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Disclaimer
This a not a textbook. These are lecture notes.
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1 Random walks on Z

1.1 Definitions
Let µ be a probability measure on Z. Since Z is countable we can think of µ as a function
µ : Z→R+ with

∑
x∈Zµ(x)= 1.

Let (X1, X2, . . .) be a sequence of independent random variables each having distribution
µ. Denote Zn = X1+·· ·+Xn, and set Z0 = 0. We call the process (Z0, Z1, Z2, . . .) the µ-random
walk on Z. For notational convenience we denote X = X1.

If you prefer a measure-theoretic perspective, Let Ω=ZN, and equip it with the product
topology. Thus an element of Ω is a sequence ω = (ω1,ω2, . . .) of integers, and a sequence
of sequences converges if each coordinate eventually stabilizes. Let F be the Borel sigma-
algebra. Let P be the product measure µN. Define Xn : Ω→ Z by Xn(ω) =ωn, and Zn(ω) =
ω1 +·· ·+ωn.

A µ-random walk on Z is a Markov chain with state space Z. The transition probabilities
are P(x, y)=µ(y− x). We will assume that the random walk is non-degenerate: for every z ∈Z
there is an n such that P [Zn = z]> 0. Equivalently, the Markov chain is irreducible.

A good example to keep in mind is the simple random walk: this is the case that µ(−1)=
µ(+1) = 1/2. Another good example is a lazy simple random walk, given by µ(−1) = µ(1) =
1/2− c, µ(0)= 2c for some 0< c < 1/2. Unless otherwise indicated, we will assume that µ has
finite support, i.e., the set {x : µ(x)> 0} is finite. In other cases it will be useful to consider
random walks on R, so that µ is a probability measure on the reals. Later in the course we
will consider random walks on additional objects.

Denote

α= E [X ]=
∑
x∈Z

xµ(x).

We call α the drift of the random walk. Denote

σ2 =Var(X ) := E[
X2]−E [X ]2 = ∑

x∈Z
x2µ(x)−α2.

Note that

E [Zn]= E [X1 +·· ·+ Xn]= E [X1]+·· ·+E [Xn]= nα

and that

Var(Zn)=Var(X1 +·· ·+ Xn)=Var(X1)+·· ·+Var(Xn)= nσ2,

since the variance of a sum of independent random variables is the sum of their variances.
Hence

Std(Zn) :=
√

Var(Zn)=p
nσ.
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1.2 The weak law of large numbers
Theorem 1.1 (The weak law of large numbers). For all n ≥ 1 and M > 0,

P
[
αn−Mσ

p
n < Zn <αn+Mσ

p
n
]≥ 1− 1

M2 .

In particular, when E [X ]= 0, P
[|Zn| < Mσ

p
n
]≥ 1−1/M2.

To prove this theorem we will need Markov’s inequality, which states that for every
non-negative random variable W with E [W]= w it holds that

P [W ≥ Mw]≤ 1
M

.

Proof of Theorem 1.1. Note that

E
[
(Zn −αn)2]= E[

Z2
n −2Znαn+α2n2]= E[

Z2
n
]−E [Zn]2 =Var(Zn)= nσ2.

Therefore, by Markov’s inequality applied to the random variable (Zn −αn)2,

P
[
(Zn −αn)2 ≥ M2nσ2]≤ 1

M2 .

The event {(Zn −αn)2 ≥ M2nσ2} is the same as the event {|Zn −αn| ≥ M
p

nσ}, which is the
complement of the event we are interested in, and thus we have proved the claim.

In fact, the Central Limit Theorem gives us a much more precise version of this claim,
telling not only where Zn concentrates, but also what its distribution looks like. Denote by
Φ(x) the cdf (cumulative distribution function) of a standard Gaussian:

Φ(x)= 1p
2π

∫ x

−∞
e−

1
2 t2

dt.

Theorem 1.2 (Central Limit Theorem). For all M ∈R,

lim
n→∞P

[
Zn ≤αn+Mσ

p
n
]=Φ(M).

We will not prove this theorem in this course.
The Central Limit Theorem gives us a handle for what the cdf of Zn looks like, for large n,

within distance O(
p

n) from the expectation αn. What about what happens within distance
O(n) from αn? For for β>α what can we say about P

[
Zn >βn

]
?

Suppose α= 0 and σ= 1. If the Central Limit Theorem held beyond the
p

n regime then it
would imply that P

[
Zn >βn

]≈ 1−Φ(β
p

n). Since Φ(x)≈ 1−exp(−x2) for large x, this would
mean that P

[
Zn >βn

] ≈ exp(−β2n). As we will show, the exponential dependence on n is
correct, but the coefficient β2 is not.
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1.3 The moment and cumulant generating functions
For the next results we will need to define the moment generating function of X :

MX (t) := E
[
etX

]
= ∑

x∈Z
etxµ(x).

The name comes from the fact that

MX (t)=
∞∑

n=0

tn

n!
E
[
X n]

. (1.1)

Note that this means that M′
X (0)= E [X ], and more generally M(k)

X (0)= E[
X k]

. The cumulant
generating function of X is given by KX (t) := log MX (t). As it turns out (but we will not prove),
KX is a convex function. Under our assumption of finitely supported µ, it is clear that KX is
furthermore analytic, since

KX (t)= log
∑
x∈Z

etxµ(x),

and the sum has finitely many terms.
The most important property of KX is its additivity with respect to sums of independent

random variables. That is, if X and Y are independent then KX+Y = KX +KY , since

MX+Y (t)= E
[
et(X+Y )

]
= E

[
etX etY

]
= E

[
etX

]
E
[
etY

]
= MX (t) ·MY (t).

In particular this implies that KZn = nKX . In comparison, there is a much more complicated
relationship between the cumulative distribution functions of X and Zn.

1.4 The Chernoff bound
Theorem 1.3 (Chernoff bound). Let α= E [X ]. Then for every β>α

P
[
Zn ≥βn

]≤ e−r·n

where

r := sup
t≥0

{t ·β−KX (t)}> 0.

Proof of Theorem 1.3. Denote pn =P[
Zn ≥βn

]
; we want to show that pn ≤ e−r·n.

Note that the event {Zn ≥βn} is identical to the event {et·Zn ≥ et·βn}, for any t > 0. Since
et·Zn is a positive random variable with expectation MZn(t), by the Markov inequality we
have that

pn =P
[
et·Zn ≥ et·βn

]
≤ MZn(t)

et·βn .
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Since MZn(t)= MX (t)n = exp(nKX (t)) we have that

pn ≤ exp
(−(t ·β−KX (t)) ·n)

.

Since K ′
X (0) = M′

X (0)/MX (0) = E [X ], and since KX is smooth, it follows that for t > 0 small
enough,

t ·β−KX (t)= t ·β− t ·α−O(t2)> 0.

Hence

pn ≤ e−r·n.

for

r = sup
t≥0

{t ·β−KX (t)}> 0.

It turns out that the Chernoff bound is asymptotically tight, in the sense that P
[
Zn ≥βn

]=
e−rn+o(logn), for all β less than the maximum of the support of X . We will prove this later.

1.5 The Legendre transform
Let the Legendre transform of K be given by

K?(β)= sup
t>0

(tβ−K(t)).

It turns out that the fact that K is smooth and convex implies that K? is also smooth and
convex. Therefore, if the supremum in this definition is obtained at some t, then K ′(t)= β.
Conversely, if K ′(t) = β for some t, then this t is unique and K?(β) = tβ−K(t). Using this
notation we can write the Chernoff bound as

P
[
Zn ≥βn

]≤ e−K?(β)n.

1.6 The Hoeffding bound
The Chernoff bound implies a simpler bound, when combined with the following lemma,
which we will not prove.

Lemma 1.4 (Hoeffding Lemma). If Y is a random variable with E [Y ]= 0 and |Y | ≤ M almost
surely then KY (t)≤ 1

2 M2t2.

Note that 1
2 M2t2 is equal to KW (t), where W is a Gaussian random variable with mean 0

and variance M2.
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Theorem 1.5 (The Hoeffding bound). Suppose |X | ≤ M almost surely and E [X ]= 0. Then for
every β> 0

P
[
Zn ≥βn

]≤ e−
β2

2M2 ·n.

Proof. By Hoeffding’s Lemma

sup
t≥0

tβ−Kx(t)≥ tβ− 1
2

M2t2.

Hence by choosing t =β/M2 we get that

sup
t≥0

tβ−Kx(t)≥β2/M2 − 1
2
β2/M2 = 1

2
β2/M2.

Hence the claim follows by the Chernoff bound.

1.7 The strong law of large numbers
The weak law of large numbers implies that

lim
n
P

[∣∣∣∣ 1
n

Zn −α
∣∣∣∣> ε]= 0

for all ε> 0. In fact, this is the usual statement of the weak law of large numbers. This does
not immediately imply that 1

n Zn converges almost surely to α (in fact, this is not true for
some infinitely supported µ). It does for the finitely supported µ that we consider here, which
is the content of the strong law of large numbers.

Theorem 1.6 (The strong law of large numbers). limn
1
n Zn =α almost surely.

To prove this theorem we will need the Borel-Cantelli Lemma. Let (A1, A2, . . .) be a
sequence of events. The event

(An)n i.o. :=∩∞
m=1 ∪∞

n=m An

is the event that infinitely many of these events occur.

Lemma 1.7 (Borel-Cantelli Lemma). Let (A1, A2, . . .) be a sequence of events. If
∑

nP [An]<∞
then

P [(An)n i.o.]= 0.

Proof of Theorem 1.6. Let

An,m =
{

1
n

Zn >α+ 1
m

}
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be the event that 1
n Zn exceeds α by more than 1/m.

By the Chernoff bound, for each m there is some r > 0 such that P
[
An,m

]≤ e−rn for all
n. Since

∑
n e−Rx <∞, it follows from Borel-Cantelli that P

[
(An,m)n i.o.

]= 0. Thus, almost
surely, 1

n Zn >α+ 1
m only finitely many times, and so

limsup
n

1
n

Zn ≤α+ 1
m

almost surely. Since this holds for every m, limsupn
1
n Zn ≤ α. By a symmetric argument

liminfn
1
n Zn ≥α, and so limn

1
n Zn =α almost surely.

Remark 1.8. All of the results in this section generalize far beyond finitely supported µ, but
none of them apply to every infinitely supported µ. Exploring when these results do and do not
hold will not be our focus.
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2 Large deviations
By the law of large numbers we expect that a µ-random walk Zn should be close to its drift
α= E [X ] for large n. What is the probability that it is larger than some β>α? We already
proved the Chernoff lower bound. We here prove an asymptotically matching upper bound.

2.1 The cumulant generating function
In this section we simplify notation and denote M := MX and K = KX so that the moment
generating function of X is

M(t)= E
[
etX

]
,

and that its cumulant generating function is

K(t)= log M(t)= logE
[
etX

]
.

Claim 2.1. K is convex.

For the proof of this claim we will need Hölder’s inequality. For p ∈ [1,∞] and a real r.v. Y
denote

|Y |p = E[|Y |p]1/p.

Lemma 2.2 (Hölder’s inequality). For any p, q ∈ [1,∞] with 1/p+1/q = 1 and r.v.s X ,Y it
holds that

|X ·Y |1 ≤ |X |p · |Y |q .

Proof of Claim 2.1. Choose a,b ∈R. Then for any r ∈ (0,1)

K(ra+ (1− r)b)= logE
[
e(ra+(1−r)b)X

]
= logE

[(
eaX

)r (
ebX

)1−r
]
.

By Hölder’s inequality

K(ra+ (1− r)b)≤ logE
[
eaX

]r + logE
[
ebX

]1−r

= r logE
[
eaX

]
+ (1− r) logE

[
ebX

]
= rK(a)+ (1− r)K(b).
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2.2 Convolution
The probability that Z2 = x is

P [Z2 = x]=
∑
y
P [Z2 = x, X1 = y]=

∑
y
P [X2 = x− y, X1 = y]=

∑
y
µ(x− y)µ(y).

More generally, if X has distribution µ and X ′ is independent with distribution ν, and we
denote the distribution of X + X ′ by ζ, then

ζ(x)=∑
y
µ(x− y)ν(y)=∑

y
ν(x− y)µ(y).

The operation (µ,ν) 7→ ζ is called convolution, and we denote ζ=µ∗ν. We denote the n-fold
convolution of µ with itself by µ(n), so that for a µ-random walk the distribution of Zn is µ(n).

2.3 Large deviations
Denote suppµ= {x ∈Z : µ(x)> 0}.

Theorem 2.3. For any β ∈ [α,maxsuppµ)

P
[
Zn ≥βn

]= e−K?(β)n+o(n).

Proof. One side is given by the Chernoff bound. It thus remains to prove the lower bound.
We want to prove that

limsup
n

−1
n

logP
[
Zn ≥βn

]≤ K?(β).

As we noted above, K ′(0)=α. It can be shown that

lim
t→∞K ′(t)=maxsuppµ.

Hence for every β such that α≤β<maxsuppµ there is a t∗ such that β= K ′(t∗). Since K is
convex and and smooth its derivative is increasing almost everywhere, and hence such a t∗

exists and is unique if and only if α≤β< M.
Fix β ∈ (β,maxsuppµ), let t be given by K ′(t)=β, and fix t ∈ (t∗, t). Define the measure µ̃

by

µ̃(x)= etx∑
y etyµ(y)

µ(x)= etx−K(t)µ(x),

and let (X̃1, X̃2, . . . , ) be the steps of µ̃-random walk on Z. Denote Z̃n = X̃1 +·· ·+ X̃n.
Note that

P
[
Z̃2 = z

]= µ̃(2)(z)=∑
y
µ̃(z− y)µ̃(y)

13



by the definition of Z2 and of convolution. Hence by the definition of µ̃

P
[
Z̃2 = z

]=∑
y

et(z−y)−K(t)µ(z− y)ety−K(t)µ(y)= etz−2K(t) ∑
y
µ(z− y)µ(y)= etz−2K(t)P [Z2 = z].

Likewise,

P
[
Z̃n = z

]= etz−nK(t)P [Zn = z].

Remark 2.4. More generally, if we denote by ∆ f (Z) the finitely supported probability measures
on Z, then the “tilting” operation Tt : ∆ f (Z) → ∆ f (Z) given by µ 7→ µ̃ commutes with the
convolution operation:

(Ttµ)∗ (Ttν)= Tt(µ∗ν).

I.e., Tt is an automorphism of the semigroup (∆(Z) f ,∗).

Using the fact that the expectation of a random variable is equal to the derivative at zero
of its cumulant generating function, a simple calculation shows that

E
[
X̃1

]= K ′(t) ∈
(
β,β

)
.

It follows that

P
[
βn ≤ Zn

]≥P[
βn ≤ Zn ≤βn

]
=

bβnc∑
z=dβne

P [Zn = z]

=
bβnc∑

z=dβne
P

[
Z̃n = z

]
e−(tz−nK(t))

≥ e−(tβn−nK(t))
bβnc∑

z=dβne
P

[
Z̃n = z

]
= e−(tβ−K(t))nP

[
βn ≤ Z̃n ≤βn

]
.

Since E
[
Z̃n

] ∈ (βn,βn), and since Z̃n is a µ̃-random walk, by the law of large numbers

lim
n→∞P

[
βn ≤ Z̃n ≤βn

]
= 1,

and so

lim
n→∞

1
n

logP
[
βn ≤ Zn

]≥−(tβ−K(t)).
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Since this holds for any β > β and β > K ′(t) > β, it also holds for β = β and t∗ such that
K ′(t∗)=β. So

lim
n→∞−1

n
logP

[
βn ≤ Zn

]≤ t∗β−K(t∗).

Finally, since K is convex and smooth, and since K ′(t∗) = β, then t∗ is the maximizer of
tβ−K(t), and thus t∗β−K(t∗)= K?(β). We have thus shown that

lim
n→∞−1

n
logP

[
βn ≤ Zn

]≤ K?(β).
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3 Recurrence and transience

3.1 Definitions and basic observations
Given µ, we say that the µ-random walk is recurrent if (An)n i.o. occurs almost surely, where
An = {Zn = 0}. That is, if the random walk almost surely returns to zero infinitely many
times.

We say that the µ-random walk is transient if the probability of (An)ni.o. is zero, i.e., the
random walk almost surely visits zero a finite number of times.

Claim 3.1. Every random walk is either transient or recurrent.

The proof of this claim will use the fact that a random walk on Z is a Markov chain.

Proof of Claim 3.1. Denote by H0 the event that there exists some n > 0 such that Zn = 0.
I.e., that the random walk returns to 0. Let p =P [H0].

By the Markov property, conditioned on Zk = 0, the probability that there is some n > k
such that Zn = 0 is also p. It follows that if p = 1 the random walk is recurrent. And if p < 1
then the number of visits to 0 has geometric distribution with parameter p, in which case
the number of visits is almost surely finite, and the random walk is transient.

The next lemma gives useful equivalent conditions to recurrence.

Lemma 3.2. Consider any µ-random walk. The following are equivalent.

1. The random walk is recurrent.

2. There is some x ∈Z that the random walk almost surely hits infinitely many times.

3. The random walk hits every x ∈Z almost surely.

Note that this lemma holds much more generally, for irreducible Markov chains on
countably infinite state spaces.

3.2 Random walks with a drift
As in the previous section, denote α := E [X ]=∑

x∈Z xµ(x).

Claim 3.3. A random walk on Z with non-zero drift is transient.

Proof. Suppose w.l.o.g. that α > 0. By the strong law of large numbers, limn
1
n Zn = α > 0.

Hence limn Zn =∞, and it is impossible that Zn = 0 infinitely often.
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3.3 Recurrence of the simple random walk on Z

Recall that the simple µ-random walk is given by µ(−1)=µ(1)= 1/2.

Theorem 3.4 (Pólya). The simple random walk on Z is recurrent.

We will prove this in a number of ways.

First proof of Theorem 3.4. Note that P [Z2n+1 = 0]= 0 and that

P [Z2n = 0]= 2−2n

(
2n
n

)
.

By Stirling (
2n
n

)
≥ 22n−1

p
n

,

and so

P [Z2n = 0]≥ 1
2
p

n
.

The expected number of visits to 0 is thus

∑
n
P [Z2n = 0]≥

∞∑
n=1

1
2
p

n
=∞.

As noted in the proof of Claim 3.1, the number of returns is geometric if the random walk is
transient, and hence has finite expectation. Thus this random walk is recurrent.

3.4 Superharmonic functions
For the second proof of Theorem 3.4, we introduce the notion of a µ-superharmonic function.
A function ϕ : Z→R is mu-superharmonic if for every x ∈Z

ϕ(x)≥ ∑
y∈Z

ϕ(x+ y)µ(y). (3.1)

That is, ϕ(x) is larger than the average of ϕ around x, where we take averages using µ.
Given x ∈Z, the process (x+Z1, x+Z2, . . .) is the µ-random walk starting at x. We define

Z0 = 0. Denote by Hx the event that there exists some n ≥ 0 such that x+Zn = 0. I.e., that
the random walk that starts at x eventually hits 0:

Hx = {∃n ≥ 0 s.t. x+Zn = 0}=
∞⋃

n=0
{x+Zn = 0}.

Obviously, this is the same event as Zn =−x for some n ≥ 0.
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Define ϕ : Z→ R by ϕ(x) = P [Hx], so that ϕ(x) is the probability that the random walk
starting at x eventually hits 0. We claim that ϕ is µ-superharmonic. Indeed,

ϕ(x)=P [Hx]
=P [x+Z1 = 0,Hx]+P [x+Z1 6= 0,Hx]
=P [x+Z1 = 0]+

∑
y6=0

P [x+Z1 = y,Hx]

=P [x+Z1 = 0]+
∑
y6=0

P [Hx|x+Z1 = y]P [x+Z1 = y].

Now, Z1 = X1, and the distribution of X1 is µ, so

ϕ(x)=µ(−x)+ ∑
y6=0

P [Hx|x+ X1 = y]µ(y− x).

Writing out the definition of Hx we get

P [Hx|x+ X1 = y]=P [∃n ≥ 0 s.t. x+ X1 + X2 +·· ·+ Xn = 0|x+ X1 = y].

Since we are conditioning on X1 = y− x we can substitute that to arrive at

P [Hx|x+ X1 = y]=P [∃n ≥ 0 s.t. y+ X2 +·· ·+ Xn = 0|x+ X1 = y].

But X1 is independent of (X2, X3, . . .), so we can remove the conditioning. And we can replace
X2 +·· ·+ Xn by X1 +·· ·+ Xn, since (X1, X2, . . .) and (X2, X3, . . .) have the same distribution;
we are in essence using the Markov property of the random walk here. So we get

P [Hx|x+ X1 = y]=P[
Hy

]
.

Hence

ϕ(x)=µ(−x)+ ∑
y 6=0

P
[
Hy

]
µ(y− x)

≥ ∑
y∈Z

P
[
Hy

]
µ(y− x)

= ∑
y∈Z

ϕ(y)µ(y− x).

Finally, a change of variables gives

ϕ(x)≥ ∑
y∈Z

ϕ(x+ y)µ(y).

We have thus shown that ϕ is µ-superharmonic. Note that it is also non-negative.

Lemma 3.5. Let µ(−1) = µ(1) = 1/2. Then every non-negative µ-superharmonic ϕ : Z→ R is
constant.
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Proof. Since ϕ is µ-superharmonic,

ϕ(x)≥ 1
2
ϕ(x−1)+ 1

2
ϕ(x+1).

Rearranging, we get that

ϕ(x)−ϕ(x−1)≥ϕ(x+1)−ϕ(x).

Denote ϕ′(x)=ϕ(x)−ϕ(x−1). Then we have shown that

ϕ′(x)≥ϕ′(x+1),

so that ϕ′ is non-increasing.
If ϕ′ = 0 then ϕ is constant and we are done. Otherwise, suppose ϕ′(x) <−ε for some x.

Then ϕ′(x+n)≤−ε for all n ≥ 0. Hence ϕ(x+n)≤ϕ(x)+nε, and ϕ(x) is negative for x large
enough. An analogues argument shows that ϕ(−x) is negative for x large enough if ϕ′(x)> 0
for some x.

Second proof of Theorem 3.4. Define ϕ(x)=P [Hx] as above. We have shown that ϕ= p. Since
ϕ(0)= 1 by definition, it follows that p = 1. Applying the Markov property again, we conclude
that P [∃n ≥ k s.t. Zn = 0]= 1 for all k, and thus the random walk is recurrent.

The argument above in fact is one direction of a more general fact relating superharmonic
functions and recurrence.

Theorem 3.6. For any µ-random walk on Z the following are equivalent.

1. The walk is transient.

2. There exist non-constant non-negative µ-superharmonic functions on Z.

Indeed, this again holds much more generally, for irreducible Markov chains on countably
infinite state spaces.

To prove this theorem we will need to recall the notions of a supermartingale and a
stopping time. Let (Y1,Y2, . . .) be a sequence of random variables, let Fn =σ(Y1, . . . ,Yn) and let
F∞ =σ(Y1,Y2, . . .). A sequence of real random variables (W0,W1,W2, . . .) is a supermartingale
with respect to (Fn)n if

1. Wn is Fn-measurable.

2. E [Wn+1|Fn]≤Wn.

A natural example is when Yn is the outcome of the roulette at time n, and Wn is the amount
of money gained by a gambler who plays this roulette using some fixed deterministic strategy
(e.g., a dollar on red at even n and three dollars on black at odd n). The first condition states
that the amount of money the gambler has is determined by the outcomes of the roulette, and
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the second states that given what the gambler has at time n, she expects to have (weakly)
less at time n+1.

The key observation relating supermartingales to random walks is the following observa-
tion.

Claim 3.7. Let ϕ be µ-superharmonic. Then Wn =ϕ(Zn) is a supermartingale with respect to
(σ(Z1, . . . , Zn))n.

A stopping time T is a F∞-measurable random variable taking values in {1,2, . . . ,∞} such
that for each n the event {T = n} is Fn-measurable. An example is the first time n such that
the gambler has 17n dollars in their balance. More generally, T is a stopping time if it is
equal to the minimum time n is which the condition An is met (formally, the event An occurs),
where each An is Fn-measurable, i.e., determined by (Y1, . . . ,Yn). An important result due to
Doob is the optional stopping time theorem:

Theorem 3.8 (Doob). Suppose (W0,W1,W2, . . .) is a non-negative supermartingale, and let T
be a finite stopping time. Then E [WT]≤ E [W0].

For our gambler, this means that if she walks in with 100 dollars and has some stopping
rule for leaving (and cannot go into debt), the expected amount of money she will have at the
time of leaving is at most 100.

Proof of Theorem 3.6. The direction 1 implies 2 is proved using ϕ(x)=P [Hx] as above. For
the other direction, suppose the µ-random walk is recurrent, and let ϕ be non-negative and
µ-superharmonic. For x, y ∈Z let T be the stopping time given by the first hitting time to y of
the µ-random walk starting at x:

T =min{n : x+Zn = y}.

By recurrence and Lemma 3.2 T is finite almost surely. Let Wn =ϕ(x+Zn). By the optional
stopping time theorem, E [WT]≤ E [W0]. Since the l.h.s. of the equality is ϕ(y) and the r.h.s. is
ϕ(x) we have that ϕ(x)=ϕ(y).

3.5 Harmonic functions
Claim 3.9. For any random walk on Z, the probability that {Z0, Z1, Z2, . . .} is a finite subset of
Z is zero.

This claim likewise holds much more generally, for irreducible Markov chains on countably
infinite state spaces.

Let µ be the simple random walk on Z. Fix some M ∈Z, M > 0. Note that P [∃n s.t. Zn ∈ {−1, M}]=
1, by Claim 3.9, since otherwise the random walk would be confined in {0, . . . , M−1}.
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Let Ax be the event that x+Zn =−1 before x+Zn = M. Let ϕ : {−1, . . . , M} →R be given
by ϕ(x)=P [Ax] for x ∈ {0, M−1}, ϕ(−1)= 1 and ϕ(M)= 0. Then for x ∈ {0, . . . , M−1}

ϕ(x)=P [Ax]
=P [Ax|x+Z1 = x+1]P [x+Z1 = x+1]+P [Ax|x+Z1 = x−1]P [x+Z1 = x−1]
=ϕ(x+1)µ(1)+ϕ(x−1)µ(−1),

where the penultimate equality uses the Markov property, as in the previous section, and our
definitions at x =−1 and x = M. We thus have that for x ∈ {0, M−1}

ϕ(x)=∑
y
ϕ(x+ y)µ(y).

We say that ϕ is harmonic on {0, M−1}.
It is easy to see that the only function that satisfies this equality is linear on {−1, M}, and

hence we have shown that

ϕ(x)= M− x
M+1

.

In particular, the probability that Zn hits −1 before it hits M is M/(M+1). Now, the event
that Zn never reaches −1 is the same as the event that it reaches every M > 0 before it
reaches −1, by Claim 3.9. Hence this occurs with probability at most 1/(M+1) for any 0, and
the random walk hits −1 almost surely. By symmetry, the random walk also hits +1 almost
surely. Hence it visits 0 again almost surely (since it has to travel either from −1 to +1 or
from +1 to −1), and so it is recurrent.

3.6 Recurrence of symmetric random walks on Z

We say that µ is symmetric if µ(x)=µ(−x) for all x ∈Z.

Theorem 3.10. The µ-random walk on Z is recurrent for all symmetric µ.

To prove this theorem we will recall the tail sigma-algebra and the Kolmogorov 0-1 law.
Let (Y1,Y2, . . .) be a sequence of random variables. Denote Tn = σ(Yn,Yn+1, . . .). That is, a
random variable W is Tn-measurable if there is some f such that W = f (Yn,Yn+1, . . .). The
tail sigma-algebra T is T =∩nTn. That is, W is T -measurable—in which case we call it
a tail random variable—if for every n there is an fn such that W = fn(Yn+1,Yn+2, . . .). An
example is W = limsupn Yn. Kolmogorov’s 0-1 law states that if (Y1,Y2, . . .) are independent
then T is trivial: every tail random variable is constant.

Proof of Theorem 3.10. Let µ be symmetric and suppose (Z1, Z2, . . .) is transient. Then by
Lemma 3.2 Zn only visits each interval [−M, M] finitely many times, and so limn |Zn| =∞.
If we consider M such that µ is supported on [−M, M], it follows that limn sgn(Zn) exists, or
that Zn is eventually either even or odd. Hence W := limn Zn exists and is in {+∞,−∞}.
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Since µ is symmetric P [W =+∞] = P [W =−∞] = 1/2. The formal proof of this is via a
coupling argument. Let X̌n = −Xn. Then, by the symmetry of µ, (X̌1, X̌2, . . .) is also i.i.d.
µ. Hence, if we define Žn = X̌1 + ·· · + X̌n = −Zn, (Ž1, Ž2, . . .) has the same distribution as
(Z1, Z2, . . .). But lim Žn =− lim Zn, and so

P
[
lim

n
Zn =−∞

]
=P

[
lim

n
Žn =+∞

]
=P

[
lim

n
Zn =+∞

]
,

and we have that P [limn Zn =∞]= 1/2.
Finally, W is a tail event of (X1, X2, . . .), since

Wn =
∞∑

k=n
Xk

is Tn-measurable and equal to W. Since (X1, X2, . . .) is i.i.d., W must be constant by Kol-
mogorov’s 0-1 law, and we have reached a contradiction.

Corollary 3.11. Let (Z1, Z2, . . .) be a symmetric random walk on Z. Then
∑

nP [Zn = 0]=∞.

Proof. If
∑

nP [Zn = 0]<∞ then by Borel-Cantelli the random walk is transient, in contradic-
tion to Theorem 3.10.

3.7 Recurrence of zero drift random walks on Z

Given a transient random walk (Z1, Z2, . . .) on Z, denote by Vx the number of visits to x

Vx = |{n ≥ 0 : Zn = x}|,

and let

v(x)= E [Vx]=
∞∑

n=0
P [Zn = x]

denote the expected number of visits to x. As discussed above, transitivity guarantees that
v(x) is finite for all x.

Claim 3.12. The maximum of v(x) is attained at 0.

Proof. Let Hx = {∃n ≥ 0 s.t. Zn = x} be the event that the random walk hits x. Then

v(x)= E [Vx]= E [Vx|Hx]P [Hx]+E[
Vx

∣∣Hc
x
]
(1−P [Hx]).

We know that P [Hx]≥ 1. Since Vx = 0 conditioned on Hc
x, we have that for x 6= 0

v(x)≤ E [Vx|Hx].

But by the Markov property the r.h.s. is exactly equal to v(0).

Theorem 3.13. A random walk on Z with zero drift is recurrent.
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Proof. Suppose (Z1, Z2, . . .) is random walk on Z with zero drift and |X | ≤ M almost surely.
Hence E

[
X2 ≤ nM2] and by Markov’s inequality

P [|X | ≥ x]≤ nM2

x2 .

In particular, if we choose x = n0.6 we get

P
[|Zn| ≥ Mn0.6]≤ nM2

M2n1.2 = 1
n0.2 .

Since P
[|Zn| ≤ Mn0.6]> 0 for all n, it follows that there exists some c > 0 such that

P
[|Zn| ≤ Mn0.6]≥ c (3.2)

for all n.
Denote N(n) := Mn0.6. Then for all n

N(n)∑
x=−N(n)

P [Zn = x]≥ c.

We claim that this implies that there is some x ∈ Z such that
∑

nP [Zn = x] =∞, which
implies that the random walk is recurrent. Suppose not, and recall the notation v(x) =∑

n≥0P [Zn = x]. Then for every n ≥ 0,

N(n)∑
x=−N(n)

v(x)≥
N(n)∑

x=−N(n)

n∑
k=0

P [Zk = x]

≥
n∑

k=0

N(n)∑
x=−N(n)

P [Zk = x]

≥ cn.

By Claim 3.12 v(x)≤ v(0), and so we have that

N(n)∑
x=−N(n)

v(0)≥ cn

for all n, which is impossible, since the l.h.s. is at most (2Mn0.6 +1)v(0).
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4 Random walks on Zd

Let µ be a probability measures on Zd for some d ≥ 1, let (X1, X2, . . .) be i.i.d. with law µ,
and let Zn = X1 +·· ·+ Xn. As before, we assume that it is finitely supported and that it is
non-degenerate: for every z ∈Zd there exists n ≥ 1 such that P [Zn = z]> 0.

4.1 Recurrence and transience
We say that µ is symmetric if µ(−x)=µ(x) for all x ∈Zd. We say that µ is a product measure if
there exists µ1, . . . ,µd, all probability measures on Z, such that µ(z1, . . . , zd)=µ1(z1) · · ·µd(zd).
We then write µ=µ1 ×·· ·×µd.

Theorem 4.1 (Pólya). Let µ1 =µ2 = ·· · =µd all equal the simple random walk on Z, and let
µ=µ1 ×·· ·×µd. Then

1. If d ≤ 2 then the µ-random walk is recurrent.

2. If d ≥ 3 then the µ-random walk is transient.

Proof. A standard bound on
(2n

n
)

is

4n√
π(n+ 1

2 )
≤

(
2n
n

)
≤ 4n

p
πn

.

Hence, as in the first proof of Theorem 3.4,(
1√

π(n+ 1
2 )

)d

≤P [Z2n = 0]≤
(

1p
πn

)d

.

For odd n, P [Zn = 0]= 0. Hence, for d ≤ 2,
∑

nP [Zn = 0] diverges and the random walk is
recurrent, while for d ≥ 3 it converges and the random walk is transient

4.2 A Hoeffding bound for Zd

Recall that the Hoeffding bound (Theorem 1.5) says that on Z, if |X | ≤ M almost surely and
β> E [X ] then

P
[
Zn ≥βn

]≤ e−
β2

2M2 ·n.

Suppose E [X ]= 0. Then for any x ∈Z it follows that (by a change of variable x =βn)

P [Zn ≥ x]≤ e−
1

2M2
|x|2

n .
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In particular, we will be interested in the weaker form

P [Zn = x]≤ e−
1

2M2
|x|2

n . (4.1)

Now let (Z1, Z2, . . .) be a µ-random walk on Zd with E [Z1]= 0. We will denote the L2-norm
on Zd by | · |, and assume that the support of µ is contained in the ball of radius M. Choose
x ∈Zd. We would like to prove an inequality of the form (4.1).

Let π : Zd → Z be the inner product with x: π(z) = ∑d
i=1 xi zi. Let X̂n = π(Xn) and Ẑn =

π(Zn). Note that Ẑn = X̂1 + ·· · + X̂n, and so (Ẑ1, Ẑ2, . . .) is a random walk on Z. The step
distribution of this random walk is denoted π∗µ and called the push-forward measure:

[π∗µ](z)=µ(π−1(z))=µ({
x ∈Zd : π(x)= z

})
.

Note that π∗µ might not be non-degenerate, as its support might be contained in some
subgroup mZ (e.g., if x = (2,0) and m = 2). But on this subgroup it will be non-degenerate,
and so everything we know will still go through (formally, we can define π(z)= 1

m
∑d

i=1 xi zi).
Note also that since µ has zero expectation then so does π∗µ.

Since |Xn| ≤ M, and since |π(z)| ≤ |x||z|, |X̂n| ≤ M|x|. Hence, by (4.1) we have that

P
[
Ẑn =π(x)

]≤ e
− 1

2M2|x|2
|π(x)|2

n .

Since π(x)= |x|2 this becomes

P
[
Ẑn =π(x)

]≤ e−
1

2M2
|x|2

n .

Finally, since the event Zn = x implies Ẑn = π(x), this in implies the following Hoeffding
bound for Zd.

Theorem 4.2. Let (Z1, Z2, . . .) be a µ-random walk on Zd where µ is symmetric and supported
on the ball of radius M. Then

P [Zn = x]≤ e−
1

2M2
|x|2

n .
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5 Random walks on the free group

5.1 The free group
Let S = {a,b,a−1,b−1} be abstract “symbols”. A (reduced) word is a finite sequence of symbols
s1s2 · · · sn, with each si ∈ S (e.g., g = a−1bbab−1a−1) that does not include adjacent occur-
rences of a and a−1, or of b and b−1. We denote the empty word by e. We can define a
concatenation operation (g,h) 7→ gh on reduced words by concatenating them, and then
iteratively removing any disallowed occurrences.

The free group with two generators F2 is the set of reduced words, together with the
concatenation operation. Note that our notation for the symbols is consistent with inverses
in the group: a−1 is the inverse of a, since their product results in the empty word, which
is the identity element. More generally, given a word g = s1 · · · sn, its inverse is given by
g−1 = s−1

n · · · s−1
1 .

An important way to think of the free group is via its Cayley graph. The nodes of the
graph are the elements of the group. Its directed edges are labeled, and there is an edge (g,h)
with label s ∈ S if h = gs (in which case there is an edge (h, g) with label s−1). This graph is
the 4-regular tree: the (unique up to isomorphism) graph in which all nodes have degree 4
and there are no cycles.

This graph is vertex transitive. Informally, it looks the same from the point of view of each
vertex. Formally, the balls of radius r around each vertex are all isomorphic graphs. Note
that the number of elements within distance r of a given point in this graph is 4 ·3r−1, and in
particular is exponential in r. In Zd, balls only grow polynomially.

We define a norm on F2 by setting |g| to be the minimal number of generators whose
product is equal to g. Equivalently, this is the distance between e and g in the Cayley graph.
The ball of radius r in the Cayley graph is {g ∈ F2 : |g| ≤ r}.

Let µ be a probability measure on F2. The µ random walk on F2 is defined as follows:
(X1, X2, . . .) are i.i.d. µ, and Zn = X1X2 · · ·Xn. We set Z0 = e. As on Zd, we will restrict
ourselves to finitely supported µ, and will assume that µ is non-degenerate, so that for all
g ∈ F2 there is an n such that P [Zn = g]> 0.

5.2 Transience of the simple random walk
The simple random walk on F2 is given by µ(a)=µ(a−1)=µ(b)=µ(b−1)= 1/4. It will be useful
to think of this random walk as a random walk on the 4-regular tree.

A function ϕ : F2 →R is µ-superharmonic if for all g ∈ F2

ϕ(g)≥ ∑
h∈F2

ϕ(gh)µ(h).

As on Z, this implies that ϕ(Zn) is a supermartingale. Thus the same proof as for Z yields
the following claim.

Theorem 5.1. For any µ-random walk on F2 the following are equivalent.
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1. The walk is transient.

2. There exist non-constant non-negative µ-superharmonic functions on Z.

Corollary 5.2. The simple random walk on F2 is transient.

Proof. Let ϕ(g) = 3−|g|. Then clearly the superhamonicity condition is satisfied at e, since
that is where ϕ attains its maximum. Elsewhere, for |g| = r,

∑
h∈F2

ϕ(gh)µ(h)= 3−(r−1) 1
4
+3 ·3−(r+1) 1

4
= 3r

(
3+1 1

4
+3 ·3−1 1

4

)
= 3−r =ϕ(g).

5.3 Hitting probabilities of the simple random walk
Given g ∈ F2, denote by Hg = {∃n ≥ 0 : Zn = g} the event that the random walk eventually
hits g. By the symmetry of the random walk, there is some p so that p =P [Hs] for all s ∈ S.

p =P [Ha]
= ∑

s∈S
P [Ha|Z1 = s]P [Z1 = s]

= 1
4

∑
s∈S

P [Ha|Z1 = s]

= 1
4
+ 1

4

∑
s∈S\{a}

P [Ha|Z1 = s].

By the Markov property, for s 6= a,

P [Ha|Z1 = s]=P [∃n ≥ 0 : X1 · · ·Xn = a|X1 = s]
=P [∃n ≥ 0 : sX2 · · ·Xn = a|X1 = s]

=P[∃n ≥ 0 : X2 · · ·Xn = s−1a
∣∣X1 = s

]
=P[

Hs−1a
]
.

Now, because the Cayley graph is a tree, the random walk must visit s−1 before visiting a. So

P
[
Hs−1a

]=P[
Hs−1a,Hs−1

]=P[
Hs−1a

∣∣Hs−1
]
P

[
Hs−1

]=P[
Hs−1a

∣∣Hs−1
] · p.

Again by the Markov property and symmetry, P
[
Hs−1a

∣∣Hs−1
]= p. Hence we have that

p = 1
4
+ 3

4
p2,

so that p = 1/3, since by transience p 6= 1. Indeed, a similar calculation shows more generally
that that P

[
Hg

]= 3−|g|.
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5.4 Tail events of the simple random walk
Since the random walk is transient, There is a.s. a finite random N such that ZN ∈ S and
ZN+n 6= e for all n ≥ 0. For s ∈ S, denote by Fs ⊂ F2 the set of words that begin with s. Then
ZN+n ∈ FZN . By the symmetry of the random walk,

P [Zn ∈ Fa for all n large enough]= 1
4

.

For any subset F ⊂ F2, the event Note that the event EF := {Zn ∈ F for all n large enough}
is a tail event of the process (Z1, Z2, . . .). Moreover, it is a shift-invariant event. A random
variable W is measurable with respect to the shift-invariant sigma-algebra if there is some f
such that

W = f (Z1, Z2, . . .)= f (Z2, Z3, . . .).

Note that this implies that W is also a tail event with respect to (Z1, Z2, . . .). We have thus
proved the following claim.

Claim 5.3. The simple random walk on F2 admits a non-constant shift-invariant random
variable.

5.5 Distance from the origin of the simple random walk
Denote Ln = |Zn|. Note that conditioned on Zn−1 = e, Ln = Ln−1 +1= 1. And for any g 6= e

P [Ln = Ln−1 +1|Zn = g]= 3
4

P [Ln = Ln−1 −1|Zn = g]= 1
4

.

Define the process (X̃1, X̃2) on Z by X̃0 = 0 and

X̃n =
{

Ln −Ln−1 if Zn 6= e
Yn otherwise,

where Yn are independent with P [Yn =+1]= 3/4 and P [Yn =−1]= 1/4. It can be shown that
(X̃1, X̃2, . . .) are i.i.d. and so Z̃n = X̃1 +·· ·+ X̃n is a random walk on Z, with drift 1/2. Thus

lim
n

1
n

Z̃n = 1
2

by the strong law of large numbers. By transience, the event {Zn = e} happens only finitely
often, and so Z̃n and Ln never differ by more than a (random) constant: maxn |Ln − Z̃n| is
finite almost surely. Hence

lim
n

1
n

Ln = lim
n

1
n

Z̃n + 1
n

(Ln − Z̃n)= lim
n

1
n

Z̃n = 1
2

.
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Thus Ln = |Zn| concentrates around n/2. Since X̃n ≤ Ln −Ln−1, Z̃n ≤ Ln. Hence, by the
Hoeffding bound,

P [Zn = e]=P [Ln = 0]=P [Ln ≤ 0]≤P[
Z̃n ≤ 0

]≤ e−n/8, (5.1)

so that the probability of return to the origin decays exponentially with n.
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6 The lamplighter group

6.1 Lamplighters
The lamplighter is a person located at some point x ∈Z. At each z ∈Z there is a lamp that is
either off or on. We imagine that initially all lamps are off. The lamplighter has three things
that she can do:

1. Move one step to the right.

2. Move one step to the left.

3. Flip the state of the lamp at her current location.

Thus, a sequence of actions of the lamplighter is a word in the alphabet S = {a,a−1,b},
corresponding to the three options above. After executing such a sequence, we can describe
the current state by a pair ( f , x), where x ∈Z is the location of the lamplighter, and finitely
supported f : Z→Z2 is the indicator of the lamps that are on. We denote by

⊕
ZZ2 the set of

such finitely supported f , which we call lamp configurations. Denote by α :
⊕
ZZ2 →⊕

ZZ2
the shift operation on configurations given by [α f ](x)= f (x−1).

Suppose that g1 culminates in ( f1, x1) and that g2 culminates in ( f2, x2). Then the state
of the system when executing g1 followed by g2 will be

g1 g2 = ( f1, x1)( f2, x2)= ( f1 +αx1 f2, x1 + x2).

It is easy to see that this operation is associative and invertible, and so we have defined a
group, which is denoted by

⊕
ZZ2oZ. This is also sometimes written as Z2 oZ. Using this

notation our generating set is

S = {a,a−1,b}= {(1,0), (−1,0),δ0},

where δ0 ∈⊕
ZZ2 is the indicator of 0.

Another way to think of this group is as follows: f ∈ ⊕
ZZ2 is an instruction to the

lamplighter located at x to flip the lamps at all x+ z such that f (z)= 1. The group is defined
by f 2 = 0 for all f , f1 f2 = f2 f1 and af = (α f )a.

Given g ∈Z2 oZ we denote by |g| the minimum number of generators in S whose product
is equal to g. We denote by Br the set {g : |g| ≤ r}. It is easy to see that every f with support
contained in {0,1, . . . , r/3} is in Br, and thus Br is of size at least 2r/3, and in particular grows
exponentially with r, like the free group and unlike Zd.

6.2 The flip-walk-flip random walk
Let Y1,Y2 be independent and uniform on {e,b}, where e is the identity (0,0) of the lamplighter
group, and b ∈ S is equivalent to δ0. Let W be uniform on {a,a−1}, two of the generators. Let
X1 = Y1WY2, and let µ be the distribution of X1. So X1 is chosen at random by uniformly
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and independently (1) telling the lamplighter to flip or not (2) telling the lamplighter to move
either left or right, and (3) again telling the lamplighter to flip or not.

As usual, we will take Xn i.i.d. µ and Zn = X1X2 · · ·Xn. The map π : Z2 oZ→Z given by
π( f , x)= x is a group homomorphism (i.e., π(g1, g2)=π(g1)+π(g2), and so π(Zn) is the simple
random walk on Z. Let c : Z2 oZ→⊕

ZZ2 be the configuration c( f , x)= f .
The support of this random walk at time n is B3n, and in particular the support has

exponential growth, as in the free group. So a natural guess is that the return probabilities
P [Zn = e] decay exponentially. As we will see, this turns out to be false. Nevertheless, the
return probabilities are summable, and hence the random walk is transient.

The reason to look at this particular random walk is that given the locations Vn =
{π(Z1), . . . ,π(Zn)} visited by the lamplighter up to time n, the configuration c(Zn) is distributed
uniformly on Vn. Thus,

P [Zn = e|Vn]≤ 2−|Vn|,

since Zn = e implies in particular that all lamps are off. Recall that π(Zn) is with high
probability order of

p
n, and hence |Vn| is, with high probability, at least

p
n. It can be

furthermore shown that the probability that |Vn| is less than (say) n1/4 is of order 1/n1+δ for
some δ> 0. Hence

P [Zn = e]≤ 1
n1+δ +2−n1/4

,

and in particular
∑

nP [Zn = e] is finite. So the random walk is transient.
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7 Random walks on finitely generated groups

7.1 Finitely generated groups
Let G = 〈S〉 be a group generated by a finite, symmetric set S. We have seen a few examples.
Another one is the group SL(2,Z) of two-by-two integer matrices with integer entries and
determinant 1, with the operation of multiplication. This is a group since the determinant
of each such matrix is one, and so its inverse is also in SL(2,Z). Multiplication is clearly
associative and remains in SL(2,Z). What is less obvious is that SL(2,Z) is finitely generated.
We will not prove this, but it turns out that it is generated by(

0 −1
1 0

) (
1 1
0 1

)
and their inverses.

An even simpler example is Iso(Z). This is the group of linear bijections g : Z→Z such
that |z1 − z2| = |g(z1)− g(z2)| (it is also called the infinite dihedral group). These are the
functions of the form g(z)= rz+d, where r ∈ {−1,+1} and d ∈Z. It is generated by a(z)= z+1,
a−1(z)= z−1 and b(z)=−z.

For a given generating set S, we can define a norm on G by letting |g| equal the minimal
k such that g can be written at the product of k elements of S. This is called a norm since
|gh| ≤ |g|+ |h|, |g−1| = |g|, |g| ≥ 0 with equality iff g = e, where e denotes the identity element.
We can use this norm to define the metric d : G×G →N by d(g,h)= |g−1h|. This is equal to
the minimal k such that h = gs1 · · · sk for si ∈ S. The norm |g| is the distance of g from e in
the Cayley graph, and d(g,h) is the distance between g and h. Note that d is left-invariant
in the sense that d(kg,kh)= d(g,h) for all g,h,k ∈G.

The norm and metric clearly depend on the choice of generating set, and when we want
to be explicit about that we will write |g|S and dS. Nevertheless, the following claim shows
that the choice of generating set does not substantially affect either.

Claim 7.1. Let G = 〈S〉 = 〈T〉. Then there exists a constant m > 0 such that, for all g ∈G,

1
m

|g|S ≤ |g|T ≤ m|g|S.

Denote the by Bn = {g ∈G : |g| ≤ n} the ball of radius n in G. The exponential growth rate
of G is given by

GR(G)= lim
n

1
n

log |Bn|. (7.1)

By Claim 7.1, the growth rate is independent of the choice of generating set. However, it is
not a priori obvious that the limit exists. To show this, we will first show that the sequence

bn = log |Bn|

is subadditive.
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Claim 7.2. bn+m ≤ bn +bm.

Proof. Write g ∈ Bn+m as g = s1 · · · sn+m. Then g = g1 g2 where g1 = s1 · · · sn and g2 =
sn+1 · · · sn+m. Thus g1 ∈ Bn and g2 ∈ Bm. Hence the map Bn ×Bm → Bn+m given by (g1, g2) 7→
g1 · g2 is onto, and so |Bn+m| ≤ |Bn| · |Bm|.

We can now apply the Fekete Lemma.

Lemma 7.3 (Fekete Lemma). Let (an)n be a subadditive sequence. Then limn an/n exists and
is equal to infn an/n.

This lemma, together with the previous claim, show that the limit in (7.1) exists. It
furthermore shows that it is equal to infn

1
n log |Bn|.

7.2 Random walks
Let µ be a finitely supported probability measure on G. We define the µ-random walk on G as
before, by letting (X1, X2, . . .) be i.i.d. µ, setting Z0 = e and Zn = X1X2 · · ·Xn. We assume that
µ is non-degenerate in the sense that for every g ∈G there is some n such that P [Zn = g]> 0.
We say that µ is symmetric if µ(g)=µ(g−1) for all g ∈G. We denote by µ(n) the distribution of
Zn. This is the n-fold convolution of µ with itself. Convolution of measures on G is given by

[η∗ν](g)= ∑
h∈G

η(gh−1)ν(h)= ∑
k∈G

η(k)ν(k−1 g),

where the second equality follows by the change of variables k = gh−1. Note that when G is
not commutative then convolution is not commutative either. It is, however, associative.

7.3 The max-entropy
We define the max entropy h∞(µ) by

h∞(µ)= lim
n

−1
n

log
(
max

g
P [Zn = g]

)
= lim

n
−1

n
maxlogµ(n).

Thus, if h∞(µ)= r ≥ 0 then the highest probability at time n is e−rn+o(n). Of course, we need
to prove that this limit exists for this to be well defined.

Claim 7.4. Let ζ = η1 ∗ η2 for η1,η2 probability measures on G. Then maxζ ≥ (maxη1) ·
(maxη2).

Proof. Suppose that the maxima of η1 and η2 are attained at g1 and g2 respectively. Then
ζ(g1 g2)≥ η1(g1) ·η2(g2)= (maxη1) · (maxη2).
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For a probability measure ν on G let

H∞(ν)=−maxlogµ.

Then we have shown that

H∞(η1 ∗η2)≤ H∞(η1)+H∞(η2).

It follows that the sequence an = H∞(µ(n)) is subadditive. We can now apply the Fekete
Lemma, which implies that limn

1
n H∞(µ(n)) exists. But this is exactly equal to h∞(µ).

Proposition 7.5. Suppose that µ is symmetric. Then

h∞(µ)= lim
n

− 1
2n

logP [Z2n = e].

Proof. Pick gn ∈ argmaxgP [Zn = g] that maximizes the probability that Zn visits g. I.e.,
P [Zn = gn]=maxµ(n). Then

P [Z2n = e]≥P [X1 · · ·Xn = gn] ·P[
Xn+1 · · ·X2n = g−1

n
]=µ(n)(gn) ·µ(n)(g−1

n )= (maxµ(n))2.

Therefore, and since maxµ(2n) ≥µ(2n)(e)=P [Z2n = e],

maxµ(2n) ≥P [Z2n = e]≥ (maxµ(n))2

and

− 1
2n

logmaxµ(2n) ≤− 1
2n

logP [Z2n = e]≤−1
n

logmaxµ(n).

Taking the limit n →∞ yields the result.
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8 The Markov operator and the spectral norm

8.1 The Markov operator of a random walk
For a finitely generated group G, denote by RG the vector space of real functions G → R.
Denote by `2(G) the Hilbert space of functions ϕ : G →R such that

∑
gϕ(g)2 <∞. This space

is equipped with inner product
〈
ϕ,ψ

〉=∑
gϕ(g)ψ(g) and, as usual, the norm∥∥ϕ∥∥2

2 =
〈
ϕ,ϕ

〉
We will refer to (δg)g∈G as the standard basis of `2(G). In this basis we can write

ϕ= ∑
g∈G

ϕ(g)δg.

More generally, for p ≥ 1, denote by `p(G) the Banach space of functions ϕ : G →R such
that ∥∥ϕ∥∥p

p :=∑
g
ϕ(g)p <∞. (8.1)

As usual `∞(G) will be the Banach space of bounded functions with norm
∥∥ϕ∥∥∞ = supg |ϕ(g)|.

For each h ∈G define the right translation linear operator Rh : RG →RG

[Rhϕ](g)=ϕ(gh).

Applying a change of variable to (8.1) shows that
∥∥Rhϕ

∥∥
p = ∥∥ϕ∥∥, so that Rh is an isometry

for all `p(G). Note that RhRk = Rhk and that Rh−1 = R−1
h . This makes the map h 7→ Rh a

representation of G.
Let µ be a non-degenerate, finitely supported symmetric measure on a finitely generated

group G. The Markov operator M : RG →RG associated with µ is the linear operator given by
M =∑

hµ(h)Rh, so that

[Mϕ](g)=∑
h
µ(h)ϕ(gh).

One way to think of this operator is as follows: If ψ = Mϕ then ψ(g) = E[
ϕ(gX1)

]
is the

expectation of ϕ at the location visited by the random walk after visiting g. There is another
interpretation: the matrix entries of M with respect to the standard basis are the transition
probabilities of the Markov chain:〈

δh, Mδg
〉= [Mδg](h)=P [Zn+1 = g|Zn = h],

provided that P [Zn = g]> 0. Likewise, the powers of M capture the n-step transition proba-
bilities: 〈

δh, Mkδg

〉
=P [Zn+k = g|Zn = h]. (8.2)
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Claim 8.1. For p ≥ 1 and ϕ ∈ `p(G),
∥∥Mϕ

∥∥
p ≤ ∥∥ϕ∥∥

p, with a strict inequality for p > 1 and
ϕ 6= 0.

Since µ has finite support {h1, . . . ,hk}, this claim can be proved by looking at the finite
dimensional space span{ϕ,Rh1ϕ, . . . ,Rhkϕ}. The proof then follows from the fact that `p-balls
in Rd are convex: every convex combination of unit vectors has norm at most one. For p > 1,
balls are strictly convex. This implies that we in fact have a strict inequality, unless ϕ= 0.
The important fact for us is that M is a bounded operator on `p(G).

8.2 Self-adjointness and return probabilities
Since µ is symmetric, an important property of the Markov operator is that it is self-adjoint:
M† = M. That is, for all ϕ,ψ ∈ `2(G),〈

ψ, Mϕ
〉= 〈

Mψ,ϕ
〉

.

The property of being self-adjoint is a generalization to Hilbert spaces of the symmetry
property of finite dimensional (real) matrices. To see that M is self-adjoint, note that the
adjoint of Rh is R†

h = Rh−1 : 〈
ϕ,Rhψ

〉∑
g
ϕ(g)[Rhψ](g)

=∑
g
ϕ(g)ψ(gh)

=∑
k
ϕ(kh−1)ψ(k)

= 〈
Rh−1ϕ,ψ

〉
.

Hence the symmetry of µ implies that the adjoint of M =∑
hµ(h)Rh is

M† =∑
h
µ(h)Rh−1 =

∑
h
µ(h−1)Rh =∑

h
µ(h)Rh = M.

As a corollary, we provide a simple proof of the following claim.

Claim 8.2. When µ is symmetric, P [Z2n = e]≥P [Z2n = g] for all g ∈G.

Proof.

0≤ ∥∥Mn(δg −δe)
∥∥2

= 〈
Mn(δg −δe), Mn(δg −δe)

〉
= 〈

Mnδg, Mnδg
〉−2

〈
Mnδg, Mnδe

〉+〈
Mnδe, Mnδe

〉
= 〈

δg, M2nδg
〉−2

〈
δg, M2nδe

〉+〈
δe, M2nδe

〉
,

where the last equality follows from the fact that M is self-adjoint. Now, by (8.2)〈
δg, M2nδg

〉=P [gZ2n = g]=P [Z2n = e]
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and 〈
δg, M2nδe

〉=P [Zn = g].

Hence

P [Z2n = g]≤P [Z2n = e].

8.3 The spectral norm
In this section we will denote the `2 norm by ‖·‖. The norm of the Markov operator M, as a
linear operator on the Hilbert space `2(G), is given by

‖M‖ = sup{
∥∥Mϕ

∥∥ :
∥∥ϕ∥∥= 1}= sup

{∥∥Mϕ
∥∥∥∥ϕ∥∥ : ϕ 6= 0

}
.

By Claim 8.1, ‖M‖ ≤ 1. The following theorem relates the norm of M to the max-entropy of
the random walk. The norm of M is also known as the spectral radius of the random walk.

Theorem 8.3. For all symmetric, finitely supported µ, ‖M‖ = e−h∞(µ).

By Proposition 7.5, this implies that ‖M‖ = limnP [Z2n = e]1/(2n).
To prove this theorem we will need some facts about self-adjoint operators on Hilbert

spaces. Before stating our claims, we will discuss the simpler, finite dimensional case.
In Rn, a self-adjoint operator can be represented by a real symmetric matrix A. Such a

matrix will have distinct real eigenvalues λ1, · · · ,λk for some k ≤ n. Furthermore, for every
vector v ∈ Rn we can find orthonormal eigenvectors w1, . . . ,wk (corresponding to the above
eigenvalues) such that v =∑k

i=1αiwi. It follows that the operator norm of A in this case is
maxi |λi|.

Using the eigenvector basis, we can calculate

Anv =
k∑

i=1
αiλ

n
i wi.

Hence ∥∥Anv
∥∥2 =

k∑
i=1

|αi|2|λi|2n.

and in particular, denoting |λm| =max{|λi| : αi > 0},

lim
n

∥∥Anv
∥∥1/n = |λm|.

and if ‖v‖ = 1 then

‖Av‖ ≤ lim
n

∥∥Anv
∥∥1/n ≤ ‖A‖ .

The following claim shows that the same holds in Hilbert spaces. We say that an operator on
a Hilbert space is bounded if it has finite norm.

37



Lemma 8.4. Let A be a self-adjoint bounded operator on a Hilbert space H . Then for any
unit vector v ∈H

‖Av‖ ≤ lim
n

∥∥Anv
∥∥1/n ≤ ‖A‖ .

Proof. Fix a unit vector v ∈H . Since A is self-adjoint,∥∥An+1v
∥∥4 = 〈

An+1v, An+1v
〉2 = 〈

Anv, An+2v
〉2

.

Applying Cauchy-Schwarz we get∥∥An+1v
∥∥4 ≤ ∥∥Anv

∥∥2 ·∥∥An+2v
∥∥2

.

Dividing both sides by
∥∥An+1v

∥∥2 · ‖Anv‖2 and taking the square root yields∥∥An+1v
∥∥

‖Anv‖ ≤
∥∥An+2v

∥∥∥∥An+1v
∥∥ .

Thus the sequence ‖An+1v‖
‖Anv‖ is non-decreasing and converges to some ρ:

ρ = lim
n

∥∥An+1v
∥∥

‖Anv‖ .

Since ∥∥Anv
∥∥= ‖Av‖

‖v‖ · · · ‖Anv‖∥∥An−1v
∥∥

we can conclude that

lim
n

∥∥Anv
∥∥1/n = ρ

with

‖Av‖ ≤ ρ ≤ ‖A‖ .

Denote by `2
f (G) the finitely supported ϕ ∈ `2(G). Recall that

‖M‖ = sup{
∥∥Mϕ

∥∥ :
∥∥ϕ∥∥= 1}.

Since we can approximate any ϕ ∈ `2(G) by a finitely supported ϕ′ ∈ `2
f (G), in the sense that∥∥ϕ−ϕ′∥∥< ε, the continuity of M implies that

‖M‖ = sup{
∥∥Mϕ

∥∥ :
∥∥ϕ∥∥= 1,ϕ ∈ `2

f (G)}. (8.3)
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Choose any ϕ ∈ `2
f (G) with

∥∥ϕ∥∥= 1. Since M is self-adjoint,∥∥Mnϕ
∥∥2 = 〈

Mnϕ, Mnϕ
〉= 〈

ϕ, M2nϕ
〉

.

Denote suppϕ= F ⊂G. Then, since ϕ=∑
g∈Fϕ(g)δg, we can write the above as∥∥Mnϕ

∥∥2 = ∑
g,h∈F

ϕ(g)ϕ(h)
〈
δg, M2nδh

〉
.

Recalling that the matrix entries are the Markov transition properties we have∥∥Mnϕ
∥∥2 = ∑

g,h∈F
ϕ(g)ϕ(h)P [hZ2n = g]

≤ ∑
g,h∈F

|ϕ(g)ϕ(h)|P [hZ2n = g].

By Claim 8.2, P [hZ2n = g]≤P [Z2n = e]. Hence∥∥Mnϕ
∥∥2 ≤ ∑

g,h∈F
|ϕ(g)ϕ(h)|P [Z2n = e]

= ∑
g,h∈F

|ϕ(g)| · |ϕ(h)|P [Z2n = e]

=P [Z2n = e]
∑
g∈F

|ϕ(g)| ∑
h∈F

|ϕ(h)|.

Now, |ϕ(g)| ≤ 1, since
∑

gϕ(g)2 = 1. Hence∥∥Mnϕ
∥∥2 ≤P [Z2n = e]|F|2.

It follows that

lim
n

∥∥Mnϕ
∥∥1/n ≤ lim

n
P [Z2n = e]1/(2n) = e−h∞(µ).

By the first inequality of Lemma 8.4∥∥Mϕ
∥∥≤ lim

n

∥∥Mnϕ
∥∥1/n ,

and so, by (8.3),

‖M‖ ≤ e−h∞(µ).

Finally,

e−h∞(µ) = lim
n
P [Z2n = e]1/(2n) = lim

n

〈
δe, M2nδe

〉1/(2n) = lim
n

∥∥Mnδe
∥∥1/n .

and so applying the second inequality of Lemma 8.4 to v = δe yields that

e−h∞(µ) = lim
n

∥∥Mnδe
∥∥1/n ≤ ‖M‖ .

This concludes the proof of Theorem 8.3.
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9 Amenability and Kesten’s Theorem

9.1 Følner sequences and the isoperimetric constant
Let G = 〈S〉 be a finitely generated group. Given a set F ⊂G, we denote the boundary of F by

∂F = {g 6∈ F : ∃s ∈ S s.t. gs ∈ F}.

This is the set of vertices in the Cayley graph that are not in F but are connected to a vertex
in F. Note that this definition depends on S, and we write ∂SF when we want to make this
dependence explicit.

The surface-to-volume ratio of a finite F ⊂G is |∂F|/|F|. The isoperimetric constant of G
(with respect to S) is

Φ(G,S)= inf
F⊂G

|∂SF|
|F| ,

where the infimum is taken over finite F.
A group G is said to be amenable if Φ(G,S)= 0. This notion is well-defined (i.e., indepen-

dent of the choice of S) since, by Claim 7.1, if S and T are generating sets then there exists a
constant m > 0 such that

1
m

|∂SF| ≤ |∂TF| ≤ m|∂SF|. (9.1)

Equivalently, G is amenable if there is a sequence of finite subsets Fn with surface-to-
volume ratio tending to zero. Such sequences are called Følner sequences. By (9.1), a sequence
is Følner with respect to one generating set if it is Følner with respect to another.

It is useful to also define the inner boundary ∂iF

∂F = { f ∈ F : ∃s ∈ S s.t. f s 6∈ F}.

This is the set of vertices in F that are connected to a vertex outside of F. Since each vertex
has |S| edges,

1
|S| · |∂F| ≤ |∂iF| ≤ |S| · |∂F|. (9.2)

We can thus equivalently define Følner sequences and amenability using the inner boundary.

9.2 Examples
To see that Zd is amenable, we can verify that Fn = {1, . . . ,n}d is a Følner sequence.

Claim 9.1. G = 〈S〉 is amenable if GR(G)= 0.
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Proof. Since Bn+1 = Bn ∪∂Bn, |Bn+1| ≥ |Bn| · (1+Φ(G,S)). Hence |Bn+1| ≥ (1+Φ(G,S))n and

GR(G)= lim
n

1
n

log |Bn| ≥ log(1+Φ(G,S)).

Thus, if G is non-amenable then GR(G)> 0.

It may be tempting to imagine that the converse of Claim 9.1 is true. However, the
lamplighter group has exponential growth even though it is amenable. Fix the generating
set S = {(0,+1), (0,−1), (δ0,0)}. Denote In = {−n, . . . ,n−1}. Consider the set

Fn = {
( f , z) : supp f ⊆ In, z ∈ In

}
.

it is of size exactly 2n ·22n and is contained in B6n, and so |B6n| ≥ 2n. Thus the lamplighter
has exponential growth. To see that it is amenable, note that

∂Fn = {
( f , z) : supp f ⊆ In, z ∈ {−n−1,n}

}
and so |∂Fn| = 2 ·22n. Thus Fn is a Følner sequence.

9.3 Kesten’s Theorem
In the next claim we denote symmetric differences by 4.

Claim 9.2. Let G = 〈S〉 be a finitely generated group. Let (F1,F2, . . .) be a sequence of finite
subsets of G. The following are equivalent.

1. Fn is a Følner sequence.

2. For every s ∈ S

lim
n

|Fn4Fns|
|Fn|

= 0.

3. For every h ∈G

lim
n

|Fn4Fnh|
|Fn|

= 0.

In this claim, Fnh is the set { f h : f ∈ F}. The proof of this claim relies on (9.1), as well as
the observation that F4Fs ⊆ ∂F ∪∂iF.

Theorem 9.3 (Kesten). Let G be a finitely generated group, and let µ be a finitely supported,
symmetric, non-degenerate probability measure on G. If G is amenable then ‖M‖ = 1.

Proof. Let S = suppµ be a symmetric generating set. Let F be a finite subset of G, and let
ϕ : G → {0,1} be the indicator of F: ϕ(g)=1{g∈F}. Let ψ= Mϕ, and note that
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1. ψ(g) ∈ [0,1].

2. ψ(g)= 1 for all g ∈ F \∂iF.

3. ψ(g)= 0 for all g 6∈ F ∪∂F.

In particular, ψ(g) 6=ϕ(g) only for g ∈ ∂F ∪∂iF. Hence∥∥ϕ−Mϕ
∥∥2

2 =
∥∥ϕ−ψ∥∥2

2 ≤ |∂F ∪∂oF| ≤ (1+|S|)|∂F|,
by (9.2). In particular, by the triangle inequality∥∥Mϕ

∥∥≥ ∥∥ϕ∥∥−√
(1+|S|)|∂F|,

and so ∥∥Mϕ
∥∥∥∥ϕ∥∥ ≥ 1−

√
(1+|S|)|∂F|∥∥ϕ∥∥ = 1−

√
(1+|S|)|∂F|

|F| .

Letting ϕn be the indicators of a Følner sequence Fn yields that

lim
n

∥∥Mϕn
∥∥∥∥ϕn

∥∥ ≥ 1,

and so ‖M‖ = 1, since we already showed in Claim 8.1 that ‖M‖ ≤ 1.

Let η,ν be probability measures on G. We view them as elements of `1(G). As such, the
distance between them is ∥∥η−ν∥∥= ∑

g∈G
|η(g)−ν(g)|.

We can also apply the right translation operators Rh to them:

[Rhν](g)= ν(gh).

Theorem 9.4. Let G = 〈S〉 be a finitely generated group. The following are equivalent.

1. G is amenable.

2. There is a sequence νn of probability measures on G such that

lim
n

‖νn −Rsνn‖1 = 0

for all s ∈ S.

3. There is a sequence ϕn of vectors in `2(G) such that

lim
n

∥∥ϕn −Rsϕn
∥∥

2 = 0

for all s ∈ S.
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In the latter two conditions, one can replace s ∈ S with s ∈G, and get two more equivalent
conditions.

Theorem 9.5 (Kesten). Let G be a finitely generated group, and let µ be a finitely supported,
symmetric, non-degenerate probability measure on G. If G is not amenable then ‖M‖ < 1.

This Theorem, together with (5.1), implies that the free group F2 is not amenable.
To prove this theorem we will need a simple lemma on Markov operators. A Hilbert space

is separable if it has a countable basis. For example, our space `2(G) is separable because it
admits the countable basis δg.

Lemma 9.6. Let A be a self-adjoint operator on a separable Hilbert space H with ‖A‖ = 1.
Suppose that the matrix entries

〈
e i, Ae j

〉
are non-negative for some countable orthonormal

basis e i, i ∈ I. Then there is a sequence of unit vectors wn ∈H such that

lim
n

〈wn, Awn〉 = 1.

To see that the assumption that A has positive entries is necessary, consider the operator
A : R→ R given by a(x) =−x. For finite dimensional H this is part of the statement of the
Perron-Frobenius Theorem.

Proof of Lemma 9.6. We identify each vector v =∑
i 〈v, e i〉 e i with the function I →R given by

v(i)= 〈v, e i〉.
Since ‖A‖ = 1 there is a sequence of unit vectors vn ∈H such that limn ‖Avn‖ = 1, and

hence limn
〈
vn, A2vn

〉 = 1, since A is self-adjoint. We would like to have vectors for which
this holds for A rather than A2.

Since the matrix entries
〈
e i, Ae j

〉
are non-negative, the matrix entries

〈
e i, A2e j

〉
are

non-negative, and for every v

‖Av‖ = 〈
v, A2v

〉=∑
i, j

v(i)v( j)
〈
e i, Ae j

〉≤∑
j,i

|v(i)| · |v( j)|〈e i, A2e j
〉

.

Thus we can assume that vn(i) is non-negative. Hence [Avn](i) is also non-negative, and
〈vn, Avn〉 > 0. We further can assume that 〈vn, Avn〉 ∈ [0,1] converges to some α ∈ [0,1].

Define un = vn + Avn then

lim
n

〈un, Aun〉 = lim
n

〈
vn + Avn, Avn + A2vn

〉
= lim

n
〈vn, Avn〉+

〈
vn, A2vn

〉+〈Avn, Avn〉+
〈
Avn, A2vn

〉
= lim

n
2α+2.

Now,

lim
n

‖un‖2 = lim
n

‖vn‖2 +‖Avn‖2 +2〈vn, Avn〉 = 2+2α> 0,

and so we have that for wn = un/‖un‖
lim

n
〈wn, Awn〉 = 1.
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Given this, we can proceed with the proof of the theorem.

Proof of Theorem 9.5. By Lemma 9.6, there is a sequence of unit vectors ϕn ∈ `2(G) such that

1= lim
n

〈
ϕn, Mϕn

〉= lim
n

∑
h
µ(h)

〈
ϕn,Rhϕn

〉
.

Observe that each term
〈
ϕn,Rhϕn

〉
on the right hand side is at most 1, since

∥∥Rhϕn
∥∥ = 1.

And since the right hand side is a finite (weighted) average of these terms,

lim
n

〈
ϕn,Rhϕn

〉= 1

and

lim
n

∥∥ϕn −Rhϕn
∥∥= 0.

So by Theorem 9.4, G is amenable, since suppµ is a generating set.
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10 The Carne-Varopoulos bound

10.1 Theorem statement
The Hoeffding bound for Zd can be stated as follow:

P [Zn = z]≤ 2e−
|z|2
2n ,

where |z| is the norm of z, calculated using the generating set suppµ. The next theorem
generalizes this to all finitely generated groups.

Theorem 10.1 (Carne-Varopoulos). Let G = 〈S〉 be a finitely generated group, and let µ be a
symmetric measure with support S. Let M be the corresponding Markov operator. Then for
any g ∈G,

P [Zn = g]≤ 2‖M‖n e−
|g|2
2n .

It follows that if G has sub-exponential growth, then the random walk Zn is concentrated
with distance roughly

p
n, just like on Zd.

10.2 Harmonic oscillator
To prove this theorem we will need to adapt some techniques from physics. Consider a mass
that can move up or down. We denote its position at (continuous) time t by ϕt, and its speed
by ψt, so that

dϕt

dt
=ψt.

It connected to a spring that pulls it back in, with a force equal to −L ·ϕt, so that the further
it is the stronger the pull. Thus

dψt

dt
=−Lϕt.

We can write these equation as

d
dt

(
ϕt
ψt

)
=V

(
ϕt
ψt

)
where

V =
(

0 1
−L 0

)
.

The solution is (
ϕt
ψt

)
= etV

(
ϕ0
ψ0

)
,
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or (
ϕt
ψt

)
=

(
cos(

p
Lt) 1p

L
sin(

p
Lt)

−pLsin(
p

Lt) cos(
p

Lt)

)(
ϕ0
ψ0

)
.

Note that the energy E t = Lϕ2
t +ψ2

t is conserved, so that etV is an orthogonal operator on R2

for the norm given by the energy.
We would like to do the same thing in discrete time. It is tempting, in analogy to the

continuous time differential equations, to consider the discrete time system

ϕn+1 =ϕn +ψn

ψn+1 =ψn −Lϕt,

or (
ϕn+1
ψn+1

)
= (I +V )

(
ϕn
ψn

)
.

The problem is that energy is no longer preserved: this is not an orthogonal operator. The
mistake is that we have taken the operator to be I +V rather than eV . Indeed, we need a
matrix with unit determinant. We will take

U =
(

M 1
−(1−M2) M

)
for M < 1 which corresponds to 1− 1

2 L ≈ cos(
p

L). Our discrete time system is thus(
ϕn+1
ψn+1

)
=U

(
ϕn
ψn

)
,

so that (
ϕn
ψn

)
=Un

(
ϕ0
ψ0

)
.

The energy that is conserved is

En = (1−M2)ϕ2
n +ψ2.

10.3 Coupled harmonic oscillators and the continuous time wave
equation

Consider now a unit mass located at each g ∈G. The masses can again move up and down,
and we denote the height of the mass at g at time t by ϕt(g) and its velocity by ψt(g), so that

dϕt(g)
dt

=ψt(g).
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The masses are connected by springs to their neighbors in the Cayley graph, where the
strength of the spring between g and gs is µ(s) for some symmetric probability measure µ on
g. The strength of the attraction is proportional to the distance between them, and attraction
translates to force on the mass at g (and thus acceleration) equal to µ(s)(ϕ(gs)−ϕ(g). We
thus have that

dψt(g)
dt

=∑
s
µ(s)

(
ϕt(gs)−ϕt(g)

)
.

This system has an energy

E t =
∑
g
ψt(g)2 + 1

2

∑
g

∑
s
µ(s)(ϕt(gs)−ϕt(g))2, (10.1)

which is conserved over time:

dE t

dt
= 2

∑
g
ψt(g)

dψt(g)
dt

+∑
g

∑
s
µ(s)

(
ϕt(gs)−ϕt(g)

)(dϕt(gs)
dt

− dϕt(g)
dt

)
= 2

∑
g
ψt(g)

∑
s
µ(s)

(
ϕt(gs)−ϕt(g)

)+∑
g

∑
s
µ(s)

(
ϕt(gs)−ϕt(g)

)(
ψt(gs)−ψt(g)

)
=∑

g
ψt(g)

∑
s
µ(s)

(
ϕt(gs)−ϕt(g)

)+∑
g

∑
s
µ(s)

(
ϕt(gs)−ϕt(g)

)
ψt(gs).

This is equal to zero by applying the change of variable g 7→ gs the first summand and using
the fact that µ is symmetric.

10.4 The Laplacian
We introduce some notation to help us write this more elegantly. Given ϕ ∈ RG , denote by
∇ϕ : G →RS the map

[∇ϕ]s(g)=ϕ(gs)−ϕ(g).

It is useful to think of ∇ϕ as the derivative of ϕ, with the component [∇ϕ]s being the derivative
in the “direction” s. Clearly, it is a linear operator. Note that for θ =∇ϕ and h = gs it holds
that

θs(g)=−θs−1(h).

We call such functions anti-symmetric.
In the context of a symmetric measure µ supported on a generating set S we define an

inner product on the space of functions G →RS by

〈
θ,θ′

〉= 1
2

∑
g

〈
θ(g),θ′(g)

〉= 1
2

∑
g

∑
s
µ(s)θs(g)θ′s(g).
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Of course, this is not defined for all θ,θ′ and we restrict ourselves to θ : G → RS such that
‖θ‖2 := 〈θ,θ〉 <∞. We also restrict ourselves to anti-symmetric ψ. We denote the Hilbert
space of such θ by `2(G,RS, AS).

For ϕ ∈ `2(G),

∥∥∇ϕ∥∥2 = 〈∇ϕ,∇ϕ〉= 1
2

∑
g

∑
s
µ(s)[∇ϕ]s(g)[∇ϕ]s(g)

= 1
2

∑
g

∑
s
µ(s)(ϕ(gs)−ϕ(g))2

= 1
2

∑
g

∑
s
µ(s)

(
ϕ(gs)2 +2ϕ(gs)ϕ(g)+ϕ(g)2)

= 〈
ϕ,ϕ

〉−〈
ϕ, Mϕ

〉
= 〈

ϕ, (I −M)ϕ
〉

,

where I is the identity operator on `2(G). Thus ∇ is a bounded operator from `2(G) to
`2(G,RS, AS). A similar calculation yields〈∇ψ,∇ϕ〉= 〈

ψ, (I −M)ϕ
〉

. (10.2)

The “opposite” of the “differentiation” operator ∇ is the “divergence” operator ∇† : (RS)G →
RG given by

[∇†ψ](g)=∑
s
µ(s)ψs−1(gs).

Indeed, the adjoint of ∇ is ∇†:〈
∇†ψ,ϕ

〉
=∑

g
[∇†ψ](g)ϕ(g)

=∑
g

∑
s
µ(s)ψs−1(gs)ϕ(g)

= 1
2

∑
g

∑
s
µ(s)(ψs−1(gs)−ψs(g))ϕ(g)

= 1
2

∑
g

∑
s
µ(s)(ψs(g)ϕ(gs)−ψs(g)ϕ(g))

= 1
2

∑
g

∑
s
µ(s)ψs(g)(ϕ(gs)−ϕ(g))

= 1
2

∑
g

∑
s
µ(s)ψs(g)[∇ϕ]s(g)

= 1
2

∑
g

〈
ψ(g), [∇ϕ](g)

〉
= 〈

ψ,∇ϕ〉
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Hence, by (10.2), ∇†∇= I−M, which we denote by L and call the Laplacian of the random
walk and.

Going back to our masses, recall that the equations governing the system are

dϕt(g)
dt

=ψt(g)

dψt(g)
dt

=∑
s
µ(s)

(
ϕ(gs)−ϕ(g)

)
.

Note that

[Lϕ](g)= [∇†∇ϕ](g)=∑
s
µ(s)[∇ϕ]s−1(gs)=∑

s
µ(s)

(
ϕ(g)−ϕ(gs)

)
,

and so we write our equations as

dϕt

dt
=ψt

dψt

dt
=−Lϕt.

We can write our energy as

E t =
∥∥ψ∥∥2 +∥∥∇ϕ∥∥2 = 〈

ψ,ψ
〉+〈

ϕ,Lϕ
〉

.

Note that this is a norm on the Hilbert space H := `2(G)⊗`2(G), and thus the dynamics is
(differential) orthogonal operator that preserves this norm.

If we think of
(
ϕt
ψt

)
as an element of H , we can write our equation as

d
dt

(
ϕt
ψt

)
=V

(
ϕt
ψt

)
(10.3)

where V : H →H is given by

V =
(

0 I
−L 0

)
.

The solution to (10.3) is (
ϕt
ψt

)
= etV

(
ϕ0
ψ0

)
.

10.5 Proof using the discrete time wave equation
To connect this to our random walks, we would now like to do the same exercise but in
discrete time. As in the one-dimensional case, we take

U =
(

M I
−(I −M2) M

)
,
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but where now M is the Markov operator and U is an operator on H . This operator is now
orthogonal, i.e., it preserves the norm∥∥∥∥(

ϕ

ψ

)∥∥∥∥2

= 〈
ψ,ψ

〉+ 1
2

〈
ϕ, (I −M2)ϕ

〉
.

We can recover M from U by (
M 0
0 M

)
= 1

2
(
U +U−1) .

Likewise, (
M 0
0 M

)n

= 1
2n

(
U +U−1)n =

n∑
k=0

1
2n

(
n
k

)
Uk.

Hence if we let Z̃n be the simple random walk on Z then(
0

Mnϕ

)
=

(
M 0
0 M

)n (
0
ϕ

)
= E

[
U Z̃n

(
0
ϕ

)]
.

Write

Un =
(
An Bn
Cn Dn

)
then

Un+1 =
(
An Bn
Cn Dn

)
·
(

M I
M2 − I M

)
=

(
AnM+Bn(M2 − I) An +BnM
CnM+Dn(M2 − I) Cn +DnM

)
.

It thus follows by induction that An, Bn, Cn and Dn are respectively polynomials of degrees
n, n−1, n+1, and n in M (in fact, An = Bn is the Chebyshev polynomial of order n). Now,〈
δg, Mkδ0

〉= 0 when |k| < |g|. Thus also〈(
0
δg

)
,Uk

(
0
δe

)〉
= 0

for all such k (physically, this means that waves propagate at constant speed). Since U is
orthogonal, the above inner product is at most 1 for any k, and so we have that〈

δg, Mnδe
〉=〈(

0
δg

)
,
(
M 0
0 M

)n (
0
δe

)〉
= E

[〈(
0
δg

)
,U Z̃n

(
0
δe

)〉]
≤P[|Z̃n| ≥ n

]
≤ 2e−

|g|2
2n ,

where the last inequality is simply the Hoeffding bound.
Repeating this proof with M̂ := M/‖M‖ yields an additional ‖M‖n factor. This completes

the proof of Theorem 10.1.
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11 The Martin boundary and the Furstenberg-Poisson
boundary

11.1 The boundary of the free group
Let F2 = 〈S〉, S = {a,a−1,b,b−1} be the free group on two generators. Let ∂F2 denote the set of
infinite reduced words:

∂F2 = {s1s2s3 · · · : sn ∈ S, sn+1 6= s−1
n }.

We can identify each b ∈ ∂F2 with an infinite ray, starting from in the origin of the Cayley
graph of F2.

Given b ∈ ∂F2, we say that the k-prefix of b is equal to g ∈ F2 if b = s1s2 · · · sk · · · and
g = s1s2 · · · sk. We define the k-prefix of g ∈ F2 similarly, provided |g| ≥ k.

We say that a sequence of words in the free group converges to b ∈ ∂F2 if for every k it
holds for all n large enough that the k-prefix of gn is equal to the k-prefix of b. When F2 is
endowed with the discrete topology and ∂F2 is endowed with the product topology, ∂F)2 is a
compactification of F2: every sequence gn ∈ F2 has a subsequence that either converges to
some b ∈ ∂F2 or to some g ∈ F2 (and hence eventually equals this g). Indeed, if we define the
distance d(g,b) between two (finite or infinite) reduced words as 3−r(g,b) where r(g,b) is the
maximum k such that the k-prefixes of the words agree, then F2 ∪∂F2 is a compact metric
space and ∂F2 is the boundary of the discrete set F2.

Let µ be the simple random walk, given by the uniform distribution over S. Since the
random walk is transient, the first generator in Zn eventually stabilizes, as does the second,
etc. Hence there is a random variable B taking value in ∂F2 such that Zn converges to B
almost surely. Denote by ν the distribution of B. Then ν is a probability measure on ∂F2 that
is called the exit measure of the random walk. The symmetry of the simple random walk
makes it is easy to calculate ν: the probability that the k-prefix of B is equal to any particular
s1s2 · · · sk is 1

43−(k−1).
We can associate with each b ∈ ∂F2 the harmonic function given by

ψb(g)= 3−|g|+2r(g,b).

Equivalently, viewed as a function on the Cayley graph, ψb is the function that is equal to 1
at e, increases by a factor of 3 along edges that tend toward the ray b, and decreases by a
factor of 3 in the other direction.

Note that B is a shift-invariant random variable: there is a measurable function f such
that

B = f (Zn, Zn+1, . . .)

for all n; we can take any f such that f (g1, g2, . . .) = limn gn whenever the limit exists. It
turns out that this is the “universal” shift-invariant random variable: σ(B) is the shift-
invariant sigma-algebra. In other words, every shift-invariant random variable is a function
of B.
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What does the random walk look like conditioned on B? The answer turns out to be
simple: it is not longer a random walk on G, but it is still a Markov chain, with transition
probabilities

P [Zn+1 = h|Zn = g,B = b]= ψb(h)
ψb(g)

µ(g−1h)= ψb(h)
ψb(g)

P [Zn+1 = h|Zn = g].

That is, relative to the unconditioned random walk, there is a threefold increase in the
probability of moving in the direction of B, and a threefold decrease in the probability of
moving in each of the opposite three directions. It follows from this that

P [Z1 = g1, . . . , Zn = gn|B = b]=ψb(gn)P [Z1 = g1, . . . , Zn = gn].

To see why this holds, we first note that this conditioned Markov chain indeed converges to
limn Zn = b, since the drift towards b will always eventually bring the random walk back to
the ray corresponding to b, and will also push it to infinity, away from the origin. Second,
observe that

E [P [Z1 = g1, . . . , Zn = gn|B]]= E[
ψB(gn)P [Z1 = g1, . . . , Zn = gn]

]
= E[

ψB(gn)
]
P [Z1 = g1, . . . , Zn = gn]

=P [Z1 = g1, . . . , Zn = gn],

since E
[
ψB(g)

]= 1 for all g. This proves that these conditional measures form a collection of
conditional measures (also called a disintegration) of the unconditional measure with respect
to B. Such a collection is almost everywhere uniquely determined, by the disintegration
theorem.

The rest of this section will be devoted to building a similar theory for every finitely
generated group.

11.2 The stopped random walk
Let G be a finitely generated group and let µ be a finitely supported non-degenerate probabil-
ity measure on G. We assume that µ has symmetric support: µ(g)> 0 implies µ(g−1)> 0.

Let (Z0, Z1, . . .) be the µ-random walk on G. Given a subsetF ⊂ G that includes e, we
define the F-stopped random walk (Z̊0, Z̊1, . . .) by Z̊0 = e and

Z̊n+1 =
{

Z̊nXn+1 if Z̊n ∈ F
Z̊n otherwise.

Equivalently, let

T =min{n ≥ 0 : Zn 6∈ F},
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be the first time that the random walk visits an element that is not in F (and hence in ∂F),
and let

Z̊n =
{

Zn if n ≤ T
ZT otherwise.

We say that F is connected if for all g ∈ F ∪∂F there is an n such that P
[
Z̊n = g

]
> 0.

Equivalently, the restriction of the Cayley graph to F has a single connected component
(since the support of µ is symmetric). We will henceforth assume that F is connected.

Claim 11.1. If F is finite then T is almost surely finite.

In cases in which T is finite (such as finite F), Z̊∞ := ZT = limn Z̊n is the element of the
complement of F that is first visited by the random walk. Since the random walk starts in F
(i.e., e ∈ F) then Z̊∞ ∈ ∂F.

11.3 Harmonic functions
Suppose that F is connected. We say that a function ϕ : F ∪∂F is µ-harmonic if for every
g ∈ F it holds that ϕ(g)=∑

sµ(s)ϕ(gs). Denote by `µ(F) the collection of µ-harmonic functions
on F ∪∂F:

`µ(F)=
{
ϕ : F ∪∂F →R : ϕ(g)=∑

s
µ(s)ϕ(gs) for all g ∈ F

}
.

Clearly, `µ(F) is a linear subspace of RF∪∂F .

Claim 11.2. ϕ is µ-harmonic if and only if

ϕ(Z̊n)= E
[
ϕ(Z̊n+1)

∣∣∣Z̊n

]
. (11.1)

(I.e., ϕ(Z̊n) is a martingale).

Proof. For g ∈ F, Z̊n+1 = Z̊nXn+1, and so

E
[
ϕ(Z̊n+1)

∣∣∣Z̊n = g
]
= E

[
ϕ(Z̊nXn+1)

∣∣∣Z̊n = g
]

= E
[
ϕ(gXn+1)

∣∣∣Z̊n = g
]

=∑
s
P [Xn+1 = s]E

[
ϕ(gXn+1)

∣∣Xn+1 = s
]

=∑
s
P [Xn+1 = s]E

[
ϕ(gs)

]
=∑

s
µ(s)ϕ(gs).

Thus (11.1) holds conditioned on Z̊n = g iff ϕ satisfies the harmonicity condition at g. It
remains to be shown that no additional constraints are imposed by (11.1) conditioned on
Z̊n ∈ ∂F. Indeed, there Z̊n = g implies Z̊n+1 = g, and so (11.1) holds conditioned on Z̊n = g for
any ϕ.
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Claim 11.3. Fix some h ∈ ∂F. The function

ψ(g) :=P
[
Z̊∞ = h

∣∣∣Z̊n = g
]

is µ-harmonic.

In the definition of ψ we choose for each g some n such that P [Zn = g]> 0, and the choice
of such n is immaterial (by the Markov property).

Proof of Claim 11.3. Note first that if g ∈ ∂F then the event Z̊n = g is the event Z̊∞ = g, and
thus ψ(g)= 1 if g = h and ψh(g)= 0 if g 6= h.

For g ∈ F, we condition on the next step of the random walk to arrive at

ψ(g)=P
[
Z̊∞ = h

∣∣∣Z̊n = g
]

=∑
s
P [Xn+1 = s]P

[
Z̊∞ = h

∣∣∣Z̊n = g, Xn+1 = s
]

=∑
s
P [Xn+1 = s]P

[
Z̊∞ = h

∣∣∣Z̊n = gs
]

=∑
s
µ(s)ψ(gs).

In the penultimate equality we used the fact that g ∈ F to identify the event {Z̊n = g, Xn+1 = s}
with {Z̊n = gs}.

Lemma 11.4 (The maximum principle). Let F be connected, let ϕ ∈ `µ(F), and let ϕ(h) =
max{ϕ(g) : g ∈ F ∪∂F}. Then either h ∈ ∂F or ϕ is constant.

Proof. Suppose h 6∈ ∂F, i.e. h ∈ F. We show that ϕ is constant and equal to C =ϕ(h)=maxϕ.
Fix some n so that P

[
Z̊n = h

]
> 0. By harmonicity and (11.1),

E
[
ϕ(Z̊n+k)

∣∣∣Z̊n = h
]
= C

for all k ≥ 0. Since F is connected, for all g ∈ F∪∂F there is a k such that P
[
Z̊n+k = g

∣∣∣Z̊n = h
]
>

0. Therefore, since ϕ(Z̊n+k)≤ C, it follows that ϕ(g)= C.

An implication of the maximum principle is the uniqueness principle:

Lemma 11.5 (The uniqueness principle). Let F be connected and finite. If ϕ,ψ ∈ `µ(F) agree
on ∂F then they agree everywhere on F ∪∂F.

Proof. Suppose that ϕ,ψ ∈ `µ(F) agree on ∂F. By the maximum principle, ϕ−ψ is either
constant, in which case ϕ=ψ, or else it attains its maximum on ∂F. Since it vanishes on ∂F
we get that ϕ≤ψ. The same argument applied to ψ−ϕ yields ψ≤ϕ.
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11.4 The Poisson formula
Theorem 11.6 (The Poisson formula). Suppose that F is finite. Fix some ϕ̂ : ∂F →R. Then ϕ

is in `µ(F) and agrees with ϕ̂ on ∂F if and only if

ϕ(g)= E
[
ϕ̂(Z̊∞)

∣∣∣Z̊n = g
]

(11.2)

for any n such that P
[
Z̊n = g

]
> 0.

Proof. Suppose that ϕ has the form (11.2). Then clearly ϕ agrees with ϕ̂ on ∂F. Furthermore,
for g ∈ F

ϕ(g)= E
[
ϕ̂(Z̊∞)

∣∣∣Z̊n = g
]

=∑
s
E
[
ϕ̂(Z̊∞)

∣∣∣Z̊n = g, Xn+1 = s
]

=∑
s
E
[
ϕ̂(Z̊∞)

∣∣∣Z̊n+1 = gs
]
P [Xn+1 = s]

=∑
s
µ(s)ϕ(gs).

Hence ϕ ∈ `µ(F). It then follows from the uniqueness principle that conversely, if ϕ ∈ `µ(F)
agrees with ϕ̂ on ∂F, then it must be of the form (11.2).

An implication of the Poisson formula is that the map

Φ : R∂F → `µ(F)

ϕ̂ 7→ E
[
ϕ̂(Z̊∞)

∣∣∣Z̊n = ·
]
, (11.3)

is linear bijection. Indeed, its inverse is the restriction map ϕ 7→ ϕ̂.
The map Φ has another important property: it is order preserving. I.e., if ϕ̂≥ ψ̂, then

Φ(ϕ̂)≥Φ(ψ̂). It follows that ϕ̂≥ 0 iff Φ(ϕ̂)≥ 0.
Since `µ(F) is a finite dimensional linear space that contains the constant functions, we

can always take a ϕ ∈ `µ(F), add a constant to it and multiply it by another constant to arrive
at a very similar function that is still in `µ(F) but is also in

`µ(F,1) := {ϕ ∈ `µ(F) : ϕ≥ 0,ϕ(e)= 1}.

Claim 11.7. `µ(F,1) is compact.

Proof. Clearly `µ(F,1) is closed. It remains to show that it is bounded. By the Poisson
formula, if ϕ ∈ `µ(F,1) then E

[
ϕ(Z̊∞)

]
= 1. Hence∑

h∈∂F
ϕ(h)P

[
Z̊∞ = h

]
= 1. (11.4)

Hence ϕ(h)≤P
[
Z̊∞ = h

]−1
, and ϕ≤minhP

[
Z̊∞ = h

]−1
.
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The set `µ(F,1) is compact, and furthermore convex. Furthermore, it can be identified
with convex combinations of the functions

ψh = 1

P
[
Z̊∞ = h

]Φ(1{h}),

where 1{h} : ∂F → {0,1} is the indicator of h ∈ ∂F. That is, every ϕ ∈ `µ(F,1) can be written as

ϕ=Φ(ϕ̂)
=Φ(

∑
h
ϕ(h)1{h})

=∑
h
ϕ(h)P

[
Z̊∞ = h

] 1

P
[
Z̊∞ = h

]Φ(1{h})

=∑
h
ϕ(h)P

[
Z̊∞ = h

]
ψh

=:
∑
h
λhψh

where, by (11.4),
∑

hλh = 1. That is, ϕ is the barycenter of the probability measure λ defined
on the set {ψh : h ∈ Bn+1}.

The functions Φ(1{h}) are the harmonic functions of the form described in Claim 11.3. The
functions ψh = 1

P
[
Z̊∞=h

]Φ(1{h}) are the extreme points of `µ(F,1): these functions cannot be

written as non-trivial convex combinations of functions in `µ(F,1).
The constant function on F ∪∂F is

1=∑
h
P

[
Z̊∞ = h

]
ψh.

Let ν be a probability measure on the collection (ψh)h given by ν(ψh)=P
[
Z̊∞ = h

]
. This is

called the exit measure of the stopped random walk. By definition,∑
h
ν(h)ψh(g)= 1

for all g ∈ F. Note that `µ(F,1) is a simplex: there is a unique way of representing each of each
elements as a convex combination of the extreme points. Thus ν is the unique probability
measure on (ψh)h for which the above holds.

11.5 The Martin boundary
Fix a finitely supported, non-degenerate µ with symmetric support S so that G = 〈S〉. Using
our notation `µ(G) is the set of µ-harmonic functions on G, and `µ(G,1) are the non-negative
ones that assign 1 to the identity. We endow RG with the topology of pointwise convergence,
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which is also the product topology. I.e., a sequence of functions ϕn : G →R converges to ϕ if
limnϕn(g)=ϕ(g) for all g ∈G, in which case we write limnϕn =ϕ.

Clearly, both `µ(G) and `µ(G,1) are closed subsets of RG . The next proposition implies
that the latter is compact.

Proposition 11.8. For every g ∈G and ϕ ∈ `µ(G,1) it holds that

sup
n
P

[
Zn = g−1]≤ϕ(g)≤ inf

n

1
P [Zn = g]

.

Proof. Since ϕ is harmonic, (ϕ(hZ0),ϕ(hZ1), . . .) is a martingale for any h ∈G. Hence

ϕ(h)= E[
ϕ(hZn)

]= ∑
k∈G

ϕ(k)P [hZn = k]≥ϕ(k)P [hZn = k],

and so we have the right inequality by setting h = e and k = g. For the left inequality, set
h = g and k = e.

An immediate corollary of this proposition is that `µ(G,1) is compact, since it is closed
and contained in the product of compact sets, which is compact.

Let Bn be the ball of radius n in G. Identify each ϕ ∈ `µ(Bn,1) with the function in RG

that agrees with ϕ on F ∪∂F and vanishes elsewhere. That is, we now redefine

`µ(Bn,1)=
{
ϕ : G →R : ϕ(g)=∑

s
µ(s)ϕ(gs) for all g ∈ Bn and suppϕ(g)⊆ Bn+1

}
.

Thus `µ(Bn,1) is a subset of RG .

Proposition 11.9. For every g there is a constant Cg such that for every n and every ϕ ∈
`µ(Bn,1) it holds that ϕ(g)≤ Cg.

The proof is similar to that of Proposition 11.8. This implies that the set {ψh : h ∈ G},
which we identify with G, is precompact: its closure is compact, or, alternatively, every
sequence in it has a converging subsequence (even if the limit may not be in G).

Suppose that a sequence ϕn ∈ `µ(Bn,1) converges pointwise to ϕ ∈RG . Then ϕ ∈ `µ(G,1),
since clearly ϕ(e)= 1 and since at each g the harmonicity condition is satisfied for all n large
enough. Conversely, let

πnR
G →RG

ϕ 7→ϕ ·1{Bn}

be the natural projection to functions supported on the ball of radius n, and note that
limnπn(ϕ)=ϕ for any ϕ ∈RG . If ϕ ∈ `µ(G,1), then the projection ϕn =πn(ϕ) is in `µ(Bn−1,1).
Since limnϕn =ϕ, `µ(G,1) is the limit of the sets `µ(Bn,1).

An element of `µ(G,1) is an extreme point if it cannot be written as a non-trivial convex
combination of two other functions in `µ(G,1). The topological closure of the set of extreme
points of `µ(1) is called the Martin boundary of G with respect to µ, and we will denote it by
∂µG.

The reason that ∂µG is called a boundary of G is that, if we identify g with ψg ∈ `µ(B|g|,1)
then ∂µG is a compactification of G:
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Proposition 11.10. The Martin boundary ∂µG is the set of limit points of G in RG , and
G∪∂µG is compact.

Proof. By Proposition 11.9, every sequence in G has a converging subsequence. Thus the
union of G with its limit points is compact, and it remains to be shown that the set of limit
points of G is equal to ∂µG.

To see that the set of limits points in G contains ∂µG, fix an extreme point ψ ∈ `µ(G,1),
and denote ψn =πnψ. By the Poisson formula we can write each ψn as the barycenter of a
probability measure λn on G∪Bn: ψn(g)=∑

h∈Bn λn(h)ψh(g).
This sequence of probability measures will have a converging subsequence, which will

converge to some probability measure λ on `µ(G,1) with barycenter ψ. But since ψ is extreme,
this measure must be a point mass at ψ, which is thus a limit point of G.

In the other direction, suppose ϕ is not in ∂µG. Then there exists a finite set F ⊂G and
ε > 0 such that every ϕ′ with |ϕ′(g)−ϕ(g)| < ε for all g ∈ F is not extreme. In particular,
ϕ is in the interior of `µ(G,1), and furthermore ϕ is in the interior of πn`µ(G,1) for all n
large enough. Thus the interior of `µ(G,1) is equal to the union of these interiors. Now, G is
disjoint from this set, since each ψh, is not in any πn`µ(G,1): for n < |h| the support of ψh is
too big, and for n ≥ |h| the maximum principle is violated. Thus there are no limits points of
G in the interior of `µ(G,1), and they are all contained in ∂µG.

11.6 Bounded harmonic functions
Denote by `∞µ (G) the set of bounded harmonic functions. Let I be the shift-invariant sigma-
algebra of (Z0, Z1, . . .). Recall that a random variable W is measurable with respect to I if
there is some f such that

W = f (Z1, Z2, . . .)= f (Z2, Z3, . . .)= f (Zn, Zn+1, . . .).

An example of a shift-invariant event is the event that Zn ∈ P eventually, for some P ⊆G:

{∃N s.t. Zn ∈ P for all n ≥ N} .

We denote by L∞(I ) the collection of bounded, I -measurable random variables. To each
shift-invariant bounded random variable W we can associate the bounded harmonic function
ϕ=Φ(W) given by

ϕ(g)= E [W |Zn = g],

for some (any) n such that P [Zn = g] > 0. It is simple to check that ϕ is indeed bounded
harmonic. Conversely, to each ϕ ∈ `∞µ (G) we can assign the W ∈ L∞(I ) given by

W = lim
n
ϕ(Zn).

The limit exists because ϕ(Zn) is a bounded martingale, and hence converges.
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Indeed, in analogy to (11.3), define

Φ : L∞(I )→ `∞µ (G)

W 7→ E [W |Zn = ·].

This map is sometimes called the Furstenberg transform.
Note that both `∞µ (G) and L∞(I ) are normed vector spaces when equipped with the

supremum norm:

‖W‖∞ = sup{x ∈R+ : P [|W | ≥ x]> 0}
‖ϕ‖∞ = sup

g
|ϕ(g)|.

It turns out that Φ is not just a bijection between these vector spaces, but moreover preserves
these norms.

Proposition 11.11. The map Φ is an isometry between L∞(I ) and `∞µ (G).

Proof. Since E [W |Zn = g]≤ ‖W‖∞, ‖Φ(W)‖∞ ≤ ‖W‖∞. In the other direction, given ϕ ∈ `∞µ (G),
the process Wn = ϕ(Zn) is a bounded martingale and hence converges to W = limn Wn =
limnϕ(Zn), and W is easily seen to be a shift-invariant random variable. Now,

E
[
lim

n
ϕ(Zn)

∣∣∣Zn = g
]
=ϕ(g)

by the martingale property of ϕ(Zn) and the Markov property of Zn. Thus the map ϕ 7→W
is the inverse of Φ. Furthermore, W = limnϕ(Zn) ≤ ‖ϕ‖∞, and so ‖W‖∞ ≤ ‖Φ(W)‖∞. Thus
‖Φ(W)‖∞ = ‖ϕ‖∞.

It follows from Proposition 11.11 that if there are no non-constant bounded µ-harmonic
functions then the shift-invariant sigma-algebra is trivial: every shift-invariant random
variable is constant.

Another consequence of Proposition 11.11 is the following claim. In this statement we
identify two events if their symmetric difference has zero measure; equivalently, if their
indicators coincide as random variables.

Claim 11.12. Every shift-invariant event is of the form Zn ∈ P eventually, for some P ⊆G.

Proof. Let E ∈I be a shift-invariant event, and let W be its indicator. Let ϕ=Φ(W). Since
W =Φ−1(ϕ)= limnϕ(Zn), W is the indicator of the event that limnϕ(Zn)= 1.

Let P = {g ∈ G : ϕ(g) > 1/2}. Then limnϕ(Zn) = 1 iff Zn is in P for all n large enough.
Hence W is also the indicator of the event that Zn is eventually in P.

Recall that for each h ∈G we defined the right translation linear operator Rh : RG →RG

[Rhϕ](g)=ϕ(gh).
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We now define the left translation operator Lh : RG →RG by

[Lhϕ](g)=ϕ(h−1 g).

As with right translations, this is a representation of G: LhLg = Lhg and L−1
h = Lh−1 . Will will

now be interested in L because is preserves harmonicity. To see this, note that L commutes
with R:

[LgRhϕ](k)= [Rhϕ](g−1k)=ϕ(g−1kh)= [Lgϕ](kh)= [RhLgϕ](k).

Since M = ∑
hµ(h)Rh, it follows that L and M commute, and so if Mϕ = ϕ then M(Lϕ) =

LMϕ= Lϕ.
The following theorem is known as the Choquet-Deny Theorem, even though it was first

proved by David Blackwell. The proof below is due to Margulis.

Theorem 11.13. Suppose that G is abelian. Then for any µ, every bounded µ-harmonic
function is constant.

To prove this theorem we will need an important result about compact convex sets.

Theorem 11.14 (Krein-Milman Theorem). Let C be a compact convex subset of a nice topo-
logical vector space.1 Then every c ∈ C is the limit of convex combinations of the extreme points
of C.

Proof of Theorem 11.13. Let C ⊂ `∞µ (G) be the bounded harmonic functions that take values
in [0,1]. This is a compact convex set (in the topology of pointwise convergence) and thus
by the Krein-Milman theorem has extreme points. Suppose ψ ∈ C is extreme. Since it is
harmonic,

ψ= Mψ=∑
h
µ(h)Rhψ.

Since G is abelian, Rhψ= Lh−1ψ, and so

ψ=∑
h
µ(h)Lh−1ψ.

Now, each Lh−1ψ is also in C. Hence we have written ψ as a convex combination of elements
of C. But ψ is harmonic, and so Lh−1ψ=ψ for all h−1 ∈ suppµ. Since suppµ generates G, we
write any g ∈G as a product g = h1h2 ·hn of elements of suppµ. We then have that Lg−1ψ=ψ.
In particular ψ(g)=ψ(e) and ψ is constant. Thus all extreme points in C are constant. And
since, again by Krein-Milman, every ϕ ∈ C is the limit of convex combinations of extreme
points, every ϕ ∈ C is constant. Hence every ϕ ∈ `∞µ (G) is constant.

1By nice we mean Hausdorff and locally convex. We will only need that RG (equipped with pointwise
convergence) is nice.
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12 Random walk entropy and the Kaimanovich-Vershik
Theorem

In this section, as usual, we consider a finitely supported, non-degenerate µ on a finitely
generated G = 〈S〉.

12.1 Random walk entropy
Claim 12.1. H(Zn+m)≤ H(Zn)+H(Zm).

Proof.

Zn+m = (X1 · · ·Xn) · (Xn+1 · · ·Xn+m),

and so

H(Zn+m)≤ H(X1 · · ·Xn, Xn+1 · · ·Xn+m).

These two random variables are independent, and so

H(Zn+m)≤ H(X1 · · ·Xn)+H(Xn+1 · · ·Xn+m).

The distribution of Zm = X1 · · ·Xm is identical to that of Xn+1 · · ·Xn+m, and so

H(Zn+m)≤ H(Zn)+H(Zm).

This claim shows that the sequence H(Zn) is subadditive. It thus follows from Fekete’s
Lemma (Lemma 7.3) that H(Zn)

n converges. We accordingly define the random walk entropy
h(µ) by

h(µ)= lim
n→∞

1
n

H(Zn).

Note that 1
n H(Zn)≤ 1

n H(X1, . . . , Xn)= H(X1), and thus h(µ) is finite.

12.2 The Kaimanovich-Vershik Theorem
Theorem 12.2. The random walk (Z0, Z1, Z2, . . .) has a trivial tail sigma-algebra if and only
if h(µ)= 0.

Proof. We calculate the mutual information I(Z1;T ), where T is the tail sigma-algebra.
Recall that T =∩nTn, where Tn =σ(Zn, Zn+1, . . .). Hence, by Claim A.4,

H(Z1|T )= lim
n

H(Z1|Zn, Zn+1, . . .).
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By the Markov property it follows that

H(Z1|T )= lim
n

H(Z1|Zn).

By (A.1)

H(Z1|T )= lim
n

H(Zn|Z1)−H(Zn)+H(Z1).

Now, Z1 = X1, and Zn = X1 · · ·Xn, and so

H(Z1|T )= lim
n

H(X1 · · ·Xn|X1)−H(Zn)+H(Z1).

Note that conditioned on X1 = g, the distribution of X1 · · ·Xn is identical to the distribution
of gX1 · · ·Xn−1, which has the same entropy as X1, . . . , Xn−1 = Zn−1. Hence H(X1 · · ·Xn|X1)=
H(Zn−1), and we get that

H(Z1|T )= lim
n

H(Zn−1)−H(Zn)+H(Z1).

Thus

I(Z1;T )= lim
n

H(Zn)−H(Zn−1)= h(µ).

It follows that if h(µ)> 0 then T is not independent of Z1, and in particular T is non-trivial.
For the other direction, a calculation similar to the one above shows that I(Z1, . . . , Zn;T )=

nh(µ). Thus, if h(µ)= 0, then T is independent of (Z1, . . . , Zn) for all n, and, as in the proof of
Kolmogorov’s zero-one law, is trivial.

We say that G has subexponential growth if GR(G)= 0. That is, if limr
1
r log |Br| = 0; see

(7.1).

Corollary 12.3. If G has subexponential growth then T is trivial.

Proof. Since Zn is supported on Br, H(Zn)≤ log |Bn|. Hence

h(µ)= lim
n

1
n

H(Zn)≤ lim
n

1
n

log |Bn|.

Hence if G is subexponential then h(µ)= 0 and T is trivial.
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A Basics of information theory

A.1 Shannon entropy
Fix a probability space (Ω,F ,P). Let X be a (simple) random variable taking values in some
finite set Θ. We define the Shannon entropy of X by

H(X )=− ∑
θ∈Θ

P [X = θ] logP [X = θ],

where we use the convention 0log0= 0.
Denote by P [X ] the random variable given by P [X ](ω)=P [X = X (ω)]. Then we can write

the entropy as

H(X )= E [− logP [X ]].

The first important property of Shannon entropy is the following form of monotonicity:

Claim A.1. Let X ,Y be simple random variables. Suppose Y is σ(X )-measurable (i.e., Y =
f (X ) for some function f ). Then H(Y )≤ H(X ).

Proof. Note that P [Y ]≤P [X ] almost surely. Hence

H(Y )= E [− logP [Y ]]≤ E [− logP [X ]]= H(X ).

Given two random variables X and X ′ taking values in Θ,Θ′, we can consider the pair
(X , X ′) as a single random variable taking values in Θ×Θ′. We denote the entropy of this
random variable as H(X , X ′). The second important property of Shannon entropy is additivity
with respect to independent random variables.

Claim A.2. Let X ,Y be independent simple random variables. Then H(X ,Y )= H(X )+H(Y ).

Proof. By independence, P [X ,Y ]=P [X ] ·P [Y ]. Hence

H(X ,Y )= E [− logP [X ,Y ]]= E [− logP [X ]− logP [Y ]]= H(X )+H(Y ).

A.2 Conditional Shannon entropy
Let G be a sub-sigma-algebra of F . For a simple random variable X , define the random
variable P [X |G ](ω)=P [X = X (ω)|G ](ω), and denote the conditional Shannon entropy by

H(X |G )= E [− logP [X |G ]].

For a simple random variable X and any random variable Y , we denote H(X |Y )= H(X |σ(Y )).
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Claim A.3. H(X |G )≤ H(X ), with equality if and only if X is independent of G .

Proof. By the law of total expectation, P [X |G ] = E [P [X ]|G ]. Since x 7→ − log(x) is a convex
function, it follows from Jensen’s inequality that

H(X |G )= E [− logP [X |G ]]
= E [− logE [P [X ]|G ]]
≤ E [E [− logP [X ]|G ]]
= E [− logP [X ]]
= H(X ).

When X is independent of G , P [X ]=P [X |G ], and we therefore have equality. It thus remains
to be shown if X is not independent of G then the inequality is strict. Indeed, in that case
P [X ] 6=P [X |G ] with positive probability, and thus Jensen’s inequality is strict with positive
probability, from which it follows that our inequality is also strict.

The same proof shows more generally that if G1 ⊆G2 then H(X |G1)≥ H(X |G2).

Claim A.4. Suppose G =∩∞
i=nGn, and Gn+1 ⊆Gn. Then

H(X |G )= lim
n

H(X |Gn)= sup
n

H(X |Gn).

A.3 Mutual information
We denote the mutual information of X and G by I(X ;G ) = H(X )−H(X |G ). By the above,
I is non-negative, and is equal to 0 if and only if X is independent of G . For two random
variables X ,Y , we denote I(X ;Y )= I(X ;σ(Y )).

Claim A.5. Let X ,Y be simple random variables. Then

I(X ;Y )= H(X )+H(Y )−H(X ,Y )= I(Y ; X ).

Proof. By definition,

I(X ;Y )= E [− logP [X ]]−E [− logP [X |Y ]]

By Bayes’ Law, P [X |Y ]P [Y ]=P [X ,Y ]. Hence logP [X |Y ]= logP [X ,Y ]− logP [Y ], and

I(X ;Y )= E [− logP [X ]]−E [− logP [X ,Y ]+ logP [Y ]]
= E [− logP [X ]]−E [− logP [X ,Y ]]+E [− logP [Y ]]
= H(X )−H(X ,Y )+H(Y ).

It follows that

H(X |Y )= H(X )− I(X ;Y )= H(X )− I(Y ; X )= H(X )+H(Y |X )−H(Y ),

and so

H(X |Y )= H(Y |X )−H(Y )+H(X ). (A.1)
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A.4 The information processing inequality
Let X1, X2, X3, . . . be a Markov chain, with each Xn simple.

Claim A.6. I(X3; X1, X2)= I(X3; X2). Likewise, for m > n, I(Xn;σ(Xm, Xm+1, . . .))= I(Xn; Xm).

The claim is a consequence of the fact that by the Markov property, P [X3|X1, X2] =
P [X3|X2].
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B Exercises
1. Let (X1, X2, . . .) be a sequence of independent (but not necessarily identically dis-

tributed) integer random variables with E [Xn] = 0 and |Xn| ≤ M almost surely for
all n and some M. Let Zn = X1 +·· ·+ Xn. Prove a strong law of large numbers, i.e.,
1
n limn Zn = 0 almost surely.

Hint. Use the Hoeffding lemma (Lemma 1.4).

2. Let µ be a finitely supported distribution on Zd for some d ≥ 1, and let (Z1, Z2, . . .) be
the µ-random walk on Zd. I.e., (X1, X2, . . .) are i.i.d. µ and Zn = X1 +·· ·+ Xn.

Using the SLLN for Z (Theorem 1.6), prove a strong law of large numbers, i.e.,
limn

1
n Zn = E [Z1] almost surely.

Hint. for i ∈ {1, . . . ,d} consider the projection πi(x1, . . . , xd)= xi and the process (Z i
1, Z i

2, . . .)
given by Z i

n =πi(Zn). Prove that (Z i
1, Z i

2, . . .) is a random walk on Z and use the SLLN
for Z.

3. Let Zn be a µ-random walk on Z with drift α= E [Z1]. Prove that for every β>α and
every γ>β with β,γ<maxsuppµ there is an r > 0 such that

lim
n
P

[
Zn ≤ γn

∣∣Zn ≥βn
]≥ 1−e−rn+o(n).

4. Let µ be a non-degenerate, finitely supported probability measure on Z (i.e., for all
x ∈ Z there exists an n such that µ(n)(x) > 0). Let F be a finite subset of Z. Suppose
that ϕ(x) = ϕ(y) for all x, y 6∈ F, and that ϕ : Z→ R is µ-harmonic at all x ∈ F (i.e.,
ϕ(x)=∑

yϕ(x+ y)µ(y)). Prove that ϕ is constant.

5. Prove Claim 3.9 from the lecture notes.

Hint. Define ϕ(x)=P [{x+Z0, x+Z1, x+Z2, . . .}⊂ F] and use (4).

6. Let Zn be a µ-random walk on Z with drift E [Z1]= 0. For M > 0, let AM
n be the event

that Zn ≥p
nM. Prove that for every M, the probability of (AM

n )n i.o. is 1.

Hint. Use the Central Limit Theorem and the fact that limsupn Zn/
p

n is a tail random
variable with respect to (X1, X2, . . .).

7. Let µ0 be the simple random walk on Z, let µ=µ0 ×·· ·×µ0 be the product measure on
Zd, and let Zn be the µ-random walk on Zd. Let

P = {(z1, . . . , zd) ∈Zd : z1 > 0, . . . , zd > 0}⊂Zd

be the positive octant in Zd. Show that

(a) limnP [Zn+1 ∈ P|Zn ∈ P]= 1.

(b) P [Zn ∈ P for all n large enough]= 0.
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Hint. Use the Central Limit Theorem for Z for the first part. Use the recurrence of the
simple random walk on Z for the second.

8. Recall that the lamplighter group
⊕
ZZ2 oZ is generated by {(0,1), (0,−1), (δ0,0)}.

Consider the random walk on this group given by µ(0,1) = 1/3, µ(0,−1) = 1/6 and
µ(δ0,0) = 1/2: the lamplighter moves right with probability 1/3, left with probability
1/6, and flips the lamp at the current location with probability 1/2. Find a non-trivial
event in the tail of the µ-random walk (Z1, Z2, . . .).

Hint. Write each Zn as a pair Zn = (Fn, Z̃n) where Fn takes values in
⊕
ZZ2 and Z̃n

takes values in Z. Show that Fn(0) converges almost surely and is a non-trivial tail
random variable.

9. Prove that the simple random walk on the infinite dihedral group is recurrent. This
is the group generated by {a,a−1,b} where a,b : Z→ Z are given by a(z) = z+1 and
b(z)=−z. The simple random walk is given by µ(a)=µ(a−1)=µ(b)= 1/3.

Hint. Draw the Cayley graph of this group and relate this random walk to a symmetric
random walk on Z.

10. Let S = {a,a−1,b,b−1} be the standard generating set of the free group on two generators.
Let µ be a measure whose support is equal to S (so that, in particular, µ is non-
degenerate), and let Zn be the µ-random walk.

(a) Suppose that µ(s)< 1/2 for all s ∈ S. Show that Zn is transient.
Hint. Let p =maxs∈Sµ(s) and let β= (1− p)/p. Show that ϕ(g)=β−|g| is a positive
non-constant µ-superharmonic function on F2 and deduce that the random walk is
transient from Theorem 5.1.

(b) Suppose that µ(s)≥ 1/2 for some s ∈ S. Show that Zn is transient.
Hint. Suppose that µ(a) ≥ 1/2. Consider the quotient π : F→ Z given by π(a) =
1, π(b) = 0 and π(gh) = π(g)+π(h). This is the map that sums the number of
occurrences of a minus the number of occurrences of a−1 in a word of the free
group. Show that the π∗µ-random walk on Z is transient, and conclude that so is
the µ-random walk on F.

(c) Let τ(g)=P [∃n ≥ 0 : Zn = g]. Show that for g ∈ S

τ(g)=µ(g)+τ(g)
∑

s∈S\{g}
τ(s−1)µ(s).

Hint. Follow the calculation for the simple random walk in §5.3.

11. Prove Claim 7.1 from the lecture notes. Use it to prove that the exponential growth
rate of a finitely generated group vanishes for one generating set if and only if it does
for another.

12. Prove (8.2).
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13. Let M be the Markov operator of a symmetric non-degenerate probability measure µ
on a finitely generated group G. Suppose that µ(e)> 0. Show that for every g ∈G

‖M‖ = lim
n
P [Zn = g]1/n.

Hint. Approximate P [Zn = g] by P [Z2m = e] for m close to n/2 and apply Theorem 8.3.

14. Let G = 〈S〉 = 〈T〉. Let Fn be a sequence of finite subsets of G. Show that

lim
n

|∂SFn|
|Fn|

= 0 iff lim
n

|∂TFn|
|Fn|

= 0.

15. Let G = 〈S〉 be a finitely generated group, and let S = {s1, . . . , sk}. We call Z2 oG =⊕
GZ2oG the lamplighter group on G. An element of this group is a pair ( f , x) where

f : G → Z2 is finitely supported and x ∈ G. As in the case of G = Z, the operation is
given by

( f1, x1)( f2, x2)= ( f1 +αx1( f2), x1 · x2),

where αx :
⊕

GZ2 →⊕
GZ2 is the shift

[αx( f )](y)= f (x−1 y).

(a) Show that Z2 oG is generated by

Sd =
{
(δ0,0), (0, s1), . . . , (0, sk)

}
.

(b) Show that if G is amenable then Z2 oG is amenable.
Hint. Use a Følner sequence on G to construct a Følner sequence on Z2 oG.

(c) Show that if G is non-amenable then Z2 oG is non-amenable.
Hint. Project a random walk on Z2 oG to a random walk on G via ( f , x) 7→ x and
argue that the return probabilities of the latter are higher than those of the former.
Then use Kesten’s theorem (Theorem 9.3).

16. Let µ be a symmetric, finitely supported, non-degenerate probability measure on a
finitely generated group G = 〈S〉 with suppµ = S. Let M be the associated Markov
operator.

As in (10.1), the energy of a map ϕ`2(G) is〈
ϕ, (I −M)ϕ

〉= 1
2

∑
g∈G

∑
s
µ(s)(ϕ(gs)−ϕ(g))2.

Suppose that F is a connected finite subset of G. Fix a function ϕ̂ : ∂F → R. Denote
by Ω the set of functions in `2(G) that agree with ϕ̂ on ∂F and vanish outside F ∪∂F.
Show that ϕ ∈Ω has minimal energy among all elements of Ω iff ϕ ∈ `µ(F).
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Hint. Show that if ϕ ∈ Ω does not satisfy µ-harmonicity at some g ∈ F then there
is a ϕ′ ∈Ω that has lower energy. For the other direction, argue that the energy is
continuous and strictly convex, then explain why this implies that there is a unique
minimizer of the energy.

17. Let µ be a finitely supported, non-degenerate probability measure on Zd. We say that
ψ : Zd →R+ is multiplicative if ψ(x+ y)=ψ(x)ψ(y).

(a) Prove that every multiplicative ψ : Zd →R+ with ψ(0)= 1 is of the form ψ(z)= et·z

for some t ∈ Rd. Show that such a ψ is furthermore µ-harmonic iff E
[
et·X ] = 1,

where X has distribution µ.

(b) Prove that every ψ ∈ ∂µ(Zd) is multiplicative.
Hint. First suppose that ψ is extremal. Then use the facts that if ψ ∈ `µ(Zd,1)
then ψ = ∑

s Rsψµ(s) and
∑

sψ(s)µ(s) = 1. Then prove that 1
ψ(s) [Rsψ] ∈ `µ(Zd,1),

and use the extremality of ψ. Finally, use this to extend the proof to all of ∂µG.
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