibrium, agents choose actions an to maximize their subjective expected utilities:

an “ arg max
aPtℓ,hu

rPpθ “ a|In, qnq.

We will below restrict ourselves to qn with non-atomic distributions, i.e., we assume that Fℓ

and Fh are continuous. This will ensure that agents are never indifferent and the maximum
above is unique. We will likewise assume that rFℓ and rFh are continuous.

A pair of conditional CDFs pFℓ, Fhq is symmetric (around q “ 1{2) if Fℓpqq`Fhp1´qq “ 1.
This in turn implies F pqq`F p1´qq “ 1. To simplify our exposition we will make the following
assumption.

Assumption 1 (Symmetry). We assume throughout that pFℓ, Fhq and p rFℓ, rFhq are symmetric.

When the prior is π “ 1{2, this is equivalent to requiring that the model is invariant with
respect to renaming the states.

2.2 Efficiency

To study efficiency in this setting, we follow Rosenberg and Vieille (2019) and introduce some
additional notation. Let W :“ # tn : an ‰ θu be the (random) number of agents who take
the incorrect action.

The next definition includes two notions of efficiency of social learning.
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Definition 1. 1. Asymptotic learning holds if all agents, except finitely many, choose the
correct action. That is, if W is finite P-almost surely.

2. Efficient learning holds if E rW s ă 8.

Note that asymptotic learning is equivalent to the sequence of actions an converging to θ,
which is again equivalent to an “ θ for all n large enough. Note also that efficient learning
implies asymptotic learning.

2.3 The Well-Specified Case

Without misspecification, the classical herding result of Bikhchandani et al. (1992) is that
asymptotic learning does not hold for any finitely supported private signal distribution in
which no signal is revealing. This is an outcome that displays extreme inefficiency: With
positive probability, all but finitely many agents choose incorrectly, and in particular there is
no asymptotic or efficient learning. Smith and Sørensen (2000) show that asymptotic learning
holds if and only if signals are unbounded: That is, if the support of the distribution of the
private posteriors qn includes 0 and 1. Thus, when signals are sufficiently informative, the
extreme inefficiency of the wrong herds of Bikhchandani et al. (1992) is overturned.

Nevertheless, this result left open the possibility that many agents choose incorrectly
before the correct herd arrives. To quantify this intuition, Sørensen (1996) gave an example in
which learning is not efficient: ErW s, the expected number of agents who choose incorrectly, is
infinite. He also conjectured that this is the case for every signal distribution. This conjecture
was shown to be false by Hann-Caruthers et al. (2018) and Rosenberg and Vieille (2019). In
particular, Rosenberg and Vieille (2019) give an elegant necessary and sufficient condition for
efficient learning, showing that efficient learning holds if and only if

ş1
0

1
F pxq

dx ă 8.

2.4 Condescension

We use our misspecified social learning framework to study how outcomes change when agents
are condescending, or think that others’ signals are less informative than they really are. To
formalize and quantify this notion, we restrict ourselves to signals that are tail-regular : A
pair of symmetric conditional CDFs pFℓ, Fhq is tail-regular if there exists α ą 0 such that
F pqq “ pFℓpqq`Fhpqqq{2 behaves like qα near q “ 0. Formally, if

0 ă lim inf
qÑ0

F pqq

qα
ď lim sup

qÑ0

F pqq

qα
ă 8.
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We use Landau notation and write

F pqq “ Θpqα
q

as a shorthand for the expression above.1

Assumption 2 (Tail-Regularity). We assume throughout that pFℓ, Fhq and p rFℓ, F̃hq are
tail-regular.

The exponent α associated with a symmetric, tail-regular signal is unique, and given by

α “ lim
qÑ0

log F pqq

log q
.

It captures a notion of the thinness of the tail of the signals: For high α there is a small
chance of very informative signals, as compared to low α. Thus, in an asymptotic sense,
signals are less informative for higher α. Note that by a standard argument (Lemma 4) if
F pqq “ Θpqαq then Fℓpqq “ Θpqαq and Fhpqq “ Θpqα`1q.

As an example of tail-regular signals, consider the family of beta distributions, which are
commonly used in the applied literature to model the distribution of posterior beliefs (see,
e.g., McKelvey and Palfrey, 1992; Nyarko et al., 2006; Bosch-Domènech et al., 2010; Çelen
et al., 2020). This is a family of probability distributions on the interval r0, 1s parametrized
by α, β ą 0, with probability density function given by gα,βpqq “ Cqα´1p1´qqβ´1, where
C is a normalization constant. The parameters β and α describe the thickness of the
distribution around 0 and 1, respectively. Suppose that private signals have conditional
densities fℓ “ gα,α`1 and fh “ gα`1,α. Then, the unconditional density is again a beta
distribution with probability density function f “ gα,α. This is easily seen to be symmetric
and tail-regular, with exponent α.

An important example of signals that are not tail-regular is that of conditionally Gaussian
signals, with distributions N p´m, 1q and N p`m, 1q, depending on the state. In this case
limqÑ0

log F pqq

log q
“ 8, and the tail-regularity condition is violated, as F pqq decays faster than

any polynomial.
In a misspecified model we denote by α and α̃ the exponents associated with pFℓ, Fhq and

p rFℓ, rFhq, respectively. When α̃ ą α we say that agents are condescending: They believe that
1More generally in Landau notation, given two functions fpxq and gpxq, one writes fpxq “ Θpgpxqq if

0 ă lim inf
xÑ0

fpxq

gpxq
ď lim sup

xÑ0

fpxq

gpxq
ă 8.
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others’ signals are less informative than they really are. Conversely, when α̃ ă α agents are
anti-condescending. Thus, α̃´α is a measure of how condescending the agents are. Note that
our definition of condescension is relatively mild, in the sense that it only depends on the tail
properties and not on the bulk of the distribution.

3 Results

Our first result characterizes the efficiency of learning outcomes for condescending and
anti-condescending agents. The formal proof appears in the appendix. The intuition and
dynamics behind this result are presented in detail in Section 4.

Theorem 1. Suppose α̃ ‰ α. Then the following are equivalent: (i) asymptotic learning; (ii)
efficient learning; (iii) α̃´α P p0, 1q.

The regime α̃´α P p0, 1q describes agents who are condescending (α̃´α ą 0) but not
overly condescending (α̃´α ă 1). In this regime the agents’ mild condescension causes them
to slightly discount the actions of their predecessors, resulting in an increased chance that
wrong herds are overturned and a correct herd starts. Since there are infinitely many agents
there will be infinitely many fresh chances to do this, and eventually one will succeed, even if
each has a very low probability. Moreover, the success probabilities are bounded from below,
rendering the expected number of mistakes finite.

In a model without misspecification, the results of Rosenberg and Vieille (2019) imply
that efficient learning occurs if and only if α ă 1. In contrast, Theorem 1 shows that efficiency
can be regained under potentially small misspecification, for any α, as long as agents are
condescending, but not too condescending. Put differently, even for large values of α, i.e.,
when highly informative signals are extremely rare, learning can still be efficient under mild
condescension. The technical reason for why a difference of exactly 1 between α̃ and α is the
boundary between mild condescension and over-condescension is related to the summability
of certain sequences that determine whether or not a herd can start immediately with positive
probability. We explain this in detail in Section 4.

Note that the exponent α captures a tail property of the private signals rather than
a parameter that determines the entire distribution. Hence two distributions can be very
different even if their exponents are very close or the same. When α̃ ‰ α, the finer properties
of the distributions do not play a role, and efficient learning is solely determined by the tail
exponents. When α̃ “ α, we conjecture that it is possible for learning to either be efficient or
inefficient, depending on finer properties of the distributions; see footnote 5 for the technical
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details. We leave it for future work to identify these finer properties that determine efficient
learning in this regime.

The next two propositions shed light into why learning fails when agents are either
anti-condescending or overly condescending. These results also appear in the supplementary
material to Chen (2022). We provide proofs for these claims in Appendix E for completeness.

The first proposition concerns the anti-condescension regime, in which α̃ ă α.

Proposition 1. Suppose that α̃ ă α. Then, with P-positive probability, a wrong herd forms,
i.e., from some point on, all agents take the wrong action.

In the case α̃ ă α agents are anti-condescending: They believe that others have signals
that are more informative than they really are. In consequence, they are more easily swayed
by other’s actions, and tend to more often ignore their private signals.2 Thus, wrong herds
can form. This is despite the fact that signals are unbounded, which, without misspecification,
would rule out wrong herds.

Our next result tackles the question of why learning fails when agents are overly conde-
scending, i.e., when α̃´α ě 1.

Proposition 2. Suppose that α̃ ě α`1. Then, P-almost surely, both actions are taken by
infinitely many agents.

In the case α̃ ě α`1, agents are very condescending: They think that others have
very uninformative signals. In consequence, they follow their own signals too much, and
herds—wrong or right—do not form: Given enough time, an agent will come along who will
overturn her predecessor’s action.

To sum, Proposition 1 shows that if α̃ ă α, then when public belief assigns a low
probability to the realized state, incorrect cascades remain stable with positive probability.
Proposition 2 shows that if α̃ ě α`1, then correct cascades are unstable, and thus even if
the public belief assigns high probability to the realized state, herds on the correct action
almost certainly break down. As we shall show, these conditions are also determinants of
efficient learning.

2The effect of anti-condescension is similar to that of naïveté in Eyster and Rabin (2010). The mechanism
is, however, very different. While naïve agents fail to realize that previous movers’ also infer from still earlier
actions, anti-condescending agents are fully aware of this and take it into account but believe others to have
better information than they actually do.
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4 Dynamics

In this section, we study how agents update their beliefs and choose their actions under
misspecification. We define the public belief and derive its equations of motion. We show that
two properties of the well-specified model—stationarity and the overturning principle—still
hold in our misspecified environment.

4.1 Belief Updating

An important tool in social learning is the public belief (or social belief) at time n:

πn “ P
`

θ “ h
ˇ

ˇa1, . . . , an´1
˘

.

In our case, however, it is also important to consider the misspecified public belief, which is
given by

π̃n “ rP
`

θ “ h
ˇ

ˇa1, . . . , an´1
˘

.

The public belief πn is the belief held by a well-specified observer who sees the agents’ actions
but not their signals. In contrast, π̃n is the belief held by an observer who holds the same
misspecified beliefs as the agents, and again sees only actions.

Let pn “ Ppθ “ h|In, qnq be the posterior belief held by a well-specified agent who observes
all the information available to agent n. The actual, misspecified, posterior of agent n is
denoted p̃n “ rPpθ “ h|In, qnq. Then by Bayes’ Law

pn

1´pn

“
πn

1´πn

ˆ
qn

1´qn

,

p̃n

1´p̃n

“
π̃n

1´π̃n

ˆ
qn

1´qn

.

It follows that the action an chosen by agent n is equal to h if π̃n`qn ě 1, and to ℓ otherwise.3

Thus, conditioned on θ, the probability that agent n chooses the low action is Fθp1´π̃nq.
This implies that when agent n chooses the low action, the public beliefs tπnu and tπ̃nu

evolve as follows:

πn`1

1´πn`1
“

πn

1´πn

ˆ
Fhp1´π̃nq

Fℓp1´π̃nq
, (4.1a)

π̃n`1

1´π̃n`1
“

π̃n

1´π̃n

ˆ
rFhp1´π̃nq

rFℓp1´π̃nq
. (4.1b)

3As we note above, indifference occurs with probability zero because we assume that the distribution of qn

is non-atomic.
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When agent n chooses the high action,

πn`1

1´πn`1
“

πn

1´πn

ˆ
1´Fhp1´π̃nq

1´Fℓp1´π̃nq
, (4.2a)

π̃n`1

1´π̃n`1
“

π̃n

1´π̃n

ˆ
1´ rFhp1´π̃nq

1´ rFℓp1´π̃nq
. (4.2b)

4.2 Stationarity and the Overturning Principle

The above equations of motion imply that as in the well-specified case, our model is stationary,
with π̃n capturing all the relevant information about the past.

Lemma 1 (Stationarity). For any fixed sequence b1, . . . , bk of actions in tℓ, hu and any
π̃ P p0, 1q,

Ppan`1 “ b1, . . . , an`k “ bk | π̃n`1 “ π̃q “ Pπ̃pa1 “ b1, . . . , ak “ bkq.

That is, suppose that at time n the misspecified public belief π̃n was equal to some π̃.
Then the probability that the subsequent actions are b1, . . . , bk is the same as the probability
of observing this sequence of actions at time 1, when the prior is π̃.

Another important observation that generalizes to the misspecified setting is Sørensen’s
overturning principle.

Lemma 2 (Overturning principle). The misspecified public belief π̃n`1 in period n`1 is
greater than or equal to 1{2 if and only if an “ h.

Proof. Observe that by the law of total expectation

π̃n`1 “ rE
“

1tθ“hu

ˇ

ˇa1, . . . , an

‰

“ rE
”

rE
“

1tθ“hu

ˇ

ˇa1, . . . , an, qn

‰

ˇ

ˇ

ˇ
a1, . . . , an

ı

“ rE
“

p̃n

ˇ

ˇa1, . . . , an

‰

.

Therefore, an “ h is equivalent to p̃n ě 1{2, and hence equivalent to π̃n`1 ě 1{2.

4.3 Asymptotic Learning and Immediate Herding

In the misspecified setting the public belief π̃n is not a martingale under the correct measure
P. This martingale property is an important tool in the proof of asymptotic learning
for unbounded signals in the well-specified case (Smith and Sørensen, 2000). In our case,
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asymptotic learning indeed does not always hold, and in particular, we need different tools to
analyze it.

We denote by an Ñ h the asymptotic event that the sequence of actions converges to h.
Namely, that an “ h for all n large enough, or that a high action herd forms eventually. We
denote by ā “ h the event ta1 “ h, a2 “ h, . . .u that all agents took the high action; this is
the event that a high action herd formed immediately.

Asymptotic learning occurs when Pℓpan Ñ ℓq “ 1 and Phpan Ñ hq “ 1. To study the
asymptotic events an Ñ ℓ and an Ñ h, we study the immediate herding events ā “ h and
ā “ ℓ. These are easier to analyze because conditioned on ā “ ℓ or on ā “ h, the sequence
of misspecified public beliefs tπ̃n} is deterministic and given recursively by (4.1b) or (4.2b),
respectively.

To see the connection between asymptotic learning and immediate herding, condition on
θ “ h and consider the event an Ñ h of a good herd forming eventually. In our setting, we
show that this event has probability 1 if and only if two conditions are met:4

(i) The event ā “ ℓ of an immediate bad herd has probability 0.

(ii) The event ā “ h of an immediate good herd has positive probability.

The first condition is clearly necessary for asymptotic learning: If bad herd can form then the
probability of a good herd is less than 1. The reason that the second condition is necessary is
related to the stationarity of the process; for a good herd to form eventually, it must have a
positive probability to be formed at any point in time, and hence also in the beginning.

To see that these conditions are sufficient for asymptotic learning, note that again applying
stationarity, the first condition implies that it is impossible for a bad herd to start at any
point in time. This implies that the high action will be taken infinitely often. Hence, there
will be infinitely many chances for a good herd to start, and thus, by the second condition
(and again stationarity) a good herd will form eventually.

To apply stationarity, we need these two conditions to hold for any prior, and moreover
uniformly so. This is done formally in Appendix C.

Having reduced the problem of asymptotic learning to that of immediate herding, we turn
to calculating the probability of the events ā “ ℓ and ā “ h. Condition on ā “ h. Then the
public belief π̃n evolves deterministically according to (4.2b). It will be useful to consider the

4We omit some technical details in the statements of these two conditions. A complete formal treatment
is presented in Appendix C, Lemmas 10 and 11.
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misspecified public log-likelihood ratio r̃n :“ log π̃n

1´π̃n
. In terms of r̃n, the equation of motion

(4.2b) becomes

r̃n`1 “ r̃n`log
1´ rFh

` 1
1`er̃n

˘

1´ rFℓ

` 1
1`er̃n

˘ .

It starts at the initial level r̃1 “ log π
1´π

. When p rFℓ, rFhq is tail-regular with exponent α̃, we
can for small q approximate rFℓpqq with qα̃ and rFhpqq with qα̃`1 (neglecting constants). And
since r̃n tends to infinity when ā “ h, this equation of motion is well approximated by

r̃n`1 « r̃n`e´α̃r̃n . (4.3)

Intuitively, after each observed high action the misspecified public log-likelihood increases
by an amount e´α̃r̃n that becomes smaller as r̃n increases. More importantly, e´α̃r̃n is also
smaller when α̃ is higher, i.e., when the signals are less informative: After many high actions,
agents are less surprised to see another high action when signals are less likely to be very
informative.

The asymptotic behavior of this discrete time equation can in turn be approximated
by the differential equation dr̃ptq

dt
“ e´α̃r̃ptq whose solution is r̃ptq “ α̃´1 logp1`α̃tq; this is

shown formally in Appendix B, Lemmas 8 and 9. Thus, conditioned on the event ā “ h, the
misspecified public log-likelihood r̃n takes the sequence of deterministic values r̃h

n, which we
can approximate by r̃h

n « α̃´1 logp1`α̃nq. Transforming this back to public beliefs, we get

π̃h
n « 1´n´1{α̃. (4.4)

Thus, the sequence of misspecified public beliefs converges to 1, and it does so more slowly
for higher α̃, i.e., for less informative signals.

We remind the reader that an “ h if and only if qn ě 1´π̃n: The agent takes the high
action if her private posterior qn “ Ppθ “ h|snq exceeds 1´π̃n. Hence the event ā “ h is
the event that qn ě 1´π̃h

n for all n. Conditioned on θ “ h the (actual, not misspecified)
probability of this event is

1´Fhp1´π̃h
nq « 1´Fhpn´1{α̃

q « 1´n´
α`1

α̃ ,

where the first approximation uses (4.4) and the second uses Fhpqq “ Θpqα`1q.
Since the random variables qn are independent conditioned on the state, we get that the

probability of ā “ h is

Phpā “ hq “

8
ź

n“1

`

1´Fhp1´π̃h
nq

˘

«

8
ź

n“1

´

1´n´
α`1

α̃

¯

.
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Crucially, we are only interested in whether this probability is positive or zero. As we show
formally in Lemma 12 in Appendix D, the approximations we perform are good enough, in
the sense that the first product vanishes if and only if the second one does. Thus, by an
elementary argument we get that Phpā “ hq ą 0 if and only if α̃´α ă 1.

This argument shows that immediate good herds can form if and only if α̃´α ă 1, i.e.,
agents are not overly condescending. A similar line of reasoning shows that Phpā “ ℓq “ 0 if
and only if α̃´α ě 0, i.e., immediate bad herds are excluded when agents are condescending.

The assumption of tail regularity is used in the approximation r̃n`1 « r̃n`e´α̃r̃n of the
evolution of the public log-likelihood ratio, made in (4.3). Tail regularity is also crucial for
showing that the differential equation dr̃ptq

dt
“ e´α̃r̃ptq is a good approximation of this discrete

time dynamics; see the proofs of Lemmas 8 and 9 in Appendix B.

4.4 Efficient Learning

In the previous section we explained why asymptotic learning holds only in the regime
α̃´α P r0, 1q. This immediately implies that outside this range there is also no efficient
learning. In this section we explain why efficient learning does hold when α̃´α P p0, 1q.

Suppose α̃´α P p0, 1q. As asymptotic learning holds, we know that the agents will take
the high action from some point on. Until then, there will be runs of wrong actions, or
sequences of consecutive agents who make the wrong choice. These will be separated by runs
of agents who make the correct choice.

The argument for efficient learning includes two parts. First, we show that the expected
number of bad runs is finite. Second, we show that the expected length of each bad run is
finite. Moreover, the expected length of a bad run is uniformly bounded, regardless of the
history that came before that run. It follows that the total number of agents W who take
the wrong action has a finite expectation.

The reason that the number of bad runs has finite expectation is that regardless of the
history, there is a uniform lower bound δ on the probability that a good herd continues forever.
This implies that the distribution of the number of bad runs is stochastically dominated by a
geometric distribution, which has a finite expectation. This holds whenever α̃´α ă 1, i.e.,
whenever agents are not overly condescending. The argument is similar to the one from the
previous section, which showed that in this range the probability of ā “ h is positive in the
high state.

To show that the expected length of each bad run is finite, we again follow the line of
argument from the previous section showing that ā “ ℓ has zero probability in the high state.

13



This holds whenever α̃ ą α, i.e., when agents are condescending. Moreover, we show that
the expected length of a bad run is uniformly bounded, regardless of the history that came
before it started. This is a consequence of the fact that the public belief at the onset of a run
cannot be arbitrarily high or low, but is bounded away from 0 and 1. This is a consequence
of tail regularity (see Proposition 7).

We note that this last step is obtained in the well-specified setting of Rosenberg and Vieille
(2019) by appealing to the overturning principle and the fact that t1´πn

πn
u is a martingale

under the correct conditional measure (that is, Ph in the high state). In our misspecified
case, the overturning principle still holds, but the public likelihood t1´π̃n

π̃n
u is not a martingale

under the correct measure. Thus, we have to apply a mechanical method that appeals to
tail-regularity.

4.5 Expected Time of the First Correct Action

Rosenberg and Vieille (2019) consider another notion of the efficiency of learning, which is
briefly discussed in this section. Let τ be the first time that the correct action is taken:

τ “ mintn : an “ θu.

This is a random time that takes values in NYt8u.
Rosenberg and Vieille (2019) show that in the well-specified setting, the finiteness of the

expectation of τ coincides with efficient learning, or the finiteness of the expectation of W .
In our model, when agents are condescending, i.e., when α̃ ą α, the expectation of

τ is finite (see Proposition 7). This holds even when agents are over-condescending (i.e.,
α̃ ě α`1), and efficient learning does not hold. In the latter regime, there is no learning
because the agents’ condescension causes them to put too much weight on their own signals,
resulting in both actions being taken infinitely often, and also in small expected τ . When
agents are anti-condescending there is a positive probability of τ “ 8 (see Proposition 5),
and in particular, τ has an infinite expectation.

5 Conclusion

In this paper, we study social learning with condescending agents who underestimate the
quality of their peers’ information. We show that mild condescension can have positive
externalities that result in efficient learning. In particular, there are private signal distributions
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for which learning is not efficient in the well-specified case, but is efficient with even very
small levels of condescension.

We make several simplifying assumptions for expositional purposes. For example, relaxing
symmetry (Assumption 1) yields the same type of results, but where the exponent α needs
to be defined for each of the two states (corresponding to the left and right tails), and
outcomes can be different in each state. We believe that our results also hold for private
belief distributions that are not continuous, but currently, our proof techniques only apply in
the continuous case.

A more substantial assumption is that all agents have the same misspecified beliefs about
others. We see this a smallest possible deviation from the well-specified case, involving
misspecification only about the distribution of agents’ types, and nothing else. In particular,
because all agents have the same prior, higher order beliefs are trivial, which makes the model
tractable. A natural avenue for future work is to relax this assumption. Indeed, higher order
beliefs play an interesting and important role in the misspecified social learning literature
(Bohren, 2016; Bohren and Hauser, 2021).

Our analysis of social welfare is restricted to the question of whether the expected number
of incorrect actions is finite or not. A more nuanced question is to study how this expectation
changes as the actual and perceived distributions of private signals vary. In particular, for
private signal distributions where this expectation is finite in the well-specified case, it is
interesting to understand how misspecification alters this expectation; this is possible even
when α̃ “ α. It is furthermore natural to consider a discounted sum of the number of incorrect
actions. These are interesting questions that currently seem to be beyond what is technically
tractable.
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A Preliminaries

The following lemma is a standard result, with proofs given, for example, in Appendix A of
Hann-Caruthers et al. (2018) or Rosenberg and Vieille (2019).

Lemma 3. Let Gℓ and Gh be two cumulative distribution functions on r0, 1s, with the Radon-
Nikodym derivative dGh{dGℓ satisfying the iterated likelihood principle dGh

dGℓ
pqq “ q{p1´qq.

Then it holds that:
Ghpqq “ 2

ˆ

qGpqq´

ż q

0
Gpxq dx

˙

,

Gℓpqq “ 2
ˆ

p1´qqGpqq`

ż q

0
Gpxq dx

˙

.

where G “ 1
2 pGℓ`Ghq. These in turn imply that Ghpqq ď 2qGpqq and

ˇ

ˇGℓpqq´2Gpqq
ˇ

ˇ ď

3qGpqq. Therefore, limqÑ0 Ghpqq{Gpqq “ 0 and limqÑ0 Gℓpqq{Gpqq “ 2.

We use this lemma to prove the following additional lemma which relates the exponent of
G to the exponents of Gℓ and Gh.

Lemma 4. Suppose Gpqq “ Θpqαq. Then Gℓpqq “ Θpqαq and Ghpqq “ Θpqα`1q.

Proof. Lemma 3 immediately implies that Gℓpqq “ Θpqαq whenever Gpqq “ Θpqαq. To see
that Ghpqq “ Θpqα`1q, note that Gpqq “ Θpqαq implies there are constants C ě c ą 0 such
that for all q P r0, 1s, one has cqα ď Gpqq ď Cqα. The previous lemma thus implies that
Ghpqq ď 2Cqα`1. Next, let us define m :“

`

c{2C
˘1{α, and observe that

Gpmqq ď Cpmqq
α

“
c

2 qα
ď

1
2 Gpqq .

Since G is increasing, then Gpxq ď Gpqq{2 for all x ď mq, and therefore,
şmq

0 Gpxqdx ď

mqGpqq{2. In addition, G being increasing implies that
şq

mq
Gpxqdx ď p1´mqqGpqq. Therefore,

one obtains the following upper bound for the integral:
ż q

0
Gpxqdx “

ż mq

0
Gpxqdx`

ż q

mq

Gpxqdx

ď
m

2 qGpqq`p1´mqqGpqq “

´

1´
m

2

¯

qGpqq .

It follows from the expression for Gh in the previous lemma that Ghpqq ě mqGpqq, and hence
Ghpqq ě mcqα`1. Therefore, we have shown that Ghpqq “ Θpqα`1q.
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B The Evolution of the Public Log-Likelihood

Define the misspecified public log-likelihood ratio by

r̃n “ log π̃n

1´π̃n

,

and the well-specified public log-likelihood ratio by

rn “ log πn

1´πn

.

At n “ 1, it holds that r1 “ r̃1 “ log π
1´π

. Conditioned on the event ā “ h, π̃n satisfies the
recursive equation (4.2b), and thus π̃n is deterministic and equals to some π̃h

n. We accordingly
denote r̃h

n “ log π̃h
n

1´π̃h
n
.

Lemma 5. limnÑ8 π̃h
n “ 1.

Proof. The perceived distributions rFh and rFℓ satisfy the iterated likelihood principle, that is,

d rFh

d rFℓ

pqq “
q

1´q
.

This relation implies that rFh´ rFℓ is strictly decreasing on r0, 1{2s and strictly increasing on
r1{2, 1s. Therefore, for every π P p0, 1{2s it must be that

rFhpπq´ rFℓpπq ă rFhp0q´ rFℓp0q “ 0 ñ rFhpπq ă rFℓpπq ,

and for every π P r1{2, 1q one has

rFhpπq´ rFℓpπq ă rFhp1q´ rFℓp1q “ 0 ñ rFhpπq ą rFℓpπq .

Observe that due to equation (4.2b) the sequence π̃n is strictly increasing. Now, assume by
contradiction that π̃n Ñ π̂ P p0, 1q, then it must be that

1´ rFhp1´π̂q

1´ rFℓp1´π̂q
“ 1 ,

which is in contrast with the previous two implications about t rFℓ, rFhu.

In this section we provide asymptotic results for the evolution of rn and r̃n on the high
action path. As discussed above, on this path these random variables are deterministic,
and equal to some constants rh

n and r̃h
n, respectively. These constants satisfy the following

reformulation of expressions in (4.2a) and (4.2b):

rh
n`1 “ rh

n`Upr̃h
nq , (B.1)

r̃h
n`1 “ r̃h

n` rUpr̃h
nq , (B.2)
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where

Uprq :“ log
1´Fh

` 1
1`er

˘

1´Fℓ

` 1
1`er

˘ ,

rUprq :“ log
1´ rFh

` 1
1`er

˘

1´ rFℓ

` 1
1`er

˘ .

One can readily show that both U and rU are decreasing functions. In addition, they
always take positive values, because Fh ľ Fℓ and rFh ľ rFℓ in first order stochastic dominance.
This means not only tr̃h

nu, but also trh
nu is an increasing sequence.

Lemma 5 implies that limn r̃h
n “ 8. Thus, to study the public belief at large times n,

we need to understand Uprq and rUprq for large r. The next lemma provides the asymptotic
behavior of these functions.

Lemma 6. For large r, one has Uprq “ Θpe´αrq and rUprq “ Θpe´α̃rq, that is

0 ă lim inf
rÑ8

Uprq

e´αr
ď lim sup

rÑ8

Uprq

e´αr
ă 8 ,

and

0 ă lim inf
rÑ8

rUprq

e´α̃r
ď lim sup

rÑ8

rUprq

e´α̃r
ă 8 .

Proof. Define µ “ 1
1`er . We first propose an upper bound on U . To this end, note that

Uprq “ log 1´Fhpµq

1´Fℓpµq
ď ´ log p1´Fℓpµqq .

Due to Lemma 3, Fℓpqq ď 2F pqq, therefore Uprq ď ´ log p1´2F pµqq. Since for small enough
x, one has ´ logp1´xq ď x`x2, then

Uprq ď 2F pµq p1`2F pµqq ,

thereby establishing an upper bound.
Before proceeding with a lower bound, we introduce the Landau notations, op¨q and Op¨q:

We say fpxq “ opgpxqq if limxÑ0
fpxq

gpxq
“ 0, and fpxq “ Opgpxqq if lim supxÑ0

fpxq

gpxq
ă 8.

To propose a lower bound, observe that because of Lemma 3, Fhpqq ď 2qF pqq and
Fℓpqq ě 2p1´qqF pqq, therefore,

eUprq
ě

1´2µF pµq

1´2p1´µqF pµq

ě
`

1´2µF pµq
˘`

1`2p1´µqF pµq`2p1´µq
2F pµq

2˘

“ 1`2F pµq´4µF pµq`2
`

1´Opµq
˘

F pµq
2 .
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Since logp1`xq ě x´x2{2, then

Uprq ě 2F pµq´4µF pµq`
`

2´Opµq
˘

F pµq
2
`o

`

F pµq
2˘

ě 2F pµq

ˆ

1´2µ`
3
2F pµq

˙

.

The above upper and lower bounds imply that limrÑ8
Uprq

2F pµq
“ 1. In addition, because of tail

regularity (Assumption 2), it holds that F pµq “ Θpe´αrq, thereby justifying the lemma’s first
claim. A similar argument implies that rUprq “ Θpe´α̃rq.

So far our results sidestepped the role of the prior π, which determines the initial value
for the sequence tr̃h

nu, and only looked at the asymptotics as n Ñ 8. In the next lemma, we
establish a property of this sequence, that will prove useful for uniform convergence results.
We use the notation r̃h

npπq to refer to the value of r̃h
n when the initial belief was π, that is,

when r̃h
1 “ log

`

π
1´π

˘

. The rest of the sequence evolves according to (B.2).

Lemma 7. For every r̄ ě 0, there exists n0 such that r̃h
npπq ě r̄ for all n ě n0 and importantly

for all initial π ě 1{2.

Proof. The idea is similar to the proof of Lemma 12 in Rosenberg and Vieille (2019). Let us
introduce the mapping Ψprq :“ r` rUprq, and show its n-times composition by Ψn. Hence,
one has r̃h

n “ Ψn´1pr̃1q. First observe that since rU ą 0, if r̃1 ě r̄, then Ψnpr̃1q ě r̄.
Now assume by contradiction that the conclusion of the lemma does not hold. Then,
for every n P N, there exists an initial belief πpnq such that r̃h

npπpnqq ď r̄. Also, one has
Ψm´1`

r̃1pπpnqq
˘

“ r̃h
mpπpnqq ď r̄ for all m ď n. Since the interval r0, r̄s is compact, there is a

subsequence of initial values tr̃1pπpnqqu, that we index by k, which is converging to r˚ P r0, r̄s.
Since the mapping Ψn is continuous for every fixed n, then one has

Ψn
pr˚

q “ lim
kÑ8

Ψn
`

r̃1pπpkq
q
˘

ď r̄ .

The above inequality holds for every n, hence it leads to a contradiction, because for
every initial prior π ą 0, the induced sequence tr̃h

nu increases to infinity (this follows from
Lemma 5).

In the next two lemmas we calculate the asymptotic behavior of r̃h
n and show that

er̃h
n “ Θpn1{α̃q. We first establish a lower bound for r̃h

n. We achieve this by introducing a
lower bound for the increments of r̃h

n in (B.2). We then approximate the resulting lower
envelope with the solution to a differential equation.
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Lemma 8 (Lower Envelope). The misspecified public log-likelihood satisfies

lim inf
nÑ8

er̃h
n

n1{α̃
ą 0 . (B.3)

Proof. By Lemma 6, there exists c ą 0 such that for all sufficiently large n (say n ě n̄), one
has rUpr̃h

nq ě c e´α̃r̃h
n . Additionally, observe that the mapping z ÞÑ z`c e´α̃z is increasing for

all sufficiently large z (say z ě z̄). Since r̃h
n Ñ 8, one can choose N ě n̄ such that r̃N ě z̄.

For all n ě N it holds that
r̃h

n`1´r̃h
n “ rUpr̃h

nq ě c e´α̃r̃h
n . (B.4)

We show that this discrete time equation can be bounded from below by the following
differential equation:

dzptq

dt
“ c e´α̃zptq .

This equation has the solution form zptq “ α̃´1 log
`

κ`cα̃t
˘

, where the initial condition
parameter κ is chosen so that at n “ N , we have zpNq “ r̃h

N . Next, we inductively show
r̃h

n ě zpnq for all n ě N , which in turn establishes the claim in (B.3). The base step holds by
definition. Suppose the claim also holds at some n ą N , i.e., r̃h

n ě zpnq. Then, observe that
because of the mean value theorem, there exists t P rn, n`1s such that

zpn`1q´zpnq “ c e´α̃zptq
ď c e´α̃zpnq ,

where the inequality follows because zptq is increasing. Therefore, one has

zpn`1q ď zpnq`c e´α̃zpnq

ď r̃h
n`c e´α̃r̃h

n ď r̃h
n`1 .

The second inequality holds because z ÞÑ z`c e´α̃z is increasing for z ě z̄, and zpnq ě z̄ for
n ě N . The third inequality holds because of (B.4). This justifies the claim in (B.3).

The next lemma posits an upper bound for the increments of r̃h
n. Its proof strategy is

similar to that of the previous lemma, with some additional technical considerations.

Lemma 9 (Upper Envelope). The misspecified public log-likelihood satisfies

lim sup
nÑ8

er̃n

n1{α̃
ă 8 . (B.5)

Proof. As in the proof of the previous lemma—but changing the direction of the inequalities—
there exists C ą 0 and n̄ such that for all n ě n̄ one has rUpr̃h

nq ď Ce´α̃r̃h
n . Likewise, the
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mapping z ÞÑ z`Ce´α̃z is increasing for all z ě z̄, and we can choose N ě n̄ such that
r̃h

N ě z̄. Then for all n ě N it holds that

r̃h
n`1´r̃h

n “ rUpr̃h
nq ď Ce´α̃r̃h

n . (B.6)

Take the following differential equation as an upper envelope for the above difference equation:

dzptq

dt
“ 2Ce´α̃zptq ,

with the solution form zptq “ α̃´1 log
`

κ`2Cα̃t
˘

. Observe that for all κ ą 0 and n ě 1 one
has

2e´α̃zpn`1q
ě e´α̃zpnq. (B.7)

Therefore, one can choose κ large enough such that zpNq ě r̃h
N . Next, we inductively show

r̃h
n ď zpnq for all n ě N , which in turn establishes the claim in (B.5). The base step holds by

definition. Suppose the claim also holds at some n ą N . Then, observe that because of the
mean value theorem, there exists t P rn, n`1s such that

zpn`1q´zpnq “ 2Ce´α̃zptq
ě 2Ce´α̃zpn`1q

ě Ce´α̃zpnq ,

where the first inequality above holds because zptq is increasing and the second inequality
follows from (B.7). Since z ÞÑ z`Ce´α̃z is increasing for all z ě z̄, and n ě N , then
zpnq ě r̃h

n ě z̄ implies that

zpn`1q ě zpnq`Ce´α̃zpnq
ě r̃h

n`Ce´α̃r̃h
n ě r̃h

n`1 ,

where the last inequality follows from equation (B.6). This concludes the induction and thus
establishes the asymptotic upper bound for er̃h

n in (B.5).

The previous two lemmas jointly imply that er̃h
n “ Θpn1{α̃q. Importantly this holds

regardless of the initial belief π (i.e., the initial level r̃1). Of course, the implied constants
may depend on π.

C Characterization of Asymptotic Learning

In Section 4.3 we drew a connection between asymptotic learning and immediate herding. In
this section we formalize this, establishing necessary and sufficient conditions for asymptotic
learning in terms of immediate herding. Note that the results of this section, Lemmas 10
and 11 do not require tail-regularity and apply more broadly.

23



The first lemma states that asymptotic learning in the high state implies that immediate
herding on the high action happens with positive probability for some prior π1, and immediate
herding on the low action cannot occur.

Lemma 10 (Necessary condition). Assume an Ñ h, Ph-almost surely. Then, the following
two conditions hold:

(i) D π1 ă 1 such that Pπ1,h pā “ hq ą 0,

(ii) Ph pā “ ℓq “ 0.

Proof. Condition on θ “ h, and let σ be the random time of the last incorrect action, which
has to be finite, because an Ñ h. Since aσ “ ℓ, then it must be that π̃σ`1 ă 1{2, by the
overturning principle. Therefore,

1 “ Ph pan Ñ hq “

8
ÿ

k“0
Ph pσ “ kq

“

8
ÿ

k“0
Ph pam “ h @m ą k, π̃k`1 ă 1{2q .

Applying the law of total expectations, this is equal to

“

8
ÿ

k“0
Eh rPh pam “ h @m ą k, π̃k`1 ă 1{2 | π̃k`1qs

“

8
ÿ

k“0
Eh

“

Ph

`

am “ h @m ą k | π̃k`1
˘

1tπ̃k`1ă1{2u

‰

“

8
ÿ

k“0
Eh

“

Pπ̃k`1,h

`

ā “ h
˘

1tπ̃k`1ă1{2u

‰

,

(C.1)

where the last equality is an application of stationarity. To show (i), assume by contradiction
that Pπ1,h pā “ hq “ 0 for every π1 P r0, 1q. Then the right hand side is equal to zero, thereby
resulting in a contradiction.

Since the event an Ñ h is disjoint from the event ā “ ℓ, the assumption that the former
happens with probability one implies that the latter has probability zero, and thus we have
shown (ii).

The next lemma shows that asymptotic learning in the high state is implied by uniformly
positive probability (over priors at least one half) for immediate herding on the high action,
and zero probability (for any prior at least one half) for immediate herding on the low action.
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Lemma 11 (Sufficient condition). The following two conditions are sufficient for an Ñ h,
Ph-almost surely:

(i) infπ1ě1{2 Pπ1,h pā “ hq ą 0,

(ii) Pπ1,h pā “ ℓq “ 0 for all π1 ą 0.

Proof. To show asymptotic learning, we first rule out convergence to the wrong action, that is
we claim Phpan Ñ ℓq “ 0. Let σ be the last time that agents take the correct action h, hence
π̃σ`1 ě 1{2. Then, an Ñ ℓ iff σ ă 8. Therefore, applying the same logic of equation (C.1)
leads to

Phpan Ñ ℓq “

8
ÿ

k“0
Ph pσ “ kq “

8
ÿ

k“0
Eh

“

Pπ̃k`1,h

`

ā “ ℓ
˘

1tπ̃k`1ě1{2u

‰

.

Since Pπ1,h pā “ ℓq “ 0 for all π1 ą 0 the above expression implies that Phpan Ñ ℓq “ 0.
As we have shown that an does not converge to ℓ, it follows that the sequence of actions

an has some number of bad runs: consecutive agents who take the wrong action, flanked by
agents who take the correct action. To show asymptotic learning it suffices to show that the
number of bad runs is finite. Let

δ “ inf
π1ě 1

2

Pπ1,h pā “ hq .

At the end of a bad run the next action is h, and so the misspecified public belief is at least
1{2. Hence, by stationarity, there is a chance of at least δ of never having another bad run.
Since signals are independent conditioned on the state, this implies that the probability of
having m bad runs is at most p1´δqm. In particular, the probability of infinitely many bad
runs is zero.

D Proof of Theorem 1

We divide the proof of Theorem 1 into two: Proposition 3 characterizes asymptotic learning,
and Proposition 6 characterizes efficient learning. Jointly, they imply the theorem.

D.1 Parametric Characterization for Asymptotic Learning

In this section we characterize the range of condescension where asymptotic learning is
achieved.

Proposition 3. The following are equivalent:
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(i) Asymptotic learning;

(ii) α̃´α P r0, 1q.

To prove this statement we leverage the necessary and sufficient conditions found in
Lemmas 10 and 11, as well as prove the following two propositions that relate the probability
of immediate herding events to the underlying parameters α and α̃:

Proposition 4. The following are equivalent:

(i) inf
π1ě1{2

Pπ1,h pā “ hq ą 0;

(ii) D π1 ă 1 such that Pπ1,h pā “ hq ą 0;

(iii) α̃´α ă 1.

Proposition 5. The following are equivalent:

(i) Pπ1,h pā “ ℓq “ 0 for all π1 ą 0;

(ii) Pπ1,h pā “ ℓq “ 0 for some π1 ă 1;

(iii) α̃´α ě 0.

Proposition 4 implies that the probability of an immediate good herd is uniformly positive
(over all initial beliefs larger than 1{2) if and only if α̃´α ă 1, i.e., when agents are not overly
condescending. Proposition 5 claims that the probability of an immediate wrong herd is zero
for all positive initial beliefs if and only if α̃´α ě 0, i.e., when agents are condescending.

We use these propositions to prove Proposition 3, before proceeding with their proofs.

Proof of Proposition 3. Suppose that asymptotic learning holds, i.e., an Ñ θ, P-almost
surely. Then an Ñ h, Ph-almost surely. By Lemma 10, this implies that condition (ii) of
both Propositions 4 and 5 hold. Hence, by these propositions, conditions (iii) in the two
propositions hold, and α̃´α P r0, 1q.

Suppose that α̃´α P r0, 1q. Then condition (iii) of both Propositions 4 and 5 hold.
Therefore, condition (i) of both propositions hold. Hence, by Lemma 11, we have asymptotic
learning.
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D.1.1 Proof of Proposition 4

The proof of the first implication, namely (i) ñ (ii), is immediate. The next lemma establishes
the second implication, i.e., (ii) ñ (iii). In fact, it shows a stronger statement.

Lemma 12. The following are equivalent:

(i) α̃´α ă 1;

(ii) Phpā “ hq ą 0.

Proof. Conditioned on the event ā “ h, the public belief π̃n is deterministic and equals π̃h
n.

Thus the event ā “ h is equal to the event tqn`π̃h
n ě 1, @nu. Since the random variables qn

are independent conditioned on θ “ h, we have that

Phpā “ hq “
ź

n

Phpqn`π̃h
n ě 1q “

ź

n

`

1´Fhp1´π̃h
nq

˘

. (D.1)

This implies that Phpā “ hq ą 0 if and only if ´
ř

n log
`

1´Fhp1´π̃h
nq

˘

ă 8. For
two sequences fn and gn, we say fn „ gn if fn

gn
Ñ 1 as n Ñ 8. Since π̃h

n Ñ 1, then
´ log

`

1´Fhp1´π̃h
nq

˘

„ Fhp1´π̃h
nq, and the previous sum is finite if and only if

ÿ

n

Fhp1´π̃h
nq ă 8 .

Observe that Lemma 4 implies that Fhpqq “ Θpqα`1q. Also as n Ñ 8, we have e´r̃h
n „ 1´π̃h

n,
therefore, the above sum is finite if and only if

ÿ

n

e´pα`1qr̃h
n ă 8 . (D.2)

Because of the Lemmas 8 and 9, one has e´pα`1qr̃h
n “ Θ

´

n´
α`1

α̃

¯

. Thus, the sum in (D.2) is
finite if and only if α̃´α ă 1.

The following two lemmas are aimed at proving the third and final implication in Propo-
sition 4, that is (iii) ñ (i). In the first one, we show that the sum in (D.2) can be made
arbitrarily small if the initial value r̃1 is large enough. Often in the following expressions,
we use the notation r̃h

nprq to refer to the process initiated at r̃1 “ r. Also, recall our former
notation, where we used r̃h

npπq to refer to the process initiated at r̃1 “ log π
1´π

. We use both
of these notations interchangeably depending on the context.

Lemma 13. Assume α̃´α ă 1. Then for every ε ą 0, there exists r̄ ě 0 such that for all
r ě r̄ one has

ř

ně0 e´pα`1qr̃h
nprq ă ε.
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Proof. We appeal to the idea used in the proof of Lemma 8. Since rUprq “ Θpe´α̃rq, then
there exists c ą 0, and correspondingly a threshold r̄, such that rUprq ě c e´α̃r for every r ě r̄

and the mapping r ÞÑ r`c e´α̃r is increasing on rr̄, 8q. In particular, since r̃h
n is increasing in

n, starting the process at any r̃1 “ r ě r̄, implies

rUpr̃h
nprqq ě c e´α̃r̃h

nprq .

Next, we recall the continuous time process zptq such that zp0q “ r̄, and

dzptq

dt
“ c e´α̃zptq .

The solution to this differential equation takes the form

zptq “
1
α̃

log
´

eα̃r̄
`cα̃t

¯

.

Using induction, similar to the one used in Lemma 8, we can show r̃h
nprq ě zpnq for every

initial value r ě r̄. Therefore, for every r ě r̄, it holds that

ÿ

ně0
e´pα`1qr̃h

nprq
ď

ÿ

ně0
e´pα`1qzpnq

“
ÿ

ně0

´

eα̃r̄
`cα̃n

¯´
α`1

α̃
.

Since α`1 ą α̃, for a given ε ą 0, we can choose r̄ large enough, such that the above sum is
less than ε.

Let η : r1{2, 1s Ñ r0, 1s,

ηpπq “ Pπ,hpā “ hq,

be the probability of immediate herding on the high action, conditioned on the high state,
when the prior is π. By (D.1),

ηpπq “
ź

n

`

1´Fhp1´π̃h
npπqq

˘

.

Lemma 14. Assume α̃´α ă 1. Then η is continuous.

Proof. Let

ηnpπq “ Pπ,hpa1 “ h, . . . , an “ hq “

n
ź

k“1

`

1´Fhp1´π̃h
k pπqq

˘

, (D.3)

be the probability that the first n agents take the high action, conditioned on the high state,
when the prior is π. By definition, ηpπq “ limn ηnpπq. Since the distribution of the private
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posteriors qn is non-atomic, each ηn is continuous. Thus, we prove that η is continuous by
showing that ηn converges uniformly to η.

First, Lemma 4 implies that Fhpe´rq “ Θpe´pα`1qrq, and hence there exists C ą 0 such
that Fhpe´rq ď Ce´pα`1qr. Second, because of Lemma 13, for a given ε1 ą 0, there exists
r̄ ě 0 such that for all r1 ě r̄, one has

ÿ

ně0
e´pα`1qr̃h

npr1q
ď ε1 .

Then, because of Lemma 7 there exists n0 ” n0pr̄q such that r̃h
npπq ě r̄ for all initial π ě 1{2,

and n ě n0. By (D.3),

ηn`1pπq “ ηnpπq
`

1´Fhp1´π̃h
npπq

˘

,

so that |ηn`1pπq´ηnpπq| ď Fhp1´π̃h
npπqq. Hence, for every k ą 0, and π ě 1{2,

|ηn0`kpπq´ηn0pπq| ď

8
ÿ

n“n0

Fh

`

e´r̃h
npπq

˘

ď C
ÿ

něn0

e´pα`1qr̃h
npπq

ď Cε1 . (D.4)

The third inequality above holds because r̃h
n0pπq ě r̄, and thus Lemma 13 implies the sum

is smaller than ε1. Since ε1 was chosen independently, the final term above can be made
arbitrarily small, by taking n0 large enough. This implies the sequence tηnu is Cauchy
w.r.t. the sup-norm in Cr1{2, 1s, and thus it converges uniformly to η. Therefore, η is
continuous.

Using the above lemma, we can now conclude the proof of the last implication in
Proposition 4, namely (iii) ñ (i). Assume by contradiction, that condition (i) does not hold,
then infπě1{2 ηpπq “ 0. By the previous lemma η is a continuous function, hence there must
exist π̂ P r1{2, 1s such that ηpπ̂q “ 0. Since, ηp1q ‰ 0, then π̂ P r1{2, 1q and Lemma 12 implies
that α̃´α ě 1. This violates the initial assumption (i.e., α̃´α ă 1) and hence concludes the
proof of Proposition 4.

D.1.2 Proof of Proposition 5

The first implication, namely (i) ñ (ii), is immediate. For the remaining two implications,
define

ξpπq “ Pπ,h

`

ā “ ℓ
˘

,

and appeal to the next lemma.

Lemma 15. For every π P p0, 1q, one has ξpπq “ 0 if and only if α̃´α ě 0.
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Proof. Because of the symmetry assumption, we have ξpπq “ P1´π,ℓ pā “ hq. Let π̃h
n “

π̃h
np1´πq be the misspecified public belief on the high action path, initiated at π̃1 “ 1´π.

Then, following the same argument of Lemma 12, one has

ξpπq “
ź

n

`

1´Fℓp1´π̃h
np1´πqq

˘

.

Therefore, ξpπq ą 0 if and only if ´
ř

n log
`

1´Fℓp1´π̃h
nq

˘

ă 8. Since on the high action
path π̃h

n Ñ 1, then ´ log
`

1´Fℓp1´π̃h
nq

˘

„ Fℓp1´π̃h
nq, and the previous sum is finite if and

only if
ÿ

n

Fℓ

`

1´π̃h
n

˘

ă 8 .

Lemma 3 implies that Fℓpqq “ Θpqαq. Also, as n Ñ 8, we have 1´π̃h
n „ e´r̃h

n , therefore the
above sum is finite if and only if

ÿ

n

e´αr̃h
n ă 8 .

It was shown in Lemmas 8 and 9 that er̃n “ Θpn1{α̃q, thus one can deduce that the above
sum is finite if and only if α ą α̃. Therefore, ξpπq “ 0 if and only if α̃´α ě 0.

Observe that ξp1q “ 0. Therefore, the second and the third implications of Proposition 5,
namely (ii) ñ (iii) ñ (i), respectively follow from the above lemma, thereby concluding the
proof of Proposition 5.

D.2 Parametric Characterization for Efficient Learning

In this section we characterize the range of condescension where efficient learning is achieved.

Proposition 6. Assume α̃ ‰ α. The following are equivalent:

(i) Efficient learning;

(ii) α̃´α P p0, 1q.

Proof. The implication (i) ñ (ii) follows immediately from Proposition 3, since efficient
learning implies asymptotic learning.

Towards sufficiency, assume α̃´α ă 1. Following the same logic as in the proof of
Lemma 11, one obtains that conditioned on θ “ h, the probability of having m bad runs is
at most p1´δqm for some δ ą 0, and hence the number of bad runs has a finite expectation.

By Proposition 7 below, conditioned on the high state, α̃´α ą 0 implies that the expected
length of the first bad run is bounded by C0

1´π
π

, for some constant C0 ą 0. This proposition
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also implies, by stationarity, that conditioned on θ “ h and on any prior history, the expected
length of any future bad run is at most C0B, where B ą 0 is another constant. It thus
follows from the fact that signals are conditionally i.i.d. that the expected total number of
low actions in the high state is finite. The argument is analogous to the one that appears in
Appendix B.3 of Rosenberg and Vieille (2019).

Finally, by symmetry, the expected number of high actions in the low state is also finite,
and thus we have efficient learning.

We end this second with the following proposition, which is the main ingredient of the
proof above. It shows that α̃´α ą 0 implies that the expected length of a bad run is uniformly
bounded.

Define τθ :“ mintn : an “ θu. Note that conditioned on θ “ h, τh is the length of the first
bad run.

Proposition 7. Assume α̃´α ą 0, then the following statements hold:

(i) Let π ď 1{2. There exists a constant C0 ą 0 (independent of π) such that

Eπ,h rτhs ď C0
1´π

π
.

(ii) Let π̃n`1 be the misspecified public belief after observing a history ending with an´1 “ h

and an “ ℓ. Then 1´π̃n`1
π̃n`1

ď B for some constant B ă 8 that does not depend on the
history.

Proof. To see (i), observe that because of symmetry, one has Eπ,h rτhs “ E1´π,ℓ rτℓs. Also, it
holds that

E1´π,ℓ rτℓs “ 1`
ÿ

ně1
P1´π,ℓ pτℓ ą nq .

By Bayes Law

P1´π,ℓ pτℓ ą nq “
1´π

π
ˆ

1´πh
n`1

πh
n`1

P1´π,h pa1 “ ¨ ¨ ¨ “ an “ hq ,

where πh
n is the correctly specified public belief on the high action path, starting at 1´π and

following the dynamics in equation (4.2a). Recall that rh
n represents the correctly specified

public log-likelihood on the high action path, which follows the dynamics in equation (B.1),
namely rh

n`1´rh
n “ Upr̃h

nq. Hence, the above expression implies that

E1´π,ℓ rτℓs ď 1`
1´π

π

ÿ

ně1
e´rh

n`1 . (D.5)
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Since the initial belief is set to 1´π and it is assumed in part (i) that π ď 1{2, then rh
n ě 0.

Next, observe that on the path ā “ h, the misspecified public log-likelihood follows the
difference equation (B.2), namely r̃h

n`1´r̃h
n “ rUpr̃h

nq. Additionally, because of Lemma 6,
there exists C ą 0 such that rUpr̃h

nq ď Ce´α̃r̃h
n . We continue by finding a continuous time

upper envelope for r̃h
n—analogous to Lemma 9 with a slight catch in selecting the initial

condition. Choose r̄ ą 0 such that the mapping r ÞÑ r`Ce´α̃r becomes increasing on rr̄, 8q.
Let n0 :“ mintn : r̃h

n ě r̄u that is finite because r̃n Ñ 8 on the high action path. Since rUp¨q

is a decreasing function, then r̄ ď r̃h
n0 ď r̄` rUp0q. Let zptq be the solution to the following

differential equation
dzptq

dt
“ 2Ce´α̃zptq ,

starting at zp0q “ r̄` rUp0q. Therefore, zptq “ α̃´1 log
´

er̄` rUp0q`2Cα̃t
¯

. Following the recipe
of Lemma 9, one can show by induction that zpkq ě r̃h

k0`n for all k ě 0. Next, we examine
Raabe’s criterion5 for the infinite sum

ř

ně1 e´rh
n , that is to examine the limit of the following

expression:

n

˜

e´rh
n

e´rh
n`1

´1
¸

“ n
´

eUpr̃h
nq

´1
¯

ě nUpr̃h
nq .

Note that U is decreasing, that zpkq ě r̃h
k0`n for all k ě 0, and that there exists c ą 0 such

that Upzq ě c e´αz. Hence

lim inf
nÑ8

n

˜

e´rh
n

e´rh
n`1

´1
¸

ě lim sup
kÑ8

ck e´αzpkq
“ lim sup

kÑ8

c k
´

er̄` rUp0q`2Cα̃ k
¯α{α̃

.

Since α̃ ą α, the limit superior on the right hand side above is infinite and thus the sum
ř

ně1 e´rh
n is convergent. Together with (D.5), this implies that there exists a constant C0 ą 0

such that Eπ,hrτhs ď C0
`1´π

π

˘

. This establishes (i).
To see (ii), condition on the event tan´1 “ h, an “ ℓu. Equivalently, π̃n ě 1{2 and

π̃n`1 ď 1{2, by the overturning principle. Then, Bayes law implies

1´π̃n`1

π̃n`1
“

1´π̃n

π̃n

ˆ
rFℓp1´π̃nq

rFhp1´π̃nq
.

Since rFℓpqq “ Θpqα̃q and rFhpqq “ Θpqα̃`1q, then, there are constants C ą 0 and c ą 0 such
that rFℓpqq ď Cqα̃ and rFhpqq ě cqα̃`1 for all q P r0, 1{2s. Therefore,

1´π̃n`1

π̃n`1
ď

1´π̃n

π̃n

Cp1´π̃nqα̃

cp1´π̃nqα̃`1 ď
2C

c
.

5 Raabe’s criterion for convergence of sums states that
ř

n νn converges if lim infn ρn ą 1 and diverges if
lim supn ρn ă 1, where ρn “ n

`

νn{νn`1´1
˘

. It is inconclusive when limn ρn “ 1. This latter case corresponds
to α̃ “ α.
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This establishes (ii).

E Proofs of Propositions 1 and 2

Proof of Proposition 1. Suppose that α̃ ă α. Then, by Proposition 5 one has Phpā “ ℓq ą 0,
so that a wrong herd forms immediately with positive probability.

Proof of Proposition 2. Suppose that α̃ ě α`1. Condition on the high state. Then, by
Proposition 4, for any prior π1 ă 1, the probability of an immediate herd on the high action
is zero. Hence, by stationarity, the probability that an Ñ h is zero. By Proposition 5,
the probability of an immediate herd on the low action is also zero, and hence, again by
stationarity, the probability that an Ñ ℓ is zero. Thus the agents take both actions infinitely
many times. The same argument applies when conditioning on the low state.
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