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1. DECISION PROBLEMS

A state of nature θ can take values in {0,1}. A decision maker has to
choose an action out of a set A of actions. Her utility for taking action
a when the state is θ is u(a,θ) for some u : A× {0,1}→R. Suppose that
the decision maker has a belief on {0,1}, assigning probability p to 1.
Put together, D = (A, u, p) is called a decision problem.

We assume that the decision maker is an expected utility maximizer.
Then she would like to choose an action a that maximizes pu(a,1)+
(1− p)u(a,0). While in general such an action might not exist, we will
only consider utility functions u for which there is such a maximizer
for every p (see Exercise 1). Accordingly, define the indirect utility

function v : [0,1]→R by

v(p)=max
a∈A

pu(a,1)+ (1− p)u(a,0).

Since v is the maximum of convex function (in fact, affine functions) it
is convex. When A is finite, v is piecewise linear. For infinite A this is
of course no longer true, but v is nevertheless always continuous (see
Exercises 2 and 3).
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A standard example is A = {0,1} and u(a,θ) = 1{a=θ}. In this case
v(p) = 1− p for p ≤ 1/2, and v(p) = p for p ≥ 1/2. Another important
example is A = [0,1] and u(a,θ) = −(a− θ)2. In this case v(p) = 1/4−

(p−1/2)2.

2. BLACKWELL EXPERIMENTS

A Blackwell experiment is µ= (Ω,µ0,µ1), where Ω is a set (equipped
with a sigma-algebra, which we suppress) and µ0,µ1 are probability
measures defined on it. The interpretation is that of a signal, taking
values in Ω and distributed as µθ when the state is θ. Experiments
are accordingly also called signals.

A common example is the symmetric binary experiment β for which
Ω= {0,1}, and β0(0)=β1(1)= c for some c ≥ 1/2. This is the signal that
in each state equals the state with probability c. For example, suppose
that there is an urn that has red and green balls. When θ = 0 there
are six red and four green balls. When θ = 1 there are four red and
six green balls. Then the symmetric binary experiment with c = 6/10
captures the physical experiment of choosing uniformly a ball from the
urn.

Another example is the Gaussian experiment γ, for which Ω = R,
γ0 = N(0,σ2) and γ1 = N(1,σ2). This can be interpreted as a measure-
ment of the state with standard Gaussian noise.

To study decision making, it will be useful to think of a signal as
a random variable s co-existing with the state in a probability space.
That is, we will fix a probability space in which θ is a non-constant
random variable taking values in {0,1}, s is a random variable taking
values in Ω, and the distribution of s conditioned on θ is µθ. We will
say that s realizes µ.

We will use P and E to denote probabilities and expectations in this
space. This probability space can be interpreted as the subjective belief
of the decision maker. As such, p = P[θ = 1] is the prior belief of the
decision maker that the state is 1. We will denote by q =P[θ = 1|s] the
posterior belief of the decision maker, after observing the signal. Note
that this is a random variable, which is a function of the signal s. The
martingale property of beliefs refers to the fact that the expectation of
the posterior is equal to the prior: E[q] = p. This is a consequence of
the law of total expectations.

3. THE VALUE OF INFORMATION AND THE BLACKWELL ORDER

Suppose that the decision maker observes a Blackwell experiment
µ before choosing her action. That is, she chooses an action a∗ that
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maximizes her expected utility conditioned on what she knows, which
is a signal s that realizes µ:

a∗
= argmax

a∈A

E[u(a,θ)|s].

Recalling our notation q = P[θ = 1|s], we note that given s, the choice
of a∗ depends only on q, so that

a∗
= argmax

a∈A

E[u(a,θ)|q].

Indeed, we can think of q itself as a signal, taking values in [0,1] (see
Exercise 4).

It follows that the decision maker’s expected utility conditioned on
q is v(q), and so her unconditional expected utility is

E
[

u(a∗,θ)
]

= E[v(q)].

We can think of this expected utility as the value of the experiment
µ to a decision maker facing the decision problem D = (A, u, p). We
denote this by V (µ,D).

The Blackwell order is a notion of when one experiment contains
more information than another. Given two experiment µ and µ′, we
say that µ Blackwell dominates µ′ if V (µ,D) ≥ V (µ′,D) for all decision
problems D. This defines a partial order º on experiments (see Exer-
cise 5). An equivalent formulation is that for every s and s′ that realize
µ and µ, and for every continuous and convex v : [0,1]→R, E[q]≥ E

[

q′
]

,
where q and q′ are the posteriors induced by s and s′, respectively.

A different notion of informativeness is that of garbling. We say that
µ′ is a garbling of µ if there exist s and s′ that realize Blackwell exper-
iments µ and µ′ such that there is a random variable r independent of
θ and a measurable map f for which s′ = f (s, r). This captures the idea
that it is possible to generate s′ from s using no additional information
about the state.

Blackwell’s Theorem states that these notions are the same (see Ex-
ercise 6).

Theorem 3.1 (Blackwell [3, 4]). Let µ,µ′ be Blackwell experiments.

Then µºµ′ if and only if µ′ is a garbling of µ.

As an example, the symmetric binary experiment β is a garbling
of the Gaussian experiment γ as long as the former’s precision c is
small enough compared to the latter’s precision 1/σ2. When c = 1, β
dominates γ for any σ2. But when c < 1, β never dominates γ (see
Exercise 7).
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4. CONDITIONALLY INDEPENDENT SIGNALS

Let µ = (Ω,µ0,µ1) and η = (Ξ,η0,η1) be Blackwell experiments. De-
note the product experiment by

µ⊗η= (Ω×Ξ,µ0 ×η0,µ1×η1).

This experiment yields a signal that comprises a pair: one from Ω and
one from Ξ. And these two are independent, conditioned on the state.
This can be interpreted as combining two independent experiments:
measuring a quantity twice with (unconditionally) independent mea-
surement errors. If s1 realizes µ and s2 realized η then (s1, s2) realizes
µ×η if s1 and s2 are independent conditioned on θ.

We denote by µ⊗n the n-fold product of µ with itself. For example if
µ is the experiment in which a ball is chosen from an urn, then µ⊗n is
the experiment in which this is repeated n times, and where the ball
is put back in the urn after each pick (see Exercise 8).

Bayesian updating of product experiments takes a simple, separable
form. For this discussion, and henceforth, we will consider only experi-
ments µ such that µ0 and µ1 are mutually absolutely continuous. That
is, for any subset A ⊆Ω, µ0(A)= 0 if and only if µ1(A)= 0. This implies
that the log-likelihood ratio ℓµ := log dµ1

dµ0
exists and is finite; we write

ℓ when µ can be inferred from the context. That is, there is a function
ℓµ : Ω→R such that for any subset A ⊆Ω

∫

A
dµ1(ω)=

∫

A
eℓ(ω)dµ0(ω).

Suppose that (s1, . . . , sn) realize µ1 × ·· · ×µn. Then ℓ(si) are well-
defined random variables. By Bayes’ Law, q = P[θ= 1|s1, . . . , sn] is
given by

log
q

1− q
= log

p

1− p
+ℓ(s1)+·· ·+ℓ(sn).

Conditioned on θ, this is a sum of independent random variables, and
so to understand it we can apply many classical tools from probability
theory. In particular, if (s1, . . . , sn) realizes µ⊗n this is a sum of i.i.d.
random variables, which are very well understood.

5. ASYMPTOTIC LEARNING AND THE VALUE OF REPEATED

EXPERIMENTS

Fix µ, and suppose (s1, s2, . . .) are a sequence of conditionally (on
θ) i.i.d. random variables where each si realizes µ. Thus (s1, . . . , sn)
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realizes µ⊗n. The expectation of ℓ(si) conditioned on θ= 0 is

E[ℓ(si)|θ = 0]=
∫

log
dµ1

dµ0
(ω)dµ0(ω)=−

∫

log
dµ0

dµ1
(ω)dµ0(ω)=−DKL(µ0||µ1),

where DKL(·||·) denotes the Kullback-Leibler divergence, which is pos-
itive unless the two measures are equal (see Exercise 9). Denote qn =

P[θ = 1|s1, . . . , sn]. Then by the strong law of large numbers it almost
surely holds that conditioned on θ = 0

lim
n

1

n
log

qn

1− qn

=−DKL(µ0||µ1).

In particular, limn qn = 0.
The theory of large deviations can give us more nuanced estimates

for the likelihood of not learning θ at time n. Let X be a random
variable. The cumulant generating function KX : R→R of X is

KX (t)= logE
[

etX
]

.

We assume that it is finite. This is a smooth convex function. It is
equal to 0 at 0 and its derivative at 0 is equal to the expectation of X .
Consider its Fenchel transform

K⋆

X (a)=max
t≥0

(ta−KX (t)).

Since KX is smooth, if K⋆

X
(a)= ta−KX (t) then a= K ′

X
(t).

Consider a sequence of i.i.d. random variables X1, X2, . . . distributed
like X .

Theorem 5.1 (Cramér [5]). Suppose a≥ E[X ]. Then

P[X1 +·· ·+ Xn ≥ na]= exp
(

−nK⋆

X (a)+ o(n)
)

.

It follows that if E[X ] ≤ 0 and if P[X > 0] > 0 then for any constant
c ∈R

P[X1 +·· ·+ Xn ≥ c]= exp
(

−nρX + o(n)
)

,(5.1)

where ρX =−mint KX (t) (see Exercise 10).
Consider a decision problem with finitely many actions, and sup-

pose that there is a unique action a0 that is optimal when θ = 0:
u(a,0) ≥ u(a′,0) for any a′ ∈ A. Likewise, there is a unique a1 that
is optimal when θ = 1. Then there is some threshold r0 such that a
decision maker will choose a0 whenever their posterior is below r0.
Equivalently, there is some c0 ∈ R such that a0 is chosen whenever
log q

1−q
≤ c0.
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Let

K0
µ(t)= logE

[

etℓ(s1)
|θ = 0

]

= log
∫

Ω

e
t log

dµ1
dµ0

(ω)
dµ0(ω)

be the cumulant generating function of the log-likelihood ratio, condi-
tioned on θ = 0. As observed by Moscarini and Smith [6], it is implied
by (5.1) that

P[qn ≤ r0|θ = 0]= exp
(

−nρ0
µ+ o(n)

)

,

where ρ0
µ =−mint K0

µ(t). Now (see Exercise 11),

K1
µ(t)= logE

[

e−tℓ(s1)
|θ = 1

]

= K0
µ(1− t),(5.2)

and so ρ1
µ = ρ0

µ. Thus the probability that a decision maker chooses
a wrong action decays exponentially, and does so at the same rate in
both states. This is independent of the choice of decision problem and
prior, and depends only on the experiment µ. We thus denote it by
ρµ. Another way of thinking of ρ is that if ρµ > ρη then for every
decision problem D there is some N such that V (µ⊗n,D) > V (η⊗n,D)
for all n ≥ N. It follows that the order induced by ρ is a refinement of
the Blackwell order: µº η implies that ρµ ≥ ρη.

6. RÉNYI DIVERGENCES AND DOMINANCE IN LARGE SAMPLES

We say that an experiment is bounded if the log-likelihood ratio that
it induces is bounded. In this section we restrict ourselves to bounded
experiments.

Blackwell [3] asked whether there exist experiments µ,η such that
µ 6º η but µ×µ º η× η. This was answered positively by Stein [9];
see also Torgersen [10] and Azrieli [2]. More generally, one could ask:
under which conditions on µ and η does it holds that µ⊗n ºµ⊗n for all n

large enough? In this case we say that µ dominates η in large samples.
It turns out that the answer is closely related to the discussion

above. Recall that

K0
µ(t)= logE

[

etℓ(s1)
|θ = 0

]

= log
∫

Ω

e
t log

dµ1
dµ0

(ω)
dµ0(ω).

We can also write this as

K0
µ(t)= log

∫

Ω

(

dµ1

dµ0
(ω)

)t

dµ0(ω).
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We reparametrize t 7→ 1− t and normalize to arrive at the definition of
Rényi divergence:

R0
µ(t)=

1

t−1
K0

µ(1− t)=
1

t−1
log

∫

Ω

(

dµ0

dµ1
(ω)

)t−1

dµ0(ω),

with R1
µ(t) defined analogously. Thus Rθ

µ is a family of divergences,
indexed by t ≥ 0 (and θ ∈ {0,1}), which naturally generalizes Kullback-
Leibler divergence. Indeed, R0

µ(1) = DKL(µ0||µ1). We can also extend,
by continuity, to t =∞. Then R0

µ(∞) is the maximum of the support of

the log-likelihood ratio log dµ1
dµ0

.
Like the cumulant generating function, Rényi divergences are addi-

tive for product experiments: Rθ
µ⊗η = Rθ

µ+Rθ
η. They are also monotone

in the Blackwell order: µ º η implies Rθ
µ(t) ≥ Rθ

ν(t) for all t (see Exer-
cise 12). Interestingly, they determines the large sample order.

Theorem 6.1 (Mu et al. [7]). Suppose Rθ
µ(t) > Rθ

η(t) for all t ∈ (0,∞]
and θ ∈ {0,1}. Then µ dominates η in large samples.

The proof of this theorem is related to the following result. Recall
that a random variable X first order stochastically dominates Y if for
every a ∈R it holds that P[X ≤ a]≤P[Y ≤ a].

Theorem 6.2 (Aubrun and Nechita [1]). Let X ,Y be bounded random

variables. If 1
t
KX (t) > 1

t
KY (t) for all t ∈ [−∞,∞] then for all n large

enough a sum of n independent copies of X first-order stochastically

dominates the sum of n independent copies of Y .

The relation between first order stochastic dominance and Blackwell
dominance is given by the following result.

Proposition 6.3 (Mu et al. [7]). Suppose s1, s2 realize µ,η respectively.

Let R be an independent r.v. distributed exponentially (i.e., with density

f (x) = e−x for x ≥ 0). Then µ º η if and only if, conditioned on θ = 1,

ℓ(s1)−R first order stochastically dominates ℓ(s2)−R.

7. THE COST OF INFORMATION

Suppose that a firm produces bounded Blackwell experiments. A
historically standard assumption for the cost of production is that it
is additive for product experiments. For example, Wald [11] assumes
that there is only one experiment µ that can be produced, and that
the cost of producing µ⊗n is linear in n. Wilson [12] and many others
assume that only Gaussian experiments can be produced, and that the
cost is linear in the precision 1/σ2 (see Exercise 13); this implies that
if γ is Gaussian then the cost of γ⊗n is again linear in n.
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Suppose that we allow for more flexible information acquisition. For
example, suppose a firm can produce any bounded experiment. We
would like to know how to think of a cost function C : B → R+, where
B is the set of bounded experiments. A natural assumption is that
C is Blackwell monotone: µ º η implies that C(µ) ≥ C(η). This is a
“free disposal” assumption, since by garbling it is easy to turn a µ

experiment into an η experiment by forgetting some information. If in
addition we also assume that C is additive—i.e., C(µ⊗η)= C(µ)+C(η),
what can we conclude? We have already seen that Rényi diverges are
additive and monotone. Is there anything else?

The set of monotone additive cost functions is easily shown to be a
convex cone. It can furthermore be shown to have a set of extreme rays
that is compact (under pointwise convergence). Thus to understand it
we must understand these rays.

Theorem 7.1 (Mu et al. [7]). The extreme rays of the set of additive

monotone cost functions are the Rényi divergences.

In other words, every monotone additive cost function is a weighted
sum (integral) of Rényi divergences.

An additional axiom was introduced by Pomatto et al. [8]. Given
an experiment µ= (Ω,µ0,µ1), and α ∈ (0,1), they consider the “diluted”
experiment α·µ= (Ω∪{e},µ′

0,µ′
1), where µ′

θ
= (1−α)δe+αµθ. This corre-

sponds to an experiment that fails with probability one half, producing
an error message e and no information, and succeeds and produces a
µ signal otherwise. Their dilution axiom states that C(α ·µ)=αC(µ).

Theorem 7.2 (Pomatto et al. [8]). Every monotone additive cost func-

tion that satisfies the dilution axiom is of the form C(µ)=β1DKL(µ1||µ0)+
β0DKL(µ0||µ1).

This follows from Theorem 7.1, since none of the Rényi divergences
satisfy the dilution axiom, except the Kullback-Leibler divergences. To
see this, note that by the axioms,

C(
1

n
·µ⊗n)= C(µ).

Now, if X is a random variable, and if Zn is equal to X with probability
1/n and to 0 otherwise, then

KZn
(t)= logE

[

etZ
]

= log
(

1

n
E

[

etX
]

+
n−1

n

)

= log
n−1

n
+ log

E
[

etX
]

n−1
and so

lim
n

KZn
(t)= 0
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for all t. Since all Rényi divergences (except R0
µ(1) and R1

µ(1)) are of
this form, they do not satisfy the dilution axiom. An additional argu-
ment shows that this is still impossible for their convex combinations.
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APPENDIX A. EXERCISES

(1) Let A be a set, and consider a map u : A × {0,1} → R. Show
that if the set {(u(a,1), u(a,0) : a ∈ A} ⊆ R

2 is compact then for
every p ∈ [0,1] there exists a ∈ A that maximizes pu(a,1)+ (1−

p)u(a,0). Give an example showing that the converse is not
true.

(2) Fix some v : [0,1] → R. Show that v is the indirect utility of
some u if and only if v is continuous and convex.

(3) Suppose that if a 6= a′ then either u(a,0) 6= u(a′,0) or u(a,1) 6=
u(a,1). Show that there is a unique a ∈ A such that v(p) =
pu(a,1)+ (1− p)u(a,0) if and only if v is differentiable at p.

(4) Suppose that s is a signal and that q =P[θ = 1|s] is the induced
posterior.
(a) Show that E[q]=P[θ = 1].
(b) Show that q =P[θ = 1|q].
(c) Denote by µ̃ the distribution of q and by µ̃0 and µ̃1 its dis-

tributions conditional on θ = 0 and θ = 1 respectively. Show
that

dµ̃0

dµ̃
(x)=

x

p
and

dµ̃1

dµ̃
(x)=

1− x

1− p
,

where p =P[θ = 1] is the prior.
(5) Show that the Blackwell order º on experiments is a partial

order, and that it is not a complete order.
(6) Show that if µ′ is a garbling of µ then µºµ′.
(7) Calculate for which values of c and σ2 the symmetric binary

experiment with precision c is a garbling of the Gaussian ex-
periment with precision 1/σ2. Show that a symmetric binary
experiment with c < 1 does not dominate any Gaussian experi-
ment.

(8) Show that if µ1 º µ2 then for any η, µ1 ⊗η º µ2 ⊗η. Conclude
that if µº η then µ⊗n º η⊗n for all n ≥ 1.

(9) Suppose that µ1 and µ0 are mutually absolutely continuous.
Show that DKL(µ1||µ0)≥ 0 with equality if and only if µ1 =µ0.

(10) Prove (5.1).
(11) Prove (5.2). Conclude that K0

µ(1) = K1
µ(1) = 0, but explain why

this follows directly from Bayes’ Law.
(12) Show that if µº ν then Rθ

µ(t)≥ Rθ
η(t) for all t ≥ 0 and θ ∈ {0,1}.

(13) Show that if γ,γ′ are Gaussian experiments with precisions
1/σ2,1/τ2 then γ⊗γ′ is Blackwell equivalent to a Gaussian ex-
periment with precision 1/σ2+1/τ2.
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