$18.022\ 2014,\ \mathrm{Midterm}\ \mathrm{Exam}\ 2$

Please explain all your work. You have 50 minutes. Allowed materials are the lecture notes only.

Name:

Signature:

Student ID:

Recitation leader:

Recitation number and time: ____

Question	Score
1a	
1b	
2a	
2b	
2c	
2d	
2e	
2f	
3a	
3b	
Total	

Omer Tamuz. Email: tamuz@mit.edu.

(1) (22 points) Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = e^{-x}$, and suppose that $\vec{a} \in \mathbb{R}^3$ is constant. Define $T : \mathbb{R}^3 \to \mathbb{R}$ by

$$T(\vec{x}) = f(|\vec{x} - \vec{a}|^2) = e^{-|\vec{x} - \vec{a}|^2}.$$

We may think of $T(\vec{x})$ as the temperature at $\vec{x} \in \mathbb{R}^3$ resulting from a heat source at \vec{a} ; note that the temperature only depends on the distance from \vec{x} to \vec{a} .

- (a) Calculate $\nabla T(\vec{x})$ at a point $\vec{x} \in \mathbb{R}^3$.
- (b) Recall that if \hat{n} is a unit vector, then the directional derivative of T in the direction \hat{n} at $\vec{x} \in \mathbb{R}^3$ is given by

$$D_{\hat{n}}T(\vec{x}) = \lim_{h \to 0} \frac{T(\vec{x} + h\hat{n}) - T(\vec{x})}{h}$$

Fix a point $\vec{x} \in \mathbb{R}^3$. For which unit vectors \hat{n} is $D_{\hat{n}}T(\vec{x})$ equal to zero? (i.e., in which directions does the temperature not change?). Give a short geometric interpretation of your answer.

 $\mathbf{2}$

(2) (56 points) Suppose $\vec{x} : \mathbb{R} \to \mathbb{R}^2$ is a regular curve of class \mathcal{C}^2 , parametrized by arclength (so that $|\vec{x}'(t)| = 1$). Let $\lambda > 0$ and $\theta \in \mathbb{R}$ be constants, let

$$M = \begin{pmatrix} \lambda \cos \theta & -\lambda \sin \theta \\ \lambda \sin \theta & \lambda \cos \theta \end{pmatrix},$$

and let $g: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $g(\vec{x}) = M\vec{x}$. Let $\vec{r}: \mathbb{R} \to \mathbb{R}^2$ be given by $\vec{r}(t) = g(\vec{x}(t))$.

- (a) Let $\vec{v} \in \mathbb{R}^2$ be a non-zero vector. Show that $|g(\vec{v})|$, the norm of $g(\vec{v})$, is equal to $\lambda |\vec{v}|$, and that the angle between \vec{v} and $g(\vec{v})$ is θ .
- (b) Calculate the partial derivatives of $g\left(\frac{\partial g_i}{\partial x_j}\right)$ for i = 1, 2 and j = 1, 2, and explain why g is differentiable. What is the matrix Dg (that is, the derivative of g)?

(c) Calculate $\vec{r}'(t)$ in terms of $\vec{x}'(t)$. (Hint: use the chain rule.)

4

(d) Calculate $s_r(t)$, the arclength parametrization of \vec{r} , with respect to the reference point t = 0 (this is the distance along the curve \vec{r} from 0 to t). (Hint: Recall that $\vec{x}(t)$ is parametrized by arclength. Calculate $s'_r(t)$ and then integrate.)

- (e) Calculate $\vec{T}_r(t)$, the unit tangent vector of \vec{r} , in terms of $\vec{T}_x(t)$, the unit tangent vector of \vec{x} .
- (f) **Extra credit:** Calculate $\vec{N}_r(t)$, the unit normal vector of \vec{r} as well as $\kappa_r(t)$, the curvature of \vec{r} , in terms of $\vec{N}_x(t)$ and $\kappa_x(t)$, the unit normal vector of \vec{x} and the curvature of \vec{x} .

(3) (22 points) Given an $f: \mathbb{R}^n \to \mathbb{R}$ of class \mathcal{C}^2 , recall that the Hessian Matrix $H = (h_{ij})$ is the *n*-by-*n* matrix given by

$$h_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

Suppose $M = (m_{ij})$ is a symmetric 2×2 matrix (i.e., $m_{ij} = m_{ji}$), suppose $\vec{a} \in \mathbb{R}^2$, and let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(\vec{x}) = \vec{a} \cdot \vec{x} + \frac{1}{2}\vec{x} \cdot (M\vec{x}).$$

This can also be written as

$$f(x_1, x_2) = a_1 x_1 + a_2 x_2 + \frac{1}{2} (x_1 m_{11} x_1 + x_1 m_{12} x_2 + x_2 m_{21} x_1 + x_2 m_{22} x_2).$$

Note that (a_i) and (m_{ij}) are constants.

- (a) Show that the gradient of f at $\vec{x} \in \mathbb{R}^2$ is equal to $\vec{a} + M\vec{x}$, and calculate f's Hessian.
- (b) Assume now that det $M \neq 0$, so that M is invertible. Solve the equation $\nabla f(p) = \vec{0}$, and calculate the tangent plane to the graph of f at the solution p, in terms of f(p).