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1 Random walks on Z

1.1 Definitions

Let µ be a probability measure on Z. Since Z is countable we can think of µ as a function

µ : Z→R+ with
∑

x∈Zµ(x)= 1.

Let (X1, X2, . . .) be a sequence of independent random variables each having distribution

µ. Denote Zn = X1+·· ·+Xn, and set Z0 = 0. We call the process (Z0, Z1, Z2, . . .) the µ-random

walk on Z. For notational convenience we denote X = X1.

If you prefer a measure-theoretic perspective, Let Ω=Z
N, and equip it with the product

topology. Thus an element of Ω is a sequence ω = (ω1,ω2, . . .) of integers, and a sequence

of sequences converges if each coordinate eventually stabilizes. Let F be the Borel sigma-

algebra. Let P be the product measure µN. Define Xn : Ω→ Z by Xn(ω) = ωn, and Zn(ω) =
ω1 +·· ·+ωn.

A µ-random walk on Z is a Markov chain with state space Z. The transition probabilities

are P(x, y)=µ(y−x). We will assume that the random walk is non-degenerate: for every z ∈Z

there is an n such that P [Zn = z]> 0. Equivalently, the Markov chain is irreducible.

A good example to keep in mind is the simple random walk: this is the case that µ(−1)=
µ(+1) = 1/2. Another good example is a lazy simple random walk, given by µ(−1) = µ(1) =
1/2− c, µ(0)= 2c for some 0< c < 1/2. Unless otherwise indicated, we will assume that µ has

finite support, i.e., the set {x : µ(x) > 0} is finite. In other cases it will be useful to consider

random walks on R, so that µ is a probability measure on the reals. Later in the course we

will consider random walks on additional objects.

Denote

α= E [X ]=
∑

x∈Z
xµ(x).

We call α the drift of the random walk. Denote

σ2 =Var(X ) := E
[

X2
]

−E [X ]
2 =

∑

x∈Z

x2µ(x)−α2.

Note that

E [Zn]= E [X1 +·· ·+ Xn]= E [X1]+·· ·+E [Xn]= nα

and that

Var(Zn)=Var(X1 +·· ·+ Xn)=Var(X1)+·· ·+Var(Xn)= nσ2,

since the variance of a sum of independent random variables is the sum of their variances.

Hence

Std(Zn) :=
√

Var(Zn)=
p

nσ.
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1.2 The weak law of large numbers

Theorem 1.1 (The weak law of large numbers). For all n ≥ 1 and M > 0,

P
[

αn−Mσ
p

n < Zn <αn+Mσ
p

n
]

≥ 1−
1

M2
.

In particular, when E [X ]= 0, P
[

|Zn| < Mσ
p

n
]

≥ 1−1/M2.

To prove this theorem we will need Markov’s inequality, which states that for every non-

negative random variable W with E [W]= w it holds that

P [W ≥ Mw]≤
1

M
.

Proof of Theorem 1.1. Note that

E
[

(Zn −αn)2
]

= E
[

Z2
n −2Znαn+α2n2

]

= E
[

Z2
n

]

−E [Zn]
2 =Var(Zn)= nσ2.

Therefore, by Markov’s inequality applied to the random variable (Zn −αn)2,

P
[

(Zn −αn)2 ≥ M2nσ2
]

≤
1

M2
.

The event {(Zn −αn)2 ≥ M2nσ2} is the same as the event {|Zn −αn| ≥ M
p

nσ}, which is the

complement of the event we are interested in, and thus we have proved the claim.

In fact, the Central Limit Theorem gives us a much more precise version of this claim,

telling not only where Zn concentrates, but also what its distribution looks like. Denote by

Φ(x) the cdf (cumulative distribution function) of a standard Gaussian:

Φ(x)=
1

p
2π

∫x

−∞
e−

1
2

t2

dt.

Theorem 1.2 (Central Limit Theorem). For all M ∈R,

lim
n→∞

P
[

Zn ≤αn+Mσ
p

n
]

=Φ(M).

We will not prove this theorem in this course.

The Central Limit Theorem gives us a handle for what the cdf of Zn looks like, for large n,

within distance O(
p

n) from the expectation αn. What about what happens within distance

O(n) from αn? For for β>α what can we say about P
[

Zn >βn
]

?

Suppose α= 0 and σ= 1. If the Central Limit Theorem held beyond the
p

n regime then

it would imply that P
[

Zn >βn
]

≈ 1−Φ(β
p

n). Since Φ(x) ≈ 1− exp(−x2) for large x, this

would mean that P
[

Zn >βn
]

≈ exp(−β2n). As we will show, the exponential dependence on

n is correct, but the coefficient β2 is not.
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1.3 The moment and cumulant generating functions

For the next results we will need to define the moment generating function of X :

MX (t) := E

[

etX
]

=
∑

x∈Z

etxµ(x).

The name comes from the fact that

MX (t)=
∞
∑

n=0

tn

n!
E
[

X n
]

. (1.1)

Note that this means that M′
X

(0)= E [X ], and more generally M(k)
X

(0)= E
[

X k
]

. The cumulant

generating function of X is given by KX (t) := log MX (t). As it turns out (but we will not prove),

KX is a convex function. Under our assumption of finitely supported µ, it is clear that KX is

furthermore analytic, since

KX (t)= log
∑

x∈Z
etxµ(x),

and the sum has finitely many terms.

The most important property of KX is its additivity with respect to sums of independent

random variables. That is, if X and Y are independent then KX+Y = KX +KY , since

MX+Y (t)= E

[

et(X+Y )
]

= E

[

etX etY
]

= E

[

etX
]

E

[

etY
]

= MX (t) ·MY (t).

In particular this implies that KZn
= nKX . In comparison, there is a much more complicated

relationship between the cumulative distribution functions of X and Zn.

1.4 The Chernoff bound

Theorem 1.3 (Chernoff bound). Let α= E [X ]. Then for every β>α

P
[

Zn ≥βn
]

≤ e−r·n

where

r := sup
t≥0

{t ·β−KX (t)}> 0.

Proof of Theorem 1.3. Denote pn =P
[

Zn ≥βn
]

; we want to show that pn ≤ e−r·n.

Note that the event {Zn ≥ βn} is identical to the event {et·Zn ≥ et·βn}, for any t > 0. Since

et·Zn is a positive random variable with expectation MZn
(t), by the Markov inequality we

have that

pn =P

[

et·Zn ≥ et·βn
]

≤
MZn

(t)

et·βn
.
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Since MZn
(t)= MX (t)n = exp(nKX (t)) we have that

pn ≤ exp
(

−(t ·β−KX (t)) ·n
)

.

Since K ′
X

(0) = M′
X

(0)/MX (0) = E [X ], and since KX is smooth, it follows that for t > 0 small

enough,

t ·β−KX (t)= t ·β− t ·α−O(t2)> 0.

Hence

pn ≤ e−r·n.

for

r = sup
t≥0

{t ·β−KX (t)}> 0.

It turns out that the Chernoff bound is asymptotically tight, in the sense that P
[

Zn ≥βn
]

=
e−rn+o(log n), for all β less than the maximum of the support of X . We will prove this later.

1.5 The Legendre transform

Let the Legendre transform of K be given by

K⋆(β)= sup
t>0

(tβ−K (t)).

It turns out that the fact that K is smooth and convex implies that K⋆ is also smooth and

convex. Therefore, if the supremum in this definition is obtained at some t, then K ′(t) = β.

Conversely, if K ′(t) = β for some t, then this t is unique and K⋆(β) = tβ−K (t). Using this

notation we can write the Chernoff bound as

P
[

Zn ≥βn
]

≤ e−K⋆(β)n.

1.6 The Hoeffding bound

The Chernoff bound implies a simpler bound, when combined with the following lemma,

which we will not prove.

Lemma 1.4 (Hoeffding Lemma). If Y is a random variable with E [Y ]= 0 and |Y | ≤ M almost

surely then KY (t)≤ 1
2

M2t2.

Note that 1
2

M2t2 is equal to KW (t), where W is a Gaussian random variable with mean

0 and variance M2.
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Theorem 1.5 (The Hoeffding bound). Suppose |X | ≤ M almost surely and E [X ] = 0. Then

for every β> 0

P
[

Zn ≥βn
]

≤ e
− β2

2M2 ·n.

Proof. By Hoeffding’s Lemma

sup
t≥0

tβ−Kx(t)≥ tβ−
1

2
M2t2.

Hence by choosing t =β/M2 we get that

sup
t≥0

tβ−Kx(t)≥β2/M2 −
1

2
β2/M2 =

1

2
β2/M2.

Hence the claim follows by the Chernoff bound.

1.7 The strong law of large numbers

The weak law of large numbers implies that

lim
n

P

[∣

∣

∣

∣

1

n
Zn −α

∣

∣

∣

∣

> ε

]

= 0

for all ε > 0. In fact, this is the usual statement of the weak law of large numbers. This

does not immediately imply that 1
n

Zn converges almost surely to α (in fact, this is not true

for some infinitely supported µ). It does for the finitely supported µ that we consider here,

which is the content of the strong law of large numbers.

Theorem 1.6 (The strong law of large numbers). limn
1
n

Zn =α almost surely.

To prove this theorem we will need the Borel-Cantelli Lemma. Let (A1, A2, . . .) be a

sequence of events. The event

(An)n i.o. :=∩∞
m=1 ∪

∞
n=m An

is the event that infinitely many of these events occur.

Lemma 1.7 (Borel-Cantelli Lemma). Let (A1, A2, . . .) be a sequence of events. If
∑

nP [An]<∞
then

P [(An)n i.o.]= 0.

Proof of Theorem 1.6. Let

An,m =
{

1

n
Zn >α+

1

m

}
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be the event that 1
n

Zn exceeds α by more than 1/m.

By the Chernoff bound, for each m there is some r > 0 such that P
[

An,m

]

≤ e−rn for all

n. Since
∑

n e−rx <∞, it follows from Borel-Cantelli that P
[

(An,m)n i.o.
]

= 0. Thus, almost

surely, 1
n

Zn >α+ 1
m

only finitely many times, and so

limsup
n

1

n
Zn ≤α+

1

m

almost surely. Since this holds for every m, limsupn
1
n

Zn ≤ α. By a symmetric argument

liminfn
1
n

Zn ≥α, and so limn
1
n

Zn =α almost surely.

Remark 1.8. All of the results in this section generalize far beyond finitely supported µ, but

none of them apply to every infinitely supported µ. Exploring when these results do and do

not hold will not be our focus.
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2 Large deviations

By the law of large numbers we expect that a µ-random walk Zn should be close to its drift

α= E [X ] for large n. What is the probability that it is larger than some β> α? We already

proved the Chernoff lower bound. We here prove an asymptotically matching upper bound.

2.1 The cumulant generating function

In this section we simplify notation and denote M := MX and K = KX so that the moment

generating function of X is

M(t)= E

[

etX
]

,

and that its cumulant generating function is

K (t)= log M(t)= logE
[

etX
]

.

Claim 2.1. K is convex.

For the proof of this claim we will need Hölder’s inequality. For p ∈ [1,∞] and a real r.v.

Y denote

|Y |p = E
[

|Y |p
]1/p

.

Lemma 2.2 (Hölder’s inequality). For any p, q ∈ [1,∞] with 1/p+1/q = 1 and r.v.s X ,Y it

holds that

|X ·Y |1 ≤ |X |p · |Y |q .

Proof of Claim 2.1. Choose a, b ∈R. Then for any r ∈ (0,1)

K (ra+ (1− r)b)= logE
[

e(ra+(1−r)b)X
]

= logE

[

(

eaX
)r (

ebX
)1−r

]

.

By Hölder’s inequality

K (ra+ (1− r)b)≤ logE
[

eaX
]r

+ logE
[

ebX
]1−r

= r logE
[

eaX
]

+ (1− r) logE
[

ebX
]

= rK (a)+ (1− r)K (b).
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2.2 Convolution

The probability that Z2 = x is

P [Z2 = x]=
∑

y

P [Z2 = x, X1 = y]=
∑

y

P [X2 = x− y, X1 = y]=
∑

y

µ(x− y)µ(y).

More generally, if X has distribution µ and X ′ is independent with distribution ν, and we

denote the distribution of X + X ′ by ζ, then

ζ(x) =
∑

y

µ(x− y)ν(y) =
∑

y

ν(x− y)µ(y).

The operation (µ,ν) 7→ ζ is called convolution, and we denote ζ= µ∗ν. We denote the n-fold

convolution of µ with itself by µ(n), so that for a µ-random walk the distribution of Zn is µ(n).

2.3 Large deviations

Denote suppµ= {x ∈Z : µ(x)> 0}.

Theorem 2.3. For any β ∈ [α,maxsuppµ)

P
[

Zn ≥βn
]

= e−K⋆(β)n+o(n).

Proof. One side is given by the Chernoff bound. It thus remains to prove the lower bound.

We want to prove that

limsup
n

−
1

n
logP

[

Zn ≥βn
]

≤ K⋆(β).

As we noted above, K ′(0)=α. It can be shown that

lim
t→∞

K ′(t)=maxsuppµ.

Hence for every β such that α≤ β<maxsuppµ there is a t∗ such that β= K ′(t∗). Since K is

convex and and smooth its derivative is increasing almost everywhere, and hence such a t∗

exists and is unique if and only if α≤β< M.

Fix β ∈ (β,maxsuppµ), let t be given by K ′(t)=β, and fix t ∈ (t∗, t). Define the measure µ̃

by

µ̃(x)=
etx

∑

y etyµ(y)
µ(x)= etx−K(t)µ(x),

and let (X̃1, X̃2, . . . , ) be the steps of µ̃-random walk on Z. Denote Z̃n = X̃1 +·· ·+ X̃n.

Note that

P
[

Z̃2 = z
]

= µ̃(2)(z)=
∑

y

µ̃(z− y)µ̃(y)
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by the definition of Z2 and of convolution. Hence by the definition of µ̃

P
[

Z̃2 = z
]

=
∑

y

et(z−y)−K(t)µ(z− y)ety−K(t)µ(y)= etz−2K(t)
∑

y

µ(z− y)µ(y)= etz−2K(t)
P [Z2 = z].

Likewise,

P
[

Z̃n = z
]

= etz−nK(t)
P [Zn = z].

Remark 2.4. More generally, if we denote by ∆f (Z) the finitely supported probability mea-

sures on Z, then the “tilting” operation Tt : ∆f (Z) →∆f (Z) given by µ 7→ µ̃ commutes with the

convolution operation:

(Ttµ)∗ (Ttν)= Tt(µ∗ν).

I.e., Tt is an automorphism of the semigroup (∆(Z) f ,∗).

Using the fact that the expectation of a random variable is equal to the derivative at zero

of its cumulant generating function, a simple calculation shows that

E
[

X̃1

]

= K ′(t) ∈
(

β,β
)

.

It follows that

P
[

βn ≤ Zn

]

≥P

[

βn ≤ Zn ≤βn
]

=
⌊βn⌋
∑

z=⌈βn⌉
P [Zn = z]

=
⌊βn⌋
∑

z=⌈βn⌉
P

[

Z̃n = z
]

e−(tz−nK(t))

≥ e−(tβn−nK(t))
⌊βn⌋
∑

z=⌈βn⌉
P

[

Z̃n = z
]

= e−(tβ−K(t))n
P

[

βn ≤ Z̃n ≤βn
]

.

Since E
[

Z̃n

]

∈ (βn,βn), and since Z̃n is a µ̃-random walk, by the law of large numbers

lim
n→∞

P

[

βn ≤ Z̃n ≤βn
]

= 1,

and so

lim
n→∞

1

n
logP

[

βn ≤ Zn

]

≥−(tβ−K (t)).
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Since this holds for any β > β and β > K ′(t) > β, it also holds for β = β and t∗ such that

K ′(t∗)=β. So

lim
n→∞

−
1

n
logP

[

βn ≤ Zn

]

≤ t∗β−K (t∗).

Finally, since K is convex and smooth, and since K ′(t∗) = β, then t∗ is the maximizer of

tβ−K (t), and thus t∗β−K (t∗)= K⋆(β). We have thus shown that

lim
n→∞

−
1

n
logP

[

βn ≤ Zn

]

≤ K⋆(β).
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3 Recurrence and transience

3.1 Definitions and basic observations

Given µ, we say that the µ-random walk is recurrent if (An)n i.o. occurs almost surely, where

An = {Zn = 0}. That is, if the random walk almost surely returns to zero infinitely many

times.

We say that the µ-random walk is transient if the probability of (An)ni.o. is zero, i.e., the

random walk almost surely visits zero a finite number of times.

Claim 3.1. Every random walk is either transient or recurrent.

The proof of this claim will use the fact that a random walk on Z is a Markov chain.

Proof of Claim 3.1. Denote by H0 the event that there exists some n > 0 such that Zn = 0.

I.e., that the random walk returns to 0. Let p =P [H0].

By the Markov property, conditioned on Zk = 0, the probability that there is some n > k

such that Zn = 0 is also p. It follows that if p = 1 the random walk is recurrent. And if p < 1

then the number of visits to 0 has geometric distribution with parameter p, in which case

the number of visits is almost surely finite, and the random walk is transient.

The next lemma gives useful equivalent conditions to recurrence.

Lemma 3.2. Consider any µ-random walk. The following are equivalent.

1. The random walk is recurrent.

2. There is some x ∈Z that the random walk almost surely hits infinitely many times.

3. The random walk hits every x ∈Z almost surely.

Note that this lemma holds much more generally, for irreducible Markov chains on count-

ably infinite state spaces.

3.2 Random walks with a drift

As in the previous section, denote α := E [X ]=
∑

x∈Z xµ(x).

Claim 3.3. A random walk on Z with non-zero drift is transient.

Proof. Suppose w.l.o.g. that α > 0. By the strong law of large numbers, limn
1
n

Zn = α > 0.

Hence limn Zn =∞, and it is impossible that Zn = 0 infinitely often.
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3.3 Recurrence of the simple random walk on Z

Recall that the simple µ-random walk is given by µ(−1)=µ(1)= 1/2.

Theorem 3.4 (Pólya). The simple random walk on Z is recurrent.

We will prove this in a number of ways.

First proof of Theorem 3.4. Note that P [Z2n+1 = 0]= 0 and that

P [Z2n = 0]= 2−2n

(

2n

n

)

.

By Stirling

(

2n

n

)

≥
22n−1

p
n

,

and so

P [Z2n = 0]≥
1

2
p

n
.

The expected number of visits to 0 is thus

∑

n

P [Z2n = 0]≥
∞
∑

n=1

1

2
p

n
=∞.

As noted in the proof of Claim 3.1, the number of returns is geometric if the random walk is

transient, and hence has finite expectation. Thus this random walk is recurrent.

3.4 Superharmonic functions

For the second proof of Theorem 3.4, we introduce the notion of a µ-superharmonic function.

A function ϕ : Z→R is µ-superharmonic if for every x ∈Z

ϕ(x) ≥
∑

y∈Z
ϕ(x+ y)µ(y). (3.1)

That is, ϕ(x) is larger than the average of ϕ around x, where we take averages using µ.

Given x ∈Z, the process (x+Z1, x+Z2, . . .) is the µ-random walk starting at x. We define

Z0 = 0. Denote by Hx the event that there exists some n ≥ 0 such that x+Zn = 0. I.e., that

the random walk that starts at x eventually hits 0:

Hx = {∃n ≥ 0 s.t. x+Zn = 0}=
∞
⋃

n=0

{x+Zn = 0}.

Obviously, this is the same event as Zn =−x for some n ≥ 0.

17



Define ϕ : Z→ R by ϕ(x) = P [Hx], so that ϕ(x) is the probability that the random walk

starting at x eventually hits 0. We claim that ϕ is µ-superharmonic. Indeed,

ϕ(x) =P [Hx]

=
∑

y

P [Hx|x+Z1 = y]P [x+Z1 = y].

We claim that P [Hx|x+Z1 = y] ≥ P
[

Hy

]

. Indeed, if x = 0 then P [Hx] = 1 = P [Hx|x+Z1 = y]

and the inequality must holds since P
[

Hy

]

≤ 1. Otherwise there’s equality, by the Markov

property; the probability of hitting 0 starting at x 6= 0 conditioned on moving to y in the first

step is the same as the probability of hitting 0 from y . Hence

ϕ(x)≥
∑

y

ϕ(y)µ(y− x).

A change of variables then yields

ϕ(x) ≥
∑

y∈Z
ϕ(x+ y)µ(y).

We have thus shown that ϕ is µ-superharmonic. Note that it is also non-negative.

Lemma 3.5. Let µ(−1) = µ(1) = 1/2. Then every non-negative µ-superharmonic ϕ : Z→ R is

constant.

Proof. Since ϕ is µ-superharmonic,

ϕ(x)≥
1

2
ϕ(x−1)+

1

2
ϕ(x+1).

Rearranging, we get that

ϕ(x)−ϕ(x−1) ≥ϕ(x+1)−ϕ(x).

Denote ϕ′(x)=ϕ(x)−ϕ(x−1). Then we have shown that

ϕ′(x+1)≤ϕ′(x),

so that ϕ′ is non-increasing.

If ϕ′ = 0 then ϕ is constant and we are done. Otherwise, suppose ϕ′(x) < −ε for some x.

Then ϕ′(x+n) ≤−ε for all n ≥ 0. Hence ϕ(x+n) ≤ϕ(x)+nε, and ϕ(x) is negative for x large

enough. An analogues argument shows that ϕ(−x) is negative for x large enough if ϕ′(x)> 0

for some x.

Second proof of Theorem 3.4. Define ϕ(x) = P [Hx] as above. We have shown that ϕ = p.

Since ϕ(0) = 1 by definition, it follows that p = 1. Applying the Markov property again, we

conclude that P [∃n ≥ k s.t. Zn = 0]= 1 for all k, and thus the random walk is recurrent.
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The argument above in fact is one direction of a more general fact relating superhar-

monic functions and recurrence.

Theorem 3.6. For any µ-random walk on Z the following are equivalent.

1. The walk is transient.

2. There exist non-constant non-negative µ-superharmonic functions on Z.

Indeed, this again holds much more generally, for irreducible Markov chains on count-

ably infinite state spaces.

To prove this theorem we will need to recall the notions of a supermartingale and a stop-

ping time. Let (Y1,Y2, . . .) be a sequence of random variables, let Fn = σ(Y1, . . . ,Yn) and let

F∞ =σ(Y1,Y2, . . .). A sequence of real random variables (W0,W1,W2, . . .) is a supermartingale

with respect to (Fn)n if

1. Wn is Fn-measurable.

2. E [Wn+1|Fn]≤Wn.

A natural example is when Yn is the outcome of the roulette at time n, and Wn is the amount

of money gained by a gambler who plays this roulette using some fixed deterministic strat-

egy (e.g., a dollar on red at even n and three dollars on black at odd n). The first condition

states that the amount of money the gambler has is determined by the outcomes of the

roulette, and the second states that given what the gambler has at time n, she expects to

have (weakly) less at time n+1.

The key observation relating supermartingales to random walks is the following obser-

vation.

Claim 3.7. Let ϕ be µ-superharmonic. Then Wn =ϕ(Zn) is a supermartingale with respect to

(σ(Z1, . . . , Zn))n.

A stopping time T is a F∞-measurable random variable taking values in {1,2, . . .,∞}

such that for each n the event {T = n} is Fn-measurable. An example is the first time n

such that the gambler has 17n dollars in their balance. More generally, T is a stopping time

if it is equal to the minimum time n in which the condition An is met (formally, the event

An occurs), where each An is Fn-measurable, i.e., determined by (Y1, . . . ,Yn). An important

result due to Doob is the optional stopping time theorem:

Theorem 3.8 (Doob). Suppose (W0,W1,W2, . . .) is a non-negative supermartingale, and let T

be a finite stopping time. Then E [WT ]≤ E [W0].

For our gambler, this means that if she walks in with 100 dollars and has some stopping

rule for leaving (and cannot go into debt), the expected amount of money she will have at

the time of leaving is at most 100.
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Proof of Theorem 3.6. The direction 1 implies 2 is proved using ϕ(x) = P [Hx] as above. For

the other direction, suppose the µ-random walk is recurrent, and let ϕ be non-negative and

µ-superharmonic. For x, y ∈Z let T be the stopping time given by the first hitting time to y

of the µ-random walk starting at x:

T =min{n : x+Zn = y}.

By recurrence and Lemma 3.2 T is finite almost surely. Let Wn =ϕ(x+Zn). By the optional

stopping time theorem, E [WT ] ≤ E [W0]. Since the l.h.s. of the equality is ϕ(y) and the r.h.s.

is ϕ(x) we have that ϕ(y) ≤ϕ(x). Since this holds for all x, y we have proved the claim.

3.5 Harmonic functions

Claim 3.9. For any random walk on Z, the probability that {Z0, Z1, Z2, . . .} is a finite subset

of Z is zero.

This claim likewise holds much more generally, for irreducible Markov chains on count-

ably infinite state spaces.

Let µ be the simple random walk on Z. Fix some M ∈Z, M > 0. Note that P [∃n s.t. Zn ∈ {−1, M}]=
1, by Claim 3.9, since otherwise the random walk would be confined in {0, . . ., M−1}.

Let Ax be the event that x+Zn = −1 before x+Zn = M. Let ϕ : {−1, . . ., M} → R be given

by ϕ(x)=P [Ax] for x ∈ {0, M−1}, ϕ(−1)= 1 and ϕ(M)= 0. Then for x ∈ {0, . . ., M−1}

ϕ(x)=P [Ax]

=P [Ax|x+Z1 = x+1]P [x+Z1 = x+1]+P [Ax|x+Z1 = x−1]P [x+Z1 = x−1]

=ϕ(x+1)µ(1)+ϕ(x−1)µ(−1),

where the penultimate equality uses the Markov property, as in the previous section, and

our definitions at x=−1 and x= M. We thus have that for x ∈ {0, M−1}

ϕ(x)=
∑

y

ϕ(x+ y)µ(y).

We say that ϕ is harmonic on {0, M−1}.

It is easy to see that the only function that satisfies this equality is linear on {−1, M},

and hence we have shown that

ϕ(x) =
M− x

M+1
.

In particular, the probability that Zn hits −1 before it hits M is M/(M +1). Now, the event

that Zn never reaches −1 is the same as the event that it reaches every M > 0 before it

reaches −1, by Claim 3.9. Hence this occurs with probability at most 1/(M +1) for any M,

and the random walk hits −1 almost surely. By symmetry, the random walk also hits +1

almost surely. Hence it visits 0 again almost surely (since it has to travel either from −1 to

+1 or from +1 to −1), and so it is recurrent.
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3.6 Recurrence of symmetric random walks on Z

We say that µ is symmetric if µ(x)=µ(−x) for all x ∈Z.

Theorem 3.10. The µ-random walk on Z is recurrent for all symmetric, finitely supported µ.

To prove this theorem we will recall the tail sigma-algebra and the Kolmogorov 0-1 law.

Let (Y1,Y2, . . .) be a sequence of random variables. Denote Tn = σ(Yn,Yn+1, . . .). That is, a

random variable W is Tn-measurable if there is some f such that W = f (Yn,Yn+1, . . .). The

tail sigma-algebra T is T = ∩nTn. That is, W is T -measurable—in which case we call it

a tail random variable—if for every n there is an fn such that W = fn(Yn+1,Yn+2, . . .). An

example is W = limsupn Yn. Kolmogorov’s 0-1 law states that if (Y1,Y2, . . .) are independent

then T is trivial: every tail random variable is constant.

Proof of Theorem 3.10. Let µ be symmetric and suppose (Z1, Z2, . . .) is transient. Then by

Lemma 3.2 Zn only visits each interval [−M, M] finitely many times, and so limn |Zn| = ∞.

If we consider M such that µ is supported on [−M, M], it follows that limn sgn(Zn) exists,

i.e., that Zn is eventually either positive or negative. Hence W := limn Zn exists and is in

{+∞,−∞}.

Since µ is symmetric P [W =+∞] = P [W =−∞] = 1/2. The formal proof of this is via a

coupling argument. Let X̌n = −Xn. Then, by the symmetry of µ, (X̌1, X̌2, . . .) is also i.i.d.

µ. Hence, if we define Žn = X̌1 + ·· · + X̌n = −Zn, (Ž1, Ž2, . . .) has the same distribution as

(Z1, Z2, . . .). But lim Žn =− lim Zn, and so

P

[

lim
n

Zn =−∞
]

=P

[

lim
n

Žn =+∞
]

=P

[

lim
n

Zn =+∞
]

,

and we have that P [limn Zn =∞]= 1/2.

Finally, W is a tail event of (X1, X2, . . .), since

Wn =
∞
∑

k=n

Xk

is Tn-measurable and equal to W . Since (X1, X2, . . .) is i.i.d., W must be constant by Kol-

mogorov’s 0-1 law, and we have reached a contradiction.

3.7 Recurrence of zero drift random walks on Z

Given a transient random walk (Z1, Z2, . . .) on Z, denote by Vx the number of visits to x

Vx = |{n ≥ 0 : Zn = x}|,

and let

v(x) = E [Vx]=
∞
∑

n=0

P [Zn = x]

denote the expected number of visits to x. As discussed above, transitivity guarantees that

v(x) is finite for all x.
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Claim 3.11. The maximum of v(x) is attained at 0.

Proof. Let Hx = {∃n ≥ 0 s.t. Zn = x} be the event that the random walk hits x. Then

v(x) = E [Vx]= E [Vx|Hx]P [Hx]+E
[

Vx

∣

∣Hc
x

]

(1−P [Hx]).

We know that P [Hx]≤ 1. Since Vx = 0 conditioned on Hc
x, we have that for x 6= 0

v(x) ≤ E [Vx|Hx].

But by the Markov property the r.h.s. is exactly equal to v(0).

Theorem 3.12. A random walk on Z with zero drift is recurrent.

Proof. Suppose (Z1, Z2, . . .) is random walk on Z with zero drift and |X | ≤ M almost surely.

Hence E
[

Z2
n

]

≤ nM2 and by Markov’s inequality

P [|Zn| > x]≤
nM2

x2
.

In particular, if we choose x= 2M
p

n we get

P
[

|Zn| > 2M
p

n
]

≤
nM2

4M2n
=

1

4
.

Hence

P
[

|Zn| ≤ 2M
p

n
]

≥
1

2
(3.2)

for all n.

Denote N(n) := 2M
p

n. Then for all n

N(n)
∑

x=−N(n)

P [Zn = x]≥
1

2
.

We claim that this implies that there is some x ∈ Z such that v(x) =
∑

nP [Zn = x] = ∞,

which implies that the random walk is recurrent. Suppose not, and recall the notation

v(x)=
∑

n≥0P [Zn = x]. Then for every n ≥ 0,

N(n)
∑

x=−N(n)

v(x)≥
N(n)
∑

x=−N(n)

n
∑

k=0

P [Zk = x]

≥
n
∑

k=0

N(n)
∑

x=−N(n)

P [Zk = x]

≥
n
∑

k=0

1

2

=
n

2
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By Claim 3.11 v(x) ≤ v(0), and so we have that

N(n)
∑

x=−N(n)

v(0)≥
n

2

for all n, which is impossible, since the l.h.s. is equal to (4M
p

n+1)v(0).
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4 Random walks on Z
d

Let µ be a probability measures on Z
d for some d ≥ 1, let (X1, X2, . . .) be i.i.d. with law µ,

and let Zn = X1 + ·· ·+ Xn. As before, we assume that it is finitely supported and that it is

non-degenerate: for every z ∈Z
d there exists n ≥ 1 such that P [Zn = z]> 0.

4.1 Recurrence and transience

We say that µ is symmetric if µ(−x)=µ(x) for all x ∈Z
d. We say that µ is a product measure if

there exists µ1, . . . ,µd, all probability measures on Z, such that µ(z1, . . . , zd)=µ1(z1) · · ·µd(zd).

We then write µ=µ1×·· ·×µd.

Theorem 4.1 (Pólya). Let µ1 = µ2 = ·· · = µd all equal the simple random walk on Z, and let

µ=µ1 ×·· ·×µd. Then

1. If d ≤ 2 then the µ-random walk is recurrent.

2. If d ≥ 3 then the µ-random walk is transient.

Proof. A standard bound on
(2n

n

)

is

4n

√

π(n+ 1
2
)

≤
(

2n

n

)

≤
4n

p
πn

.

Hence, as in the first proof of Theorem 3.4,

(

1
√

π(n+ 1
2
)

)d

≤P [Z2n = 0]≤
(

1
p
πn

)d

.

For odd n, P [Zn = 0]= 0. Hence, for d ≤ 2,
∑

nP [Zn = 0] diverges and the random walk is

recurrent, while for d ≥ 3 it converges and the random walk is transient

4.2 A Hoeffding bound for Z
d

Recall that the Hoeffding bound (Theorem 1.5) says that on Z, if |X | ≤ M almost surely and

β> E [X ] then

P
[

Zn ≥βn
]

≤ e
− β2

2M2 ·n.

Suppose E [X ]= 0. Then for any x ∈Z it follows that (by a change of variable x=βn)

P [Zn ≥ x]≤ e
− 1

2M2
|x|2

n .
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In particular, we will be interested in the weaker form

P [Zn = x]≤ e
− 1

2M2
|x|2

n . (4.1)

Now let (Z1, Z2, . . .) be a µ-random walk on Z
d with E [Z1] = 0. We will denote the L2-

norm on Z
d by | · |, and assume that the support of µ is contained in the ball of radius M.

Choose x ∈Z
d. We would like to prove an inequality of the form (4.1).

Let π : Zd → Z be the inner product with x: π(z) =
∑d

i=1
xi zi. Let X̂n = π(Xn) and Ẑn =

π(Zn). Note that Ẑn = X̂1 + ·· · + X̂n, and so (Ẑ1, Ẑ2, . . .) is a random walk on Z. The step

distribution of this random walk is denoted π∗µ and called the push-forward measure:

[π∗µ](z)=µ(π−1(z))=µ
(

{

x ∈Z
d : π(x)= z

}

)

.

Note that π∗µ might not be non-degenerate, as its support might be contained in some

subgroup mZ (e.g., if x = (2,0) and m = 2). But on this subgroup it will be non-degenerate,

and so everything we know will still go through (formally, we can define π(z) = 1
m

∑d
i=1

xizi).

Note also that since µ has zero expectation then so does π∗µ.

Since |Xn| ≤ M, and since |π(z)| ≤ |x||z|, |X̂n| ≤ M|x|. Hence, by (4.1) we have that

P
[

Ẑn =π(x)
]

≤ e
− 1

2M2|x|2
|π(x)|2

n .

Since π(x) = |x|2 this becomes

P
[

Ẑn =π(x)
]

≤ e
− 1

2M2
|x|2

n .

Finally, since the event Zn = x implies Ẑn = π(x), this in implies the following Hoeffding

bound for Z
d.

Theorem 4.2. Let (Z1, Z2, . . .) be a µ-random walk on Z
d where µ is symmetric and supported

on the ball of radius M. Then

P [Zn = x]≤ e
− 1

2M2
|x|2

n .
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5 Random walks on the free group

5.1 The free group

Let S = {a, b,a−1, b−1} be abstract “symbols”. A (reduced) word is a finite sequence of sym-

bols s1s2 · · · sn, with each si ∈ S (e.g., g = a−1bbab−1a−1) that does not include adjacent

occurrences of a and a−1, or of b and b−1. We denote the empty word by e. We can define

a concatenation operation (g, h) 7→ gh on reduced words by concatenating them, and then

iteratively removing any disallowed occurrences.

The free group with two generators F2 is the set of reduced words, together with the

concatenation operation. Note that our notation for the symbols is consistent with inverses

in the group: a−1 is the inverse of a, since their product results in the empty word, which

is the identity element. More generally, given a word g = s1 · · · sn, its inverse is given by

g−1 = s−1
n · · · s−1

1
.

An important way to think of the free group is via its Cayley graph. The nodes of the

graph are the elements of the group. Its directed edges are labeled, and there is an edge

(g, h) with label s ∈ S if h = gs (in which case there is an edge (h, g) with label s−1). This

graph is the 4-regular tree: the (unique up to isomorphism) graph in which all nodes have

degree 4 and there are no cycles.

This graph is vertex transitive. Informally, it looks the same from the point of view of

each vertex. Formally, the balls of radius r around each vertex are all isomorphic graphs.

Note that the number of elements within distance r of a given point in this graph is 4 ·3r−1,

and in particular is exponential in r. In Z
d, balls only grow polynomially.

We define a norm on F2 by setting |g| to be the minimal number of generators whose

product is equal to g. Equivalently, this is the distance between e and g in the Cayley graph.

The ball of radius r in the Cayley graph is {g ∈ F2 : |g| ≤ r}.

Let µ be a probability measure on F2. The µ random walk on F2 is defined as follows:

(X1, X2, . . .) are i.i.d. µ, and Zn = X1X2 · · ·Xn. We set Z0 = e. As on Z
d, we will restrict

ourselves to finitely supported µ, and will assume that µ is non-degenerate, so that for all

g ∈ F2 there is an n such that P [Zn = g]> 0.

5.2 Transience of the simple random walk

The simple random walk on F2 is given by µ(a) = µ(a−1) = µ(b) = µ(b−1) = 1/4. It will be

useful to think of this random walk as a random walk on the 4-regular tree.

A function ϕ : F2 →R is µ-superharmonic if for all g ∈ F2

ϕ(g)≥
∑

h∈F2

ϕ(gh)µ(h).

As on Z, this implies that ϕ(Zn) is a supermartingale. Thus the same proof as for Z yields

the following claim.

Theorem 5.1. For any µ-random walk on F2 the following are equivalent.
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1. The walk is transient.

2. There exist non-constant non-negative µ-superharmonic functions on Z.

Corollary 5.2. The simple random walk on F2 is transient.

Proof. Let ϕ(g) = 3−|g|. Then clearly the superharmonicity condition is satisfied at e, since

that is where ϕ attains its maximum. Elsewhere, for |g| = r,

∑

h∈F2

ϕ(gh)µ(h)= 3−(r−1) 1

4
+3 ·3−(r+1) 1

4
= 3−r

(

3+1 1

4
+3 ·3−1 1

4

)

= 3−r =ϕ(g).

5.3 Hitting probabilities of the simple random walk

Given g ∈ F2, denote by Hg = {∃n ≥ 0 : Zn = g} the event that the random walk eventually

hits g. By the symmetry of the random walk, there is some p so that p =P [Hs] for all s ∈ S.

p =P [Ha]

=
∑

s∈S

P [Ha|Z1 = s]P [Z1 = s]

=
1

4

∑

s∈S

P [Ha|Z1 = s]

=
1

4
+

1

4

∑

s∈S\{a}

P [Ha|Z1 = s].

By the Markov property, for s 6= a,

P [Ha|Z1 = s]=P [∃n ≥ 0 : X1 · · ·Xn = a|X1 = s]

=P [∃n ≥ 0 : sX2 · · ·Xn = a|X1 = s]

=P
[

∃n ≥ 0 : X2 · · ·Xn = s−1a
∣

∣X1 = s
]

=P
[

Hs−1a

]

.

Now, because the Cayley graph is a tree, the random walk must visit s−1 before visiting a.

So

P
[

Hs−1a

]

=P
[

Hs−1a, Hs−1

]

=P
[

Hs−1a

∣

∣Hs−1

]

P
[

Hs−1

]

=P
[

Hs−1a

∣

∣Hs−1

]

· p.

Again by the Markov property and symmetry, P
[

Hs−1a

∣

∣Hs−1

]

= p. Hence we have that

p =
1

4
+

3

4
p2,

so that p = 1/3, since by transience p 6= 1. Indeed, a similar calculation shows more generally

that that P
[

Hg

]

= 3−|g|.
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5.4 Tail events of the simple random walk

Since the random walk is transient, There is a.s. a finite random N such that ZN ∈ S and

ZN+n 6= e for all n ≥ 0. For s ∈ S, denote by Fs ⊂ F2 the set of words that begin with s. Then

ZN+n ∈ FZN
. By the symmetry of the random walk,

P [Zn ∈ Fa for all n large enough]=
1

4
.

For any subset F ⊂ F2, the event EF := {Zn ∈ F for all n large enough} is a tail event of

the process (Z1, Z2, . . .). Moreover, it is a shift-invariant event. A random variable W is

measurable with respect to the shift-invariant sigma-algebra if there is some f such that

W = f (Z1, Z2, . . .)= f (Z2, Z3, . . .).

Note that this implies that W is also a tail event with respect to (Z1, Z2, . . .). We have thus

proved the following claim.

Claim 5.3. The simple random walk on F2 admits a non-constant shift-invariant random

variable.

5.5 Distance from the origin of the simple random walk

Denote Ln = |Zn|. Note that conditioned on Zn−1 = e, Ln = Ln−1 +1= 1. And for any g 6= e

P [Ln = Ln−1 +1|Zn = g]=
3

4

P [Ln = Ln−1 −1|Zn = g]=
1

4
.

Define the process (X̃1, X̃2, . . .) on Z by X̃0 = 0 and

X̃n =
{

Ln −Ln−1 if Zn 6= e

Yn otherwise,

where Yn are independent with P [Yn =+1]= 3/4 and P [Yn =−1]= 1/4. It can be shown that

(X̃1, X̃2, . . .) are i.i.d. and so Z̃n = X̃1 +·· ·+ X̃n is a random walk on Z, with drift 1/2. Thus

lim
n

1

n
Z̃n =

1

2

by the strong law of large numbers. By transience, the event {Zn = e} happens only finitely

often, and so Z̃n and Ln never differ by more than a (random) constant: maxn |Ln − Z̃n| is

finite almost surely. Hence

lim
n

1

n
Ln = lim

n

1

n
Z̃n +

1

n
(Ln − Z̃n)= lim

n

1

n
Z̃n =

1

2
.

Thus Ln = |Zn| concentrates around n/2. Since X̃n ≤ Ln − Ln−1, Z̃n ≤ Ln. Hence, by the

Hoeffding bound,

P [Zn = e]=P [Ln = 0]=P [Ln ≤ 0]≤P
[

Z̃n ≤ 0
]

≤ e−n/8, (5.1)

so that the probability of return to the origin decays exponentially with n.
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6 The lamplighter group

6.1 Lamplighters

The lamplighter is a person located at some point x ∈ Z. At each z ∈ Z there is a lamp that

is either off or on. We imagine that initially all lamps are off. The lamplighter has three

things that she can do:

1. Move one step to the right.

2. Move one step to the left.

3. Flip the state of the lamp at her current location.

Thus, a sequence of actions of the lamplighter is a word in the alphabet S = {a,a−1, b},

corresponding to the three options above. After executing such a sequence, we can describe

the current state by a pair ( f , x), where x ∈Z is the location of the lamplighter, and finitely

supported f : Z→Z2 is the indicator of the lamps that are on. We denote by
⊕

ZZ2 the set of

such finitely supported f , which we call lamp configurations. Denote by α :
⊕

ZZ2 →
⊕

ZZ2

the shift operation on configurations given by [α f ](x)= f (x−1).

Suppose that g1 culminates in ( f1, x1) and that g2 culminates in ( f2, x2). Then the state

of the system when executing g1 followed by g2 will be

g1 g2 = ( f1, x1)( f2, x2)= ( f1+αx1 f2, x1+ x2).

It is easy to see that this operation is associative and invertible, and so we have defined a

group, which is denoted by
⊕

ZZ2 ⋊Z. This is also sometimes written as Z2 ≀Z. Using this

notation our generating set is

S = {a,a−1, b}= {(1,0), (−1,0),δ0},

where δ0 ∈
⊕

ZZ2 is the indicator of 0.

Another way to think of this group is as follows: f ∈
⊕

ZZ2 is an instruction to the

lamplighter located at x to flip the lamps at all x+ z such that f (z)= 1. The group is defined

by f 2 = 0 for all f , f1 f2 = f2 f1 and af = (α f )a.

Given g ∈Z2 ≀Z we denote by |g| the minimum number of generators in S whose product

is equal to g. We denote by Br the set {g : |g| ≤ r}. It is easy to see that every f with support

contained in {0,1, . . ., r/3} is in Br, and thus Br is of size at least 2r/3, and in particular grows

exponentially with r, like the free group and unlike Z
d.

6.2 The flip-walk-flip random walk

Let Y1,Y2 be independent and uniform on {e, b}, where e is the identity (0,0) of the lamp-

lighter group, and b ∈ S is equivalent to δ0. Let W be uniform on {a,a−1}, two of the gener-

ators. Let X1 = Y1WY2, and let µ be the distribution of X1. So X1 is chosen at random by
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uniformly and independently (1) telling the lamplighter to flip or not (2) telling the lamp-

lighter to move either left or right, and (3) again telling the lamplighter to flip or not.

As usual, we will take Xn i.i.d. µ and Zn = X1X2 · · ·Xn. The map π : Z2 ≀Z→ Z given by

π( f , x)= x is a group homomorphism (i.e., π(g1, g2)=π(g1)+π(g2), and so π(Zn) is the simple

random walk on Z. Let c : Z2 ≀Z→
⊕

ZZ2 be the configuration c( f , x)= f .

The support of this random walk at time n is B3n, and in particular the support has

exponential growth, as in the free group. So a natural guess is that the return probabilities

P [Zn = e] decay exponentially. As we will see, this turns out to be false. Nevertheless, the

return probabilities are summable, and hence the random walk is transient.

The reason to look at this particular random walk is that given the locations Vn =
{π(Z1), . . . ,π(Zn)} visited by the lamplighter up to time n, the configuration c(Zn) is dis-

tributed uniformly on Vn. Thus,

P [Zn = e|Vn]≤ 2−|Vn|,

since Zn = e implies in particular that all lamps are off. Recall that π(Zn) is with high

probability order of
p

n, and hence |Vn| is, with high probability, at least
p

n. It can be

furthermore shown that the probability that |Vn| is less than (say) n1/4 is of order 1/n1+δ for

some δ> 0. Hence

P [Zn = e]≤
1

n1+δ +2−n1/4

,

and in particular
∑

nP [Zn = e] is finite. So the random walk is transient.
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7 Random walks on finitely generated groups

7.1 Finitely generated groups

Let G = 〈S〉 be a group generated by a finite, symmetric set S. We have seen a few examples.

Another one is the group SL(2,Z) of two-by-two integer matrices with integer entries and

determinant 1, with the operation of multiplication. This is a group since the determinant

of each such matrix is one, and so its inverse is also in SL(2,Z). Multiplication is clearly

associative and remains in SL(2,Z). What is less obvious is that SL(2,Z) is finitely generated.

We will not prove this, but it turns out that it is generated by

(

0 −1

1 0

) (

1 1

0 1

)

and their inverses.

An even simpler example is Iso(Z). This is the group of linear bijections g : Z→ Z such

that |z1 − z2| = |g(z1)− g(z2)| (it is also called the infinite dihedral group). These are the

functions of the form g(z)= rz+d, where r ∈ {−1,+1} and d ∈Z. It is generated by a(z)= z+1,

a−1(z)= z−1 and b(z)=−z.

For a given generating set S, we can define a norm on G by letting |g| equal the minimal

k such that g can be written at the product of k elements of S. This is called a norm since

|gh| ≤ |g|+|h|, |g−1| = |g|, |g| ≥ 0 with equality iff g = e, where e denotes the identity element.

We can use this norm to define the metric d : G×G →N by d(g, h)= |g−1h|. This is equal to

the minimal k such that h = gs1 · · · sk for si ∈ S. The norm |g| is the distance of g from e in

the Cayley graph, and d(g, h) is the distance between g and h. Note that d is left-invariant

in the sense that d(kg, kh)= d(g, h) for all g, h, k ∈G.

The norm and metric clearly depend on the choice of generating set, and when we want

to be explicit about that we will write |g|S and dS. Nevertheless, the following claim shows

that the choice of generating set does not substantially affect either.

Claim 7.1. Let G = 〈S〉 = 〈T〉. Then there exists a constant m> 0 such that, for all g ∈G,

1

m
|g|S ≤ |g|T ≤ m|g|S .

Denote the by Bn = {g ∈G : |g| ≤ n} the ball of radius n in G. The exponential growth rate

of G is given by

GR(G)= lim
n

1

n
log |Bn|. (7.1)

By Claim 7.1, the growth rate is independent of the choice of generating set. However, it is

not a priori obvious that the limit exists. To show this, we will first show that the sequence

bn = log |Bn|

is subadditive.
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Claim 7.2. bn+m ≤ bn +bm.

Proof. Write g ∈ Bn+m as g = s1 · · · sn+m. Then g = g1 g2 where g1 = s1 · · · sn and g2 =
sn+1 · · · sn+m. Thus g1 ∈Bn and g2 ∈Bm. Hence the map Bn×Bm → Bn+m given by (g1, g2) 7→
g1 · g2 is onto, and so |Bn+m| ≤ |Bn| · |Bm|.

We can now apply the Fekete Lemma.

Lemma 7.3 (Fekete Lemma). Let (an)n be a subadditive sequence. Then limn an/n exists and

is equal to infn an/n.

This lemma, together with the previous claim, show that the limit in (7.1) exists. It

furthermore shows that it is equal to infn
1
n

log |Bn|.

7.2 Random walks

Let µ be a finitely supported probability measure on G. We define the µ-random walk on G as

before, by letting (X1, X2, . . .) be i.i.d. µ, setting Z0 = e and Zn = X1X2 · · ·Xn. We assume that

µ is non-degenerate in the sense that for every g ∈G there is some n such that P [Zn = g]> 0.

We say that µ is symmetric if µ(g) = µ(g−1) for all g ∈G. We denote by µ(n) the distribution

of Zn. This is the n-fold convolution of µ with itself. Convolution of measures on G is given

by

[η∗ν](g)=
∑

h∈G

η(gh−1)ν(h)=
∑

k∈G

η(k)ν(k−1 g),

where the second equality follows by the change of variables k = gh−1. Note that when G is

not commutative then convolution is not commutative either. It is, however, associative.

7.3 The max-entropy

For a probability measure ν on a coutable set Ω let

H∞(ν)=−max
ω∈Ω

logν(ω).

We define the max entropy h∞(µ) by

h∞(µ)= lim
n

1

n
H∞

(

µ(n)
)

= lim
n

−
1

n
log

(

max
g

P [Zn = g]

)

.

Thus, if h∞(µ)= r ≥ 0 then the highest probability at time n is e−rn+o(n). Of course, we need

to prove that this limit exists for this to be well defined.

Claim 7.4. Let ζ = η1 ∗ η2 for η1,η2 probability measures on G. Then maxζ ≥ (maxη1) ·
(maxη2).
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Proof. Suppose that the maxima of η1 and η2 are attained at g1 and g2 respectively. Then

ζ(g1 g2)≥ η1(g1) ·η2(g2)= (maxη1) · (maxη2).

We have shown that

H∞(η1∗η2)≤ H∞(η1)+H∞(η2).

It follows that the sequence an = H∞(µ(n)) is subadditive. We can now apply the Fekete

Lemma, which implies that limn
1
n

H∞(µ(n)) exists. But this is exactly equal to h∞(µ).

Proposition 7.5. Suppose that µ is symmetric. Then

h∞(µ)= lim
n

−
1

2n
logP [Z2n = e].

Proof. Pick gn ∈ argmaxgP [Zn = g] that maximizes the probability that Zn visits g. I.e.,

P [Zn = gn]=maxµ(n). Then

P [Z2n = e]≥P [X1 · · ·Xn = gn] ·P
[

Xn+1 · · ·X2n = g−1
n

]

=µ(n)(gn) ·µ(n)(g−1
n )= (maxµ(n))2.

Therefore, and since maxµ(2n) ≥µ(2n)(e)=P [Z2n = e],

maxµ(2n) ≥P [Z2n = e]≥ (maxµ(n))2

and

−
1

2n
logmaxµ(2n) ≤−

1

2n
logP [Z2n = e]≤−

1

n
logmaxµ(n).

Taking the limit n →∞ yields the result.
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8 The Markov operator and the spectral norm

8.1 The Markov operator of a random walk

For a finitely generated group G, denote by R
G the vector space of real functions G → R.

Denote by ℓ2(G) the Hilbert space of functions ϕ : G →R such that
∑

gϕ(g)2 <∞. This space

is equipped with inner product
〈

ϕ,ψ
〉

=
∑

gϕ(g)ψ(g) and, as usual, the norm

∥

∥ϕ
∥

∥

2

2
=

〈

ϕ,ϕ
〉

We will refer to (δg)g∈G as the standard basis of ℓ2(G). In this basis we can write

ϕ=
∑

g∈G

ϕ(g)δg.

More generally, for p ≥ 1, denote by ℓp(G) the Banach space of functions ϕ : G → R such

that

∥

∥ϕ
∥

∥

p

p
:=

∑

g

ϕ(g)p <∞. (8.1)

As usual ℓ∞(G) will be the Banach space of bounded functions with norm
∥

∥ϕ
∥

∥

∞ = supg |ϕ(g)|.
For each h ∈G define the right translation linear operator Rh : RG →R

G

[Rhϕ](g)=ϕ(gh).

Applying a change of variable to (8.1) shows that
∥

∥Rhϕ
∥

∥

p
=

∥

∥ϕ
∥

∥, so that Rh is an isometry

for all ℓp(G). Note that RhRk = Rhk. This makes the map h 7→ Rh a representation of G.

Let µ be a non-degenerate, finitely supported symmetric measure on a finitely generated

group G. The Markov operator M : RG → R
G associated with µ is the linear operator given

by M =
∑

hµ(h)Rh, so that

[Mϕ](g)=
∑

h

µ(h)ϕ(gh).

One way to think of this operator is as follows: If ψ = Mϕ then ψ(g) = E
[

ϕ(gX1)
]

is the

expectation of ϕ at the location visited by the random walk after visiting g. There is another

interpretation: the matrix entries of M with respect to the standard basis are the transition

probabilities of the Markov chain:

〈

δh, Mδg

〉

= [Mδg](h)=P [Zn+1 = g|Zn = h],

provided that P [Zn = h]> 0. Likewise, the powers of M capture the n-step transition proba-

bilities:

〈

δh, Mkδg

〉

=P [Zn+k = g|Zn = h]. (8.2)
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Claim 8.1. For p ≥ 1 and ϕ ∈ ℓp(G),
∥

∥Mϕ
∥

∥

p
≤

∥

∥ϕ
∥

∥

p
, with a strict inequality for p ∈ (1,∞)

and ϕ 6= 0.

Since µ has finite support {h1, . . . , hk}, this claim can be proved by looking at the finite

dimensional space span{ϕ,Rh1
ϕ, . . . ,Rhk

ϕ}. The proof then follows from the fact that ℓp-

balls in R
d are convex: every convex combination of unit vectors has norm at most one. For

p > 1, balls are strictly convex. This implies that we in fact have a strict inequality, unless

ϕ= 0. The important fact for us is that M is a bounded operator on ℓp(G).

8.2 Self-adjointness and return probabilities

Since µ is symmetric, an important property of the Markov operator is that it is self-adjoint:

M† = M. That is, for all ϕ,ψ ∈ ℓ2(G),

〈

ψ, Mϕ
〉

=
〈

Mψ,ϕ
〉

.

The property of being self-adjoint is a generalization to Hilbert spaces of the symmetry

property of finite dimensional (real) matrices. To see that M is self-adjoint, note that the

adjoint of Rh is R
†

h
= Rh−1 :

〈

ϕ,Rhψ
〉

=
∑

g

ϕ(g)[Rhψ](g)

=
∑

g

ϕ(g)ψ(gh)

=
∑

k

ϕ(kh−1)ψ(k)

=
〈

Rh−1ϕ,ψ
〉

.

Hence the symmetry of µ implies that the adjoint of M =
∑

hµ(h)Rh is

M† =
∑

h

µ(h)Rh−1 =
∑

h

µ(h−1)Rh =
∑

h

µ(h)Rh = M.

As a corollary, we provide a simple proof of the following claim.

Claim 8.2. When µ is symmetric, P [Z2n = e]≥P [Z2n = g] for all g ∈G.

Proof.

0≤
∥

∥Mn(δg −δe)
∥

∥

2

=
〈

Mnδg, Mnδg

〉

−2
〈

Mnδg, Mnδe

〉

+
〈

Mnδe, Mnδe

〉

=
〈

δg, M2nδg

〉

−2
〈

δg, M2nδe

〉

+
〈

δe, M2nδe

〉

,

where the last equality follows from the fact that M is self-adjoint. Now, by (8.2)

〈

δg, M2nδg

〉

=P [gZ2n = g]=P [Z2n = e]
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and
〈

δg, M2nδe

〉

=P [Zn = g].

Hence

P [Z2n = g]≤P [Z2n = e].

8.3 The spectral norm

In this section we will denote the ℓ2 norm by ‖·‖. The norm of the Markov operator M, as a

linear operator on the Hilbert space ℓ2(G), is given by

‖M‖ = sup{
∥

∥Mϕ
∥

∥ :
∥

∥ϕ
∥

∥= 1}= sup

{

∥

∥Mϕ
∥

∥

∥

∥ϕ
∥

∥

: ϕ 6= 0

}

.

By Claim 8.1, ‖M‖ ≤ 1. The following theorem relates the norm of M to the max-entropy of

the random walk. The norm of M is also known as the spectral radius of the random walk.

Theorem 8.3. For all symmetric, finitely supported µ, ‖M‖ = e−h∞(µ).

By Proposition 7.5, this implies that ‖M‖ = limnP [Z2n = e]1/(2n).

To prove this theorem we will need some facts about self-adjoint operators on Hilbert

spaces. Before stating our claims, we will discuss the simpler, finite dimensional case.

In R
n, a self-adjoint operator can be represented by a real symmetric matrix A. Such a

matrix will have distinct real eigenvalues λ1, · · · ,λk for some k ≤ n. Furthermore, for every

vector v ∈ R
n we can find orthonormal eigenvectors w1, . . . ,wk (corresponding to the above

eigenvalues) such that v =
∑k

i=1
αiwi. It follows that the operator norm of A in this case is

maxi |λi|.
Using the eigenvector basis, we can calculate

Anv =
k

∑

i=1

αiλ
n
i wi.

Hence

∥

∥Anv
∥

∥

2 =
k

∑

i=1

|αi|2|λi|2n.

and in particular, denoting |λm| =max{|λi| : αi > 0},

lim
n

∥

∥Anv
∥

∥

1/n = |λm|.

and if ‖v‖ = 1 then

‖Av‖≤ lim
n

∥

∥Anv
∥

∥

1/n ≤ ‖A‖ .

The following claim shows that the same holds in Hilbert spaces. We say that an operator

on a Hilbert space is bounded if it has finite norm.
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Lemma 8.4. Let A be a self-adjoint bounded operator on a Hilbert space H . Then for any

unit vector v ∈H

‖Av‖≤ lim
n

∥

∥Anv
∥

∥

1/n ≤ ‖A‖ .

Proof. Fix a unit vector v ∈H . Since A is self-adjoint,

∥

∥An+1v
∥

∥

4 =
〈

An+1v, An+1v
〉2 =

〈

Anv, An+2v
〉2

.

Applying Cauchy-Schwarz we get

∥

∥An+1v
∥

∥

4 ≤
∥

∥Anv
∥

∥

2 ·
∥

∥An+2v
∥

∥

2
.

Dividing both sides by
∥

∥An+1v
∥

∥

2 · ‖Anv‖2 and taking the square root yields

∥

∥An+1v
∥

∥

‖Anv‖
≤

∥

∥An+2v
∥

∥

∥

∥An+1v
∥

∥

.

Thus the sequence
‖An+1v‖
‖Anv‖ is non-decreasing and converges to some ρ:

ρ = lim
n

∥

∥An+1v
∥

∥

‖Anv‖
.

Since

∥

∥Anv
∥

∥=
‖Av‖
‖v‖

· · ·
‖Anv‖

∥

∥An−1v
∥

∥

we can conclude that

lim
n

∥

∥Anv
∥

∥

1/n = ρ

with

‖Av‖ ≤ ρ ≤ ‖A‖ .

Denote by ℓ2
f
(G) the finitely supported ϕ ∈ ℓ2(G). Recall that

‖M‖ = sup{
∥

∥Mϕ
∥

∥ :
∥

∥ϕ
∥

∥= 1}.

Since we can approximate any ϕ ∈ ℓ2(G) by a finitely supported ϕ′ ∈ ℓ2
f
(G), in the sense that

∥

∥ϕ−ϕ′∥
∥< ε, the continuity of M implies that

‖M‖ = sup{
∥

∥Mϕ
∥

∥ :
∥

∥ϕ
∥

∥= 1,ϕ ∈ ℓ2
f (G)}. (8.3)
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Choose any ϕ ∈ ℓ2
f
(G) with

∥

∥ϕ
∥

∥= 1. Since M is self-adjoint,

∥

∥Mnϕ
∥

∥

2 =
〈

Mnϕ, Mnϕ
〉

=
〈

ϕ, M2nϕ
〉

.

Denote suppϕ= F ⊂G. Then, since ϕ=
∑

g∈F ϕ(g)δg, we can write the above as

∥

∥Mnϕ
∥

∥

2 =
∑

g,h∈F

ϕ(g)ϕ(h)
〈

δg, M2nδh

〉

.

Recalling that the matrix entries are the Markov transition properties we have

∥

∥Mnϕ
∥

∥

2 =
∑

g,h∈F

ϕ(g)ϕ(h)P [hZ2n = g]

≤
∑

g,h∈F

|ϕ(g)ϕ(h)|P [hZ2n = g].

By Claim 8.2, P [hZ2n = g]≤P [Z2n = e]. Hence

∥

∥Mnϕ
∥

∥

2 ≤
∑

g,h∈F

|ϕ(g)ϕ(h)|P [Z2n = e]

=
∑

g,h∈F

|ϕ(g)| · |ϕ(h)|P [Z2n = e]

=P [Z2n = e]
∑

g∈F

|ϕ(g)|
∑

h∈F

|ϕ(h)|.

Now, |ϕ(g)| ≤ 1, since
∑

gϕ(g)2 = 1. Hence

∥

∥Mnϕ
∥

∥

2 ≤P [Z2n = e]|F|2.

It follows that

lim
n

∥

∥Mnϕ
∥

∥

1/n ≤ lim
n

P [Z2n = e]
1/(2n) = e−h∞(µ).

By the first inequality of Lemma 8.4

∥

∥Mϕ
∥

∥≤ lim
n

∥

∥Mnϕ
∥

∥

1/n
,

and so, by (8.3),

‖M‖ ≤ e−h∞(µ).

Finally,

e−h∞(µ) = lim
n

P [Z2n = e]
1/(2n) = lim

n

〈

δe, M2nδe

〉1/(2n) = lim
n

∥

∥Mnδe

∥

∥

1/n
.

and so applying the second inequality of Lemma 8.4 to v = δe yields that

e−h∞(µ) = lim
n

∥

∥Mnδe

∥

∥

1/n ≤ ‖M‖ .

This concludes the proof of Theorem 8.3.

38



9 Amenability and Kesten’s Theorem

9.1 Følner sequences and the isoperimetric constant

Let G = 〈S〉 be a finitely generated group. Given a set F ⊂ G, we denote the boundary of F

by

∂F = {g 6∈ F : ∃s ∈ S s.t. gs ∈ F}.

This is the set of vertices in the Cayley graph that are not in F but are connected to a vertex

in F. Note that this definition depends on S, and we write ∂SF when we want to make this

dependence explicit.

The surface-to-volume ratio of a finite F ⊂ G is |∂F|/|F|. The isoperimetric constant of G

(with respect to S) is

Φ(G,S)= inf
F⊂G

|∂SF|
|F|

,

where the infimum is taken over finite F.

A group G is said to be amenable if Φ(G,S)= 0. This notion is well-defined (i.e., indepen-

dent of the choice of S) since, by Claim 7.1, if S and T are generating sets then there exists

a constant m> 0 such that

1

m
|∂SF| ≤ |∂T F| ≤ m|∂SF|. (9.1)

Equivalently, G is amenable if there is a sequence of finite subsets Fn with surface-

to-volume ratio tending to zero. Such sequences are called Følner sequences. By (9.1), a

sequence is Følner with respect to one generating set if it is Følner with respect to another.

It is useful to also define the inner boundary ∂iF

∂iF = { f ∈ F : ∃s ∈ S s.t. f s 6∈ F}.

This is the set of vertices in F that are connected to a vertex outside of F. Since each vertex

has |S| edges,

1

|S|
· |∂F| ≤ |∂iF| ≤ |S| · |∂F|. (9.2)

We can thus equivalently define Følner sequences and amenability using the inner bound-

ary.

9.2 Examples

To see that Zd is amenable, we can verify that Fn = {1, . . ., n}d is a Følner sequence.

Claim 9.1. G = 〈S〉 is amenable if GR(G)= 0.
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Proof. Since Bn+1 = Bn ∪∂Bn, |Bn+1| ≥ |Bn| · (1+Φ(G,S)). Hence |Bn+1| ≥ (1+Φ(G,S))n and

GR(G)= lim
n

1

n
log |Bn| ≥ log(1+Φ(G,S)).

Thus, if G is non-amenable then GR(G)> 0.

It may be tempting to imagine that the converse of Claim 9.1 is true. However, the

lamplighter group has exponential growth even though it is amenable. Fix the generating

set S = {(0,+1), (0,−1), (δ0,0)}. Denote In = {−n, . . . , n−1}. Consider the set

Fn =
{

( f , z) : supp f ⊆ In, z ∈ In

}

.

it is of size exactly 2n ·22n and is contained in B6n, and so |B6n| ≥ 2n. Thus the lamplighter

has exponential growth. To see that it is amenable, note that

∂Fn =
{

( f , z) : supp f ⊆ In, z ∈ {−n−1, n}
}

and so |∂Fn| = 2 ·22n. Thus Fn is a Følner sequence.

9.3 Kesten’s Theorem

Theorem 9.2 (Kesten). Let G be a finitely generated group, and let µ be a finitely supported,

symmetric, non-degenerate probability measure on G. Then G is amenable if and only if

‖M‖ = 1.

This Theorem, together with (5.1), implies that the free group F2 is not amenable.

We will need a number of auxiliary claims in order to prove this result. In the next claim

we denote symmetric differences by △.

Claim 9.3. Let G = 〈S〉 be a finitely generated group. Let (F1,F2, . . .) be a sequence of finite

subsets of G. The following are equivalent.

1. Fn is a Følner sequence.

2. For every s ∈ S

lim
n

|Fn△Fns|
|Fn|

= 0.

3. For every h ∈G

lim
n

|Fn△Fnh|
|Fn|

= 0.
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In this claim, Fnh is the set { f h : f ∈ F}. The proof of this claim relies on (9.1), as well as

the observation that F△Fs⊆ ∂F ∪∂iF.

Let η,ν be probability measures on G. We view them as elements of ℓ1(G). As such, the

distance between them is

∥

∥η−ν
∥

∥=
∑

g∈G

|η(g)−ν(g)|.

We can also apply the right translation operators Rh to them:

[Rhν](g)= ν(gh).

The next theorem casts amenability in terms of almost-invariant vectors. Suppose H is a

real Hilbert space, and h 7→ Rh is an orthogonal representation of G: a group homomorphism

from G to the group of linear operators on H that perserve the norm. A sequences of vectors

ϕn with
∥

∥ϕn

∥

∥= 1 is almost-invariant if
∥

∥ϕn −Rsϕn

∥

∥→ 0 for all generators s (equivlently, for

all s ∈G).

Theorem 9.4. Let G = 〈S〉 be a finitely generated group. The following are equivalent.

1. There are almost-invariant vectors in ℓ2(G).

2. There is a sequence νn of probability measures on G such that

lim
n

‖νn −Rsνn‖1 = 0

for all s ∈ S.

3. G is amenable.

Proof. We first show that (1) implies (2). Let (ϕn)n be almost-invariant vectors. Let νn(g)=
ϕn(g)2. Then νn is a probability measure on G, and

‖νn −Rsνn‖1 =
∑

g

|ϕn(g)2−ϕn(gs)2| =
∑

g

|ϕn(g)−ϕn(gs)| · (ϕn(g)+ϕn(gs)).

By Cauchy-Schwarz we then have that

‖νn −Rsνn‖2
1 ≤

∑

g

(ϕn(g)−ϕn(gs))2 ·
∑

g

(ϕn(g)+ϕn(gs))2 =
∥

∥ϕn −Rsϕn

∥

∥

2 ·
∥

∥ϕn +Rsϕn

∥

∥

2
.

Since
∥

∥ϕn +Rsϕn

∥

∥

2 ≤ 4, we get that

lim
n

‖νn −Rsνn‖1 ≤ lim
n

2
∥

∥ϕn −Rsϕn

∥

∥= 0.

We now show that (2) implies (3). Fix any ε> 0, and choose n large enough so that

∑

s∈S

‖νn −Rsνn‖1 < ε/2.
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By restricting the support of νn to a large finite set and renormalizing we can find a finitely

supported probability measure ν such that

∑

s∈S

‖ν−Rsν‖1 < ε.

Let c = min{ν(g) : ν(g) > 0} be the smallest non-zero value ν assigns to any g ∈G. Let F

be the support of ν. Then we can write ν= c1{F} +ν′, where ν′ is a sub-probability measure

with ν(G)= 1− c|F| and has support that is strictly contained in the support of ν.

Now, let

P = {(g, h) : g ∈ F and h ∈ F, and g−1h ∈ S}

∂P = {(g, h) : g ∈ F xor h ∈ F, and g−1h ∈ S}.

We can think of P as a set of directed edges in the Cayley graph: The edges which are

connected to two vertices in F. Likewise ∂P is the set of S vertices connected to exactly one

vertex in F. Then

∑

s∈S

‖ν−Rsν‖1 =
∑

s∈S

∑

g∈G

|ν(g)−ν(gs)| =
∑

(g,h)∈P∪∂P

|ν(g)−ν(h)|,

where the last equality holds because ν is supported on F, and so if neither g nor h is in F

then ν(g)= ν(h)= 0.

For (g, h) ∈ P, |ν(g)−ν(h)| = |ν′(g)−ν′(h)|. For (g, h) ∈ ∂P, |ν(g)−ν(h)| = c+|ν′(g)−ν′(h)|.
Hence

∑

s∈S

‖ν−Rsν‖1 =
∑

(g,h)∈P

|ν′(g)−ν′(h)|+ c|∂P|+
∑

(g,h)∈∂P

|ν′(g)−ν′(h)| = c|∂P|+
∑

s∈S

∥

∥ν′−Rsν
∥

∥ ,

and so

ε> c|∂P|+
∑

s∈S

∥

∥ν′−Rsν
∥

∥ . (9.3)

Now, |∂F| ≤ |∂P|. Hence, if |∂P| < ε|F| then |∂F| < ε|F| and we are done. Otherwise, we get

that

ε|F| > εc|F|+
∑

s∈S

∥

∥ν′−Rsν
′∥
∥

1 ,

or

∑

s∈S

∥

∥ν′−Rsν
′∥
∥

1
< ε(1− c|F|).

Let ν′′ = ν′/(1− c|F|). Then ν′′ is a probability measure and

∑

s∈S

∥

∥ν′′−Rsν
′′∥
∥

1
< ε,
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so that ν′′ satisfies the same condition that ν satisfies. Since the support of ν′′ is strictly

smaller than that of ν, if we continue by induction and apply the same argument to ν′′ we

will eventually find F such that |∂F| < ε|F|, or else the process will reach a measure ν= c1{F},

in which case ν′ = 0, c = 1/|F| and thus |∂F| < ε|F| by (9.3).

Finally, to see that (iii) implies (i), suppose that G is amenable. By Claim 9.3, for any

ε> 0 there is a finite F ⊂G such that |F△Fs| < ε|F| for all generators s. Let ϕ=1{F}, so that

ϕ ∈ ℓ2(G). Let ψ= Rsϕ, and note that

1. ψ(g)∈ [0,1].

2. ψ(g)=ϕ(g)= 1 for all g ∈ F \ Fs.

3. ψ(g)= 0 for all g 6∈ F ∪Fs.

In particular, ψ(g) 6=ϕ(g) only for g ∈ F△Fs. Hence

∥

∥ϕ−Rsϕ
∥

∥

2

2
=

∥

∥ϕ−ψ
∥

∥

2

2
≤ |F△Fs| < ε|F|.

Now, let ϕ̂=ϕ/
∥

∥ϕ
∥

∥=ϕ/
p
|F| be a unit vector. Then

∥

∥ϕ̂−Rsϕ̂
∥

∥

2

2
=

1

|F|
∥

∥ϕ−Rsϕ
∥

∥

2

2
< ε.

We will next need a simple lemma on Markov operators. A Hilbert space is separable if

it has a countable basis. For example, our space ℓ2(G) is separable because it admits the

countable basis δg.

Lemma 9.5. Let A be a self-adjoint operator on a separable Hilbert space H with ‖A‖ = 1.

Suppose that the matrix entries
〈

e i, Ae j

〉

are non-negative for some countable orthonormal

basis e i, i ∈ I. Then there is a sequence of unit vectors wn ∈H such that

lim
n

〈wn, Awn〉 = 1.

To see that the assumption that A has positive entries is necessary, consider the operator

A : R→ R given by a(x) = −x. For finite dimensional H this is part of the statement of the

Perron-Frobenius Theorem.

Proof of Lemma 9.5. We identify each vector v =
∑

i 〈v, e i〉 e i with the function I → R given

by v(i)= 〈v, e i〉.
Since ‖A‖ = 1 there is a sequence of unit vectors vn ∈ H such that limn ‖Avn‖ = 1, and

hence limn

〈

vn, A2vn

〉

= 1, since A is self-adjoint. We would like to have vectors for which

this holds for A rather than A2.

Since the matrix entries
〈

e i, Ae j

〉

are non-negative, the matrix entries
〈

e i, A2e j

〉

are

non-negative, and for every v

‖Av‖ =
〈

v, A2v
〉

=
∑

i, j

v(i)v( j)
〈

e i, Ae j

〉

≤
∑

j,i

|v(i)| · |v( j)|
〈

e i, A2e j

〉

.
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Thus we can assume that vn(i) is non-negative. Hence [Avn](i) is also non-negative, and

〈vn, Avn〉 > 0. We further can assume that 〈vn, Avn〉 ∈ [0,1] converges to some α∈ [0,1].

Define un = vn + Avn then

lim
n

〈un, Aun〉 = lim
n

〈

vn + Avn, Avn + A2vn

〉

= lim
n

〈vn, Avn〉+
〈

vn, A2vn

〉

+〈Avn, Avn〉+
〈

Avn, A2vn

〉

= lim
n

2α+2.

Now,

lim
n

‖un‖2 = lim
n

‖vn‖2 +‖Avn‖2 +2〈vn, Avn〉 = 2+2α> 0,

and so we have that for wn = un/‖un‖

lim
n

〈wn, Awn〉 = 1.

Given this, we can proceed with the proof of Kesten’s theorem.

Proof of Theorem 9.2. Suppose that G is amenable. By Theorem 9.4 there are almost invari-

ant unit vectors (ϕn) in ℓ2(G). Suppose that
∥

∥ϕn −Rsϕn

∥

∥ ≤ ε. Then
∥

∥ϕn −Mϕn

∥

∥ ≤ ε|S|, by

the triangle inequality. It follows that
∥

∥Mϕn

∥

∥→ 1, and so ‖M‖ = 1.

Suppose ‖M‖ = 1. By Lemma 9.5, there is a sequence of unit vectors ϕn ∈ ℓ2(G) such that

1= lim
n

〈

ϕn, Mϕn

〉

= lim
n

∑

h

µ(h)
〈

ϕn,Rhϕn

〉

.

Observe that each term
〈

ϕn,Rhϕn

〉

on the right hand side is at most 1, since
∥

∥Rhϕn

∥

∥ = 1.

And since the right hand side is a finite (weighted) average of these terms,

lim
n

〈

ϕn,Rhϕn

〉

= 1

and

lim
n

∥

∥ϕn −Rhϕn

∥

∥= 0.

So by Theorem 9.4, G is amenable, since suppµ is a generating set.
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10 The Carne-Varopoulos bound

10.1 Theorem statement

The Hoeffding bound for Z
d can be stated as follow:

P [Zn = z]≤ 2e−
|z|2
2n ,

where |z| is the norm of z, calculated using the generating set suppµ. The next theorem

generalizes this to all finitely generated groups.

Theorem 10.1 (Carne-Varopoulos). Let G = 〈S〉 be a finitely generated group, and let µ be a

symmetric measure with support S. Let M be the corresponding Markov operator. Then for

any g ∈G,

P [Zn = g]≤ 2‖M‖n e−
|g|2
2n .

It follows that if G has sub-exponential growth, then the random walk Zn is concentrated

with distance roughly
p

n, just like on Z
d.

10.2 Harmonic oscillator

To prove this theorem we will need to adapt some techniques from physics. Consider a mass

that can move up or down. We denote its position at (continuous) time t by xt, and its speed

by vt, so that

dxt

dt
= vt.

It connected to a spring that pulls it back in, with a force equal to −L ·xt, so that the further

it is the stronger the pull. Thus

dvt

dt
=−Lxt.

We can write these equation as

d

dt

(

xt

vt

)

=V

(

xt

vt

)

where

V =
(

0 1

−L 0

)

.

The solution is
(

xt

vt

)

= etV

(

x0

v0

)

,
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or

(

xt

vt

)

=
(

cos(
p

Lt) 1p
L

sin(
p

Lt)

−
p

Lsin(
p

Lt) cos(
p

Lt)

)

(

x0

v0

)

.

Note that the energy E t = Lx2
t +v2

t is conserved, so that etV is an orthogonal operator on R
2

for the norm given by the energy.

We would like to do the same thing in discrete time. It is tempting, in analogy to the

continuous time differential equations, to consider the discrete time system

xn+1 = xn +vn

vn+1 = vn −Lxt,

or

(

xn+1

vn+1

)

= (I +V )

(

xn

vn

)

.

The problem is that energy is no longer preserved: this is not an orthogonal operator. The

mistake is that we have taken the operator to be I +V rather than eV . Indeed, we need a

matrix with unit determinant. We will take

U =
(

M 1

−(1−M2) M

)

for M < 1 which corresponds to 1− 1
2
L ≈ cos(

p
L). Our discrete time system is thus

(

xn+1

vn+1

)

=U

(

xn

vn

)

,

so that

(

xn

vn

)

=Un

(

x0

v0

)

.

The energy that is conserved is

En = (1−M2)x2
n +v2

n.

10.3 Coupled harmonic oscillators and the continuous time wave

equation

Consider now a unit mass located at each g ∈G. The masses can again move up and down,

and we denote the height of the mass at g at time t by xt(g) and its velocity by vt(g), so that

dxt(g)

dt
= vt(g).
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The masses are connected by springs to their neighbors in the Cayley graph, where the

strength of the spring between g and gs is µ(s) for some symmetric probability measure

µ on g. The strength of the attraction is proportional to the distance between them, and

attraction translates to force on the mass at g (and thus acceleration) equal to µ(s)(ϕ(gs)−
ϕ(g). We thus have that

dvt(g)

dt
=

∑

s

µ(s) (xt(gs)− xt(g)) .

This system has an energy

E t =
∑

g

vt(g)2+
1

2

∑

g

∑

s

µ(s)(xt(gs)− xt(g))2, (10.1)

which is conserved over time:

dE t

dt
= 2

∑

g

vt(g)
dvt(g)

dt
+

∑

g

∑

s

µ(s) (xt(gs)− xt(g))

(

dxt(gs)

dt
−

dxt(g)

dt

)

= 2
∑

g

vt(g)
∑

s

µ(s) (xt(gs)− xt(g))+
∑

g

∑

s

µ(s) (xt(gs)− xt(g))(vt(gs)−vt(g))

=
∑

g

vt(g)
∑

s

µ(s) (xt(gs)− xt(g))+
∑

g

∑

s

µ(s) (xt(gs)− xt(g))vt(gs).

This is equal to zero by applying the change of variable g 7→ gs the first summand and using

the fact that µ is symmetric.

10.4 The Laplacian

We introduce some notation to help us write this more elegantly. Given ϕ ∈ R
G , denote by

∇ϕ : G×S →R the map

[∇ϕ](g, s)=ϕ(gs)−ϕ(g).

It is useful to think of ∇ϕ as the derivative of ϕ, with [∇ϕ](g, s) being the derivative in the

“direction” s at g. Clearly, it is a linear operator. Note that for θ =∇ϕ it holds that

θ(g, s)=−θ(gs, s−1).

We call such functions anti-symmetric.

In the context of a symmetric measure µ supported on a generating set S we define an

inner product on the space of functions G×S →R by

〈

θ,θ′
〉

=
1

2

∑

g

∑

s

µ(s)θ(g, s)θ′(g, s).

Of course, this is not defined for all θ,θ′ and we restrict ourselves to θ : G → R
S such that

‖θ‖2 := 〈θ,θ〉 < ∞. We also restrict ourselves to anti-symmetric θ. We denote the Hilbert

space of such θ by ℓ2(G,S, AS).
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For ϕ ∈ ℓ2(G),

∥

∥∇ϕ
∥

∥

2 =
〈

∇ϕ,∇ϕ
〉

=
1

2

∑

g

∑

s

µ(s)[∇ϕ](g, s)[∇ϕ](g, s)

=
1

2

∑

g

∑

s

µ(s)(ϕ(gs)−ϕ(g))2

=
1

2

∑

g

∑

s

µ(s)
(

ϕ(gs)2 −2ϕ(gs)ϕ(g)+ϕ(g)2
)

=
〈

ϕ,ϕ
〉

−
〈

ϕ, Mϕ
〉

=
〈

ϕ, (I −M)ϕ
〉

,

where I is the identity operator on ℓ2(G). Thus ∇ is a bounded operator from ℓ2(G) to

ℓ2(G,S, AS). A similar calculation yields
〈

∇ψ,∇ϕ
〉

=
〈

ψ, (I −M)ϕ
〉

. (10.2)

The “opposite” of the “differentiation” operator ∇ is the “divergence” operator ∇† : RG×S →
RG given by

[∇†θ](g)=
∑

s

µ(s)θ(gs, s−1).

Indeed, the adjoint of ∇ is ∇†:
〈

∇†θ,ϕ
〉

=
∑

g

[∇†θ](g)ϕ(g)

=
∑

g

∑

s

µ(s)θ(gs, s−1)ϕ(g)

=
1

2

∑

g

∑

s

µ(s)(θ(gs, s−1)−θ(g, s))ϕ(g)

=
1

2

∑

g

∑

s

µ(s)(θ(g, s)ϕ(gs)−θ(g, s)ϕ(g))

=
1

2

∑

g

∑

s

µ(s)θ(g, s)(ϕ(gs)−ϕ(g))

=
1

2

∑

g

∑

s

µ(s)θ(g, s)[∇ϕ](g, s)

=
〈

θ,∇ϕ
〉

Hence, by (10.2), ∇†∇= I−M, which we denote by L and call the Laplacian of the random

walk.

Going back to our masses, recall that the equations governing the system are

dxt(g)

dt
= vt(g)

dvt(g)

dt
=

∑

s

µ(s)
(

x(gs)− x(g)
)

.
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Note that

[Lx](g)= [∇†∇x](g)=
∑

s

µ(s)[∇x](gs, s−1)=
∑

s

µ(s) (x(g)− x(gs)) ,

and so we write our equations as

dxt

dt
= vt

dvt

dt
=−Lxt.

We can write our energy as

E t = ‖v‖2 +‖∇x‖2 = 〈v,v〉+〈x,Lx〉 .

Note that this is a norm on the Hilbert space H := ℓ2(G)⊗ℓ2(G), and thus the dynamics is

(differential) orthogonal operator that preserves this norm.

If we think of

(

xt

vt

)

as an element of H , we can write our equation as

d

dt

(

xt

vt

)

=V

(

xt

vt

)

where V : H →H is given by

V =
(

0 I

−L 0

)

.

This is the wave equation. Its solution is

(

xt

vt

)

= etV

(

x0

v0

)

.

As in the one-dimensional case, we will consider the discete time analogue is

(

xn+1

vn+1

)

=U

(

xn

vn

)

where

U =
(

M I

−(I −M2) M

)

,

where we recall that M = I −L is the Markov operator.

We are of course interested in Mnδ0, the distribution of the random walk at time n. This

is the solution of the discrete time analogue of the heat equation xn+1 = Mxn, which we will

write as
(

xn+1

vn+1

)

=
(

M 0

0 M

)

.

(

xn

vn

)
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10.5 Proof using the discrete time wave equation

The operator U is an orthogonal operator on H , i.e., it preserves the norm

∥

∥

∥

∥

(

x

v

)∥

∥

∥

∥

2

= 〈v,v〉+
1

2

〈

x, (I −M2)x
〉

.

We can recover the heat equation from the wave equation by
(

M 0

0 M

)

=
1

2

(

U +U−1
)

.

Likewise,

(

M 0

0 M

)n

=
1

2n

(

U +U−1
)n =

n
∑

k=0

1

2n

(

n

k

)

U2k−n.

Hence if we let Z̃n be the simple random walk on Z then
(

0

Mnϕ

)

=
(

M 0

0 M

)n (

0

ϕ

)

= E

[

U Z̃n

(

0

ϕ

)]

.

That is, the state of the system under the heat equation is equal to the average state of the

system under the heat equation at the random time Z̃n.

Write

Un =
(

An Bn

Cn Dn

)

then

Un+1 =
(

An Bn

Cn Dn

)

·
(

M I

M2 − I M

)

=
(

AnM+Bn(M2 − I) An +BnM

CnM+Dn(M2 − I) Cn +DnM

)

.

It thus follows by induction that An, Bn, Cn and Dn are respectively polynomials of degrees

n, n−1, n+1, and n in M (in fact, An = Bn is the Chebyshev polynomial of order n). Now,
〈

δg, Mkδe

〉

= 0 when |k| < |g|. Thus also

〈(

0

δg

)

,Uk

(

0

δe

)〉

= 0

for all such k (physically, this means that waves propagate at constant speed). Since U is

orthogonal, the above inner product is at most 1 for any k, and so we have that

〈

δg, Mnδe

〉

=
〈(

0

δg

)

,

(

M 0

0 M

)n (

0

δe

)〉

= E

[〈(

0

δg

)

,U Z̃n

(

0

δe

)〉]

≤P
[

|Z̃n| ≥ |g|
]

≤ 2e−
|g|2
2n ,
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where the last inequality is simply the Hoeffding bound.

Repeating this proof with M̂ := M/‖M‖ yields an additional ‖M‖n factor. This completes

the proof of Theorem 10.1.
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11 The Martin boundary and the Furstenberg-Poisson

boundary

11.1 The boundary of the free group

Let F2 = 〈S〉, S = {a,a−1, b, b−1} be the free group on two generators. Let ∂F2 denote the set

of infinite reduced words:

∂F2 = {s1s2s3 · · · : sn ∈ S, sn+1 6= s−1
n }.

We can identify each b ∈ ∂F2 with an infinite ray, starting from in the origin of the Cayley

graph of F2.

Given b ∈ ∂F2, we say that the k-prefix of b is equal to g ∈ F2 if b = s1s2 · · · sk · · · and

g = s1s2 · · · sk. We define the k-prefix of g ∈ F2 similarly, provided |g| ≥ k.

We say that a sequence of words in the free group converges to b ∈ ∂F2 if for every k it

holds for all n large enough that the k-prefix of gn is equal to the k-prefix of b. When F2

is endowed with the discrete topology and ∂F2 is endowed with the product topology, ∂F2 is

a compactification of F2: every sequence gn ∈ F2 has a subsequence that either converges to

some b ∈ ∂F2 or to some g ∈ F2 (and hence eventually equals this g). Indeed, if we define the

distance d(g, b) between two (finite or infinite) reduced words as 3−r(g,b) where r(g, b) is the

maximum k such that the k-prefixes of the words agree, then F2 ∪∂F2 is a compact metric

space and ∂F2 is the boundary of the discrete set F2.

Let µ be the simple random walk, given by the uniform distribution over S. Since the

random walk is transient, the first generator in Zn eventually stabilizes, as does the second,

etc. Hence there is a random variable B taking value in ∂F2 such that Zn converges to B

almost surely. Denote by ν the distribution of B. Then ν is a probability measure on ∂F2

that is called the exit measure of the random walk. The symmetry of the simple random

walk makes it is easy to calculate ν: the probability that the k-prefix of B is equal to any

particular s1s2 · · · sk is 1
4
3−(k−1).

We can associate with each b ∈ ∂F2 the harmonic function given by

ψb(g)= 3−|g|+2r(g,b). (11.1)

Equivalently, viewed as a function on the Cayley graph, ψb is the function that is equal to

1 at e, increases by a factor of 3 along edges that tend toward the ray b, and decreases by a

factor of 3 in the other direction.

Note that B is a shift-invariant random variable: there is a measurable function f such

that

B = f (Zn, Zn+1, . . .)

for all n; we can take any f such that f (g1, g2, . . .) = limn gn whenever the limit exists. It

turns out that this is the “universal” shift-invariant random variable: σ(B) is the shift-

invariant sigma-algebra. In other words, every shift-invariant random variable is a function

of B.
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What does the random walk look like conditioned on B? The answer turns out to be

simple: it is not longer a random walk on G, but it is still a Markov chain, with transition

probabilities

P [Zn+1 = h|Zn = g,B = b]=
ψb(h)

ψb(g)
µ(g−1h)=

ψb(h)

ψb(g)
P [Zn+1 = h|Zn = g].

That is, relative to the unconditioned random walk, there is a threefold increase in the

probability of moving in the direction of B, and a threefold decrease in the probability of

moving in each of the opposite three directions. It follows from this that

P [Z1 = g1, . . . , Zn = gn|B = b]=ψb(gn)P [Z1 = g1, . . . , Zn = gn].

To see why this holds, we first note that this conditioned Markov chain indeed converges to

limn Zn = b, since the drift towards b will always eventually bring the random walk back to

the ray corresponding to b, and will also push it to infinity, away from the origin. Second,

observe that

E [P [Z1 = g1, . . . , Zn = gn|B]]= E
[

ψB(gn)P [Z1 = g1, . . . , Zn = gn]
]

= E
[

ψB(gn)
]

P [Z1 = g1, . . . , Zn = gn]

=P [Z1 = g1, . . . , Zn = gn],

since E
[

ψB(g)
]

= 1 for all g. This proves that these conditional measures form a collection

of conditional measures (also called a disintegration) of the unconditional measure with

respect to B. Such a collection is almost everywhere uniquely determined, by the disintegra-

tion theorem.

The rest of this section will be devoted to building a similar theory for every finitely

generated group.

11.2 The stopped random walk

Let G be a finitely generated group and let µ be a finitely supported non-degenerate proba-

bility measure on G. We assume that µ has symmetric support: µ(g)> 0 implies µ(g−1)> 0.

Let (Z0, Z1, . . .) be the µ-random walk on G. Given a subsetF ⊂ G that includes e, we

define the F-stopped random walk (Z̊0, Z̊1, . . .) by Z̊0 = e and

Z̊n+1 =
{

Z̊nXn+1 if Z̊n ∈ F

Z̊n otherwise.

Equivalently, let

T =min{n ≥ 0 : Zn 6∈ F},
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be the first time that the random walk visits an element that is not in F (and hence in ∂F),

and let

Z̊n =
{

Zn if n ≤ T

ZT otherwise.

We say that F is connected if for all g ∈ F ∪ ∂F there is an n such that P

[

Z̊n = g
]

> 0.

Equivalently, the restriction of the Cayley graph to F has a single connected component

(since the support of µ is symmetric). We will henceforth assume that F is connected.

Claim 11.1. If F is finite then T is almost surely finite.

In cases in which T is finite (such as finite F), Z̊∞ := ZT = limn Z̊n is the element of the

complement of F that is first visited by the random walk. Since the random walk starts in

F (i.e., e ∈ F) then Z̊∞ ∈ ∂F.

11.3 Harmonic functions

Suppose that F is connected. We say that a function ϕ : F∪∂F is µ-harmonic if for every g ∈ F

it holds that ϕ(g) =
∑

sµ(s)ϕ(gs). Denote by ℓµ(F) the collection of µ-harmonic functions on

F ∪∂F:

ℓµ(F)=
{

ϕ : F ∪∂F →R : ϕ(g)=
∑

s

µ(s)ϕ(gs) for all g ∈ F

}

.

Clearly, ℓµ(F) is a linear subspace of RF∪∂F .

Claim 11.2. ϕ is µ-harmonic if and only if

ϕ(Z̊n)= E

[

ϕ(Z̊n+1)
∣

∣

∣Z̊n

]

. (11.2)

(I.e., ϕ(Z̊n) is a martingale).

Proof. For g ∈ F, Z̊n+1 = Z̊nXn+1, and so

E

[

ϕ(Z̊n+1)
∣

∣

∣Z̊n = g
]

= E

[

ϕ(Z̊nXn+1)
∣

∣

∣Z̊n = g
]

= E

[

ϕ(gXn+1)
∣

∣

∣Z̊n = g
]

=
∑

s

P [Xn+1 = s]E
[

ϕ(gXn+1)
∣

∣Xn+1 = s
]

=
∑

s

P [Xn+1 = s]E
[

ϕ(gs)
]

=
∑

s

µ(s)ϕ(gs).

Thus (11.2) holds conditioned on Z̊n = g iff ϕ satisfies the harmonicity condition at g. It

remains to be shown that no additional constraints are imposed by (11.2) conditioned on

Z̊n ∈ ∂F. Indeed, there Z̊n = g implies Z̊n+1 = g, and so (11.2) holds conditioned on Z̊n = g

for any ϕ.

54



Claim 11.3. Fix some h ∈ ∂F. The function

ψ(g) :=P

[

Z̊∞ = h
∣

∣

∣Z̊n = g
]

is µ-harmonic.

In the definition of ψ we choose for each g some n such that P [Zn = g]> 0, and the choice

of such n is immaterial (by the Markov property).

Proof of Claim 11.3. Note first that if g ∈ ∂F then the event Z̊n = g is the event Z̊∞ = g, and

thus ψ(g)= 1 if g = h and ψh(g)= 0 if g 6= h.

For g ∈ F, we condition on the next step of the random walk to arrive at

ψ(g)=P

[

Z̊∞ = h
∣

∣

∣Z̊n = g
]

=
∑

s

P [Xn+1 = s]P
[

Z̊∞ = h
∣

∣

∣Z̊n = g, Xn+1 = s
]

=
∑

s

P [Xn+1 = s]P
[

Z̊∞ = h
∣

∣

∣Z̊n = gs
]

=
∑

s

µ(s)ψ(gs).

In the penultimate equality we used the fact that g ∈ F to identify the event {Z̊n = g, Xn+1 =
s} with {Z̊n = gs}.

Lemma 11.4 (The maximum principle). Let F be connected, let ϕ ∈ ℓµ(F), and let ϕ(h) =
max{ϕ(g) : g ∈ F ∪∂F}. Then either h ∈ ∂F or ϕ is constant.

Proof. Suppose h 6∈ ∂F, i.e. h ∈ F. We show that ϕ is constant and equal to C =ϕ(h)=maxϕ.

Fix some n so that P
[

Z̊n = h
]

> 0. By harmonicity and (11.2),

E

[

ϕ(Z̊n+k)
∣

∣

∣Z̊n = h
]

= C

for all k ≥ 0. Since F is connected, for all g ∈ F∪∂F there is a k such that P
[

Z̊n+k = g
∣

∣

∣Z̊n = h
]

>
0. Therefore, since ϕ(Z̊n+k)≤ C, it follows that ϕ(g)= C.

An implication of the maximum principle is the uniqueness principle:

Lemma 11.5 (The uniqueness principle). Let F be connected and finite. If ϕ,ψ ∈ ℓµ(F) agree

on ∂F then they agree everywhere on F ∪∂F.

Proof. Suppose that ϕ,ψ ∈ ℓµ(F) agree on ∂F. By the maximum principle, ϕ−ψ is either

constant, in which case ϕ=ψ, or else it attains its maximum on ∂F. Since it vanishes on ∂F

we get that ϕ≤ψ. The same argument applied to ψ−ϕ yields ψ≤ϕ.
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11.4 The Poisson formula

Theorem 11.6 (The Poisson formula). Suppose that F is finite. Fix some ϕ̂ : ∂F →R. Then ϕ

is in ℓµ(F) and agrees with ϕ̂ on ∂F if and only if

ϕ(g)= E

[

ϕ̂(Z̊∞)
∣

∣

∣Z̊n = g
]

(11.3)

for any n such that P
[

Z̊n = g
]

> 0.

Proof. Suppose that ϕ has the form (11.3). Then clearly ϕ agrees with ϕ̂ on ∂F. Further-

more, for g ∈ F

ϕ(g)= E

[

ϕ̂(Z̊∞)
∣

∣

∣Z̊n = g
]

=
∑

s

E

[

ϕ̂(Z̊∞)
∣

∣

∣Z̊n = g, Xn+1 = s
]

=
∑

s

E

[

ϕ̂(Z̊∞)
∣

∣

∣Z̊n+1 = gs
]

P [Xn+1 = s]

=
∑

s

µ(s)ϕ(gs).

Hence ϕ ∈ ℓµ(F). It then follows from the uniqueness principle that conversely, if ϕ ∈ ℓµ(F)

agrees with ϕ̂ on ∂F, then it must be of the form (11.3).

An implication of the Poisson formula is that the map

Φ : R∂F → ℓµ(F)

ϕ̂ 7→ E

[

ϕ̂(Z̊∞)
∣

∣

∣Z̊n = ·
]

, (11.4)

is linear bijection. Indeed, its inverse is the restriction map ϕ 7→ ϕ̂.

The map Φ has another important property: it is order preserving. I.e., if ϕ̂ ≥ ψ̂, then

Φ(ϕ̂)≥Φ(ψ̂). It follows that ϕ̂≥ 0 iff Φ(ϕ̂)≥ 0.

Since ℓµ(F) is a finite dimensional linear space that contains the constant functions, we

can always take a ϕ ∈ ℓµ(F), add a constant to it and multiply it by another constant to

arrive at a very similar function that is still in ℓµ(F) but is also in

ℓµ(F,1) := {ϕ ∈ ℓµ(F) : ϕ≥ 0,ϕ(e)= 1}.

Claim 11.7. ℓµ(F,1) is compact.

Proof. Clearly ℓµ(F,1) is closed. It remains to show that it is bounded. By the Poisson

formula, if ϕ ∈ ℓµ(F,1) then E

[

ϕ(Z̊∞)
]

= 1. Hence

∑

h∈∂F

ϕ(h)P
[

Z̊∞ = h
]

= 1. (11.5)

Hence ϕ(h)≤P

[

Z̊∞ = h
]−1

, and ϕ≤minhP

[

Z̊∞ = h
]−1

.
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The set ℓµ(F,1) is compact, and furthermore convex. Furthermore, it can be identified

with convex combinations of the functions

ψh =
1

P

[

Z̊∞ = h
]Φ(1{h}),

where 1{h} : ∂F → {0,1} is the indicator of h ∈ ∂F. That is, every ϕ ∈ ℓµ(F,1) can be written as

ϕ=Φ(ϕ̂)

=Φ(
∑

h

ϕ(h)1{h})

=
∑

h

ϕ(h)P
[

Z̊∞ = h
] 1

P

[

Z̊∞ = h
]Φ(1{h})

=
∑

h

ϕ(h)P
[

Z̊∞ = h
]

ψh

=:
∑

h

λhψh

where, by (11.5),
∑

hλh = 1. That is, ϕ is the barycenter of the probability measure λ defined

on the set {ψh : h ∈ ∂F}.

The functions Φ(1{h}) are the harmonic functions of the form described in Claim 11.3.

The functions ψh = 1

P

[

Z̊∞=h
]Φ(1{h}) are the extreme points of ℓµ(F,1): these functions cannot

be written as non-trivial convex combinations of functions in ℓµ(F,1).

The constant function on F ∪∂F is

1=
∑

h

P

[

Z̊∞ = h
]

ψh.

Let ν be a probability measure on the collection (ψh)h given by ν(ψh) = P

[

Z̊∞ = h
]

. This is

called the exit measure of the stopped random walk. By definition,

∑

h

ν(h)ψh(g)= 1

for all g ∈ F. Note that ℓµ(F,1) is a simplex: there is a unique way of representing each

of each elements as a convex combination of the extreme points. Thus ν is the unique

probability measure on (ψh)h for which the above holds.

11.5 The Martin boundary

Fix a finitely supported, non-degenerate µ with symmetric support S so that G = 〈S〉. Using

our notation ℓµ(G) is the set of µ-harmonic functions on G, and ℓµ(G,1) are the non-negative

ones that assign 1 to the identity. We endow R
G with the topology of pointwise convergence,
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which is also the product topology. I.e., a sequence of functions ϕn : G → R converges to ϕ if

limnϕn(g)=ϕ(g) for all g ∈G, in which case we write limnϕn =ϕ.

Clearly, both ℓµ(G) and ℓµ(G,1) are closed subsets of RG . The next proposition implies

that the latter is compact.

Proposition 11.8. For every g ∈G and ϕ ∈ ℓµ(G,1) it holds that

sup
n

P
[

Zn = g−1
]

≤ϕ(g)≤ inf
n

1

P [Zn = g]
.

Proof. Since ϕ is harmonic, (ϕ(hZ0),ϕ(hZ1), . . .) is a martingale for any h ∈G. Hence

ϕ(h)= E
[

ϕ(hZn)
]

=
∑

k∈G

ϕ(k)P [hZn = k]≥ϕ(k)P [hZn = k],

and so we have the right inequality by setting h = e and k = g. For the left inequality, set

h = g and k = e.

An immediate corollary of this proposition is that ℓµ(G,1) is compact, since it is closed

and contained in the product of compact sets, which is compact.

Let Bn be the ball of radius n in G. Identify each ϕ ∈ ℓµ(Bn,1) with the function in R
G

that agrees with ϕ on F ∪∂F and vanishes elsewhere. That is, we now redefine

ℓµ(Bn,1)=
{

ϕ : G →R : ϕ(g)=
∑

s

µ(s)ϕ(gs) for all g ∈Bn and suppϕ(g)⊆ Bn+1

}

.

Thus ℓµ(Bn,1) is a subset of RG .

Proposition 11.9. For every g there is a constant Cg such that for every n and every ϕ ∈
ℓµ(Bn,1) it holds that ϕ(g)≤ Cg.

The proof is similar to that of Proposition 11.8. This implies that the set {ψh : h ∈ G},

which we identify with G, is precompact: its closure is compact, or, alternatively, every

sequence in it has a converging subsequence (even if the limit may not be in G).

Suppose that a sequence ϕn ∈ ℓµ(Bn,1) converges pointwise to ϕ ∈ R
G . Then ϕ ∈ ℓµ(G,1),

since clearly ϕ(e)= 1 and since at each g the harmonicity condition is satisfied for all n large

enough. Conversely, let

πnR
G →R

G

ϕ 7→ϕ ·1{Bn}

be the natural projection to functions supported on the ball of radius n, and note that

limnπn(ϕ) =ϕ for any ϕ ∈R
G . If ϕ ∈ ℓµ(G,1), then the projection ϕn =πn(ϕ) is in ℓµ(Bn−1,1).

Since limnϕn =ϕ, ℓµ(G,1) is the limit of the sets ℓµ(Bn,1).

An element of ℓµ(G,1) is an extreme point if it cannot be written as a non-trivial convex

combination of two other functions in ℓµ(G,1). The topological closure of the set of extreme

points of ℓµ(1) is called the Martin boundary of G with respect to µ, and we will denote it by

∂µG.

The reason that ∂µG is called a boundary of G is that, if we identify g with ψg ∈
ℓµ(B|g|−1,1) then ∂µG is a compactification of G:
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Proposition 11.10. The Martin boundary ∂µG is the set of limit points of G in R
G , and

G∪∂µG is compact.

Proof. By Proposition 11.9, every sequence in G has a converging subsequence. Thus the

union of G with its limit points is compact, and it remains to be shown that the set of limit

points of G is equal to ∂µG.

To see that the set of limits points in G contains ∂µG, fix an extreme point ψ ∈ ℓµ(G,1),

and denote ψn = πnψ. By the Poisson formula we can write each ψn as the barycenter of a

probability measure λn on Bn: ψn(g)=
∑

h∈Bn
λn(h)ψh(g).

This sequence of probability measures will have a converging subsequence, which will

converge to some probability measure λ on ℓµ(G,1) with barycenter ψ. But since ψ is ex-

treme, this measure must be a point mass at ψ, which is thus a limit point of G.

In the other direction, suppose ϕ is not in ∂µG. Then there exists a finite set F ⊂ G and

ε > 0 such that every ϕ′ with |ϕ′(g)−ϕ(g)| < ε for all g ∈ F is not extreme. In particular,

ϕ is in the interior of ℓµ(G,1), and furthermore ϕ is in the interior of πnℓµ(G,1) for all n

large enough. Thus the interior of ℓµ(G,1) is equal to the union of these interiors. Now, G is

disjoint from this set, since each ψh, is not in any πnℓµ(G,1): for n < |h| the support of ψh is

too big, and for n ≥ |h| the maximum principle is violated. Thus there are no limits points of

G in the interior of ℓµ(G,1), and they are all contained in ∂µG.

11.6 Bounded harmonic functions

Denote by ℓ∞µ (G) the set of bounded harmonic functions. Let I be the shift-invariant sigma-

algebra of (Z0, Z1, . . .). Recall that a random variable W is measurable with respect to I if

there is some f such that

W = f (Z1, Z2, . . .)= f (Z2, Z3, . . .)= f (Zn, Zn+1, . . .).

An example of a shift-invariant event is the event that Zn ∈ P eventually, for some P ⊆G:

{∃N s.t. Zn ∈ P for all n ≥ N} .

We denote by L∞(I ) the collection of bounded, I -measurable random variables. To

each shift-invariant bounded random variable W we can associate the bounded harmonic

function ϕ=Φ(W) given by

ϕ(g)= E [W |Zn = g],

for some (any) n such that P [Zn = g] > 0. It is simple to check that ϕ is indeed bounded

harmonic. Conversely, to each ϕ ∈ ℓ∞µ (G) we can assign the W ∈ L∞(I ) given by

W = lim
n

ϕ(Zn).

The limit exists because ϕ(Zn) is a bounded martingale, and hence converges.
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Indeed, in analogy to (11.4), define

Φ : L∞(I )→ ℓ∞µ (G)

W 7→ E [W |Zn = ·].

This map is sometimes called the Furstenberg transform.

Note that both ℓ∞µ (G) and L∞(I ) are normed vector spaces when equipped with the

supremum norm:

‖W‖∞ = sup{x ∈R+ : P [|W | ≥ x]> 0}

‖ϕ‖∞ = sup
g

|ϕ(g)|.

It turns out that Φ is not just a bijection between these vector spaces, but moreover pre-

serves these norms.

Proposition 11.11. The map Φ is an isometry between L∞(I ) and ℓ∞µ (G).

Proof. Since E [W |Zn = g] ≤ ‖W‖∞, ‖Φ(W)‖∞ ≤ ‖W‖∞. In the other direction, given ϕ ∈
ℓ∞µ (G), the process Wn =ϕ(Zn) is a bounded martingale and hence converges to W = limn Wn =
limnϕ(Zn), and W is easily seen to be a shift-invariant random variable. Now,

E

[

lim
n

ϕ(Zn)
∣

∣

∣Zn = g
]

=ϕ(g)

by the martingale property of ϕ(Zn) and the Markov property of Zn. Thus the map ϕ 7→ W

is the inverse of Φ. Furthermore, W = limnϕ(Zn) ≤ ‖ϕ‖∞, and so ‖W‖∞ ≤ ‖Φ(W)‖∞. Thus

‖Φ(W)‖∞ = ‖ϕ‖∞.

It follows from Proposition 11.11 that if there are no non-constant bounded µ-harmonic

functions then the shift-invariant sigma-algebra is trivial: every shift-invariant random

variable is constant.

Another consequence of Proposition 11.11 is the following claim. In this statement we

identify two events if their symmetric difference has zero measure; equivalently, if their

indicators coincide as random variables.

Claim 11.12. Every shift-invariant event is of the form Zn ∈ P eventually, for some P ⊆G.

Proof. Let E ∈I be a shift-invariant event, and let W be its indicator. Let ϕ=Φ(W). Since

W =Φ
−1(ϕ) = limnϕ(Zn), W is the indicator of the event that limnϕ(Zn)= 1.

Let P = {g ∈ G : ϕ(g) > 1/2}. Then limnϕ(Zn) = 1 iff Zn is in P for all n large enough.

Hence W is also the indicator of the event that Zn is eventually in P.

Recall that for each h ∈G we defined the right translation linear operator Rh : RG →R
G

[Rhϕ](g)=ϕ(gh).
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We now define the left translation operator Lh : RG →R
G by

[Lhϕ](g)=ϕ(h−1 g).

As with right translations, this is a representation of G: LhL g = Lhg. We will now be

interested in L because is preserves harmonicity. To see this, note that L commutes with R:

[L gRhϕ](k)= [Rhϕ](g−1k)=ϕ(g−1kh)= [L gϕ](kh)= [RhL gϕ](k).

Since M =
∑

hµ(h)Rh, it follows that L and M commute, and so if Mϕ = ϕ then M(Lϕ) =
LMϕ= Lϕ.

The following theorem is known as the Choquet-Deny Theorem, even though it was first

proved by David Blackwell. The proof below is due to Margulis.

Theorem 11.13. Suppose that G is abelian. Then for any µ, every bounded µ-harmonic

function is constant.

To prove this theorem we will need an important result about compact convex sets.

Theorem 11.14 (Krein-Milman Theorem). Let C be a compact convex subset of a nice topo-

logical vector space.1 Then every c ∈ C is the limit of convex combinations of the extreme

points of C.

Proof of Theorem 11.13. Let C ⊂ ℓ∞µ (G) be the bounded harmonic functions that take values

in [0,1]. This is a compact convex set (in the topology of pointwise convergence) and thus

by the Krein-Milman theorem has extreme points. Suppose ψ ∈ C is extreme. Since it is

harmonic,

ψ= Mψ=
∑

h

µ(h)Rhψ.

Since G is abelian, Rhψ= Lh−1ψ, and so

ψ=
∑

h

µ(h)Lh−1ψ.

Now, each Lh−1ψ is also in C. Hence we have written ψ as a convex combination of elements

of C. But ψ is extreme, and so Lh−1ψ =ψ for all h ∈ suppµ. Since suppµ generates G, we

write any g ∈G as a product g = h1h2·hn of elements of suppµ. We then have that L g−1ψ=ψ.

In particular ψ(g)=ψ(e) and ψ is constant. Thus all extreme points in C are constant. And

since, again by Krein-Milman, every ϕ ∈ C is the limit of convex combinations of extreme

points, every ϕ ∈C is constant. Hence every ϕ ∈ ℓ∞µ (G) is constant.

1By nice we mean Hausdorff and locally convex. We will only need that R
G (equipped with pointwise

convergence) is nice.
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12 Random walk entropy and the Kaimanovich-Vershik

Theorem

In this section, as usual, we consider a finitely supported, non-degenerate µ on a finitely

generated G = 〈S〉.

12.1 Random walk entropy

Claim 12.1. H(Zn+m)≤ H(Zn)+H(Zm).

Proof.

Zn+m = (X1 · · ·Xn) · (Xn+1 · · ·Xn+m),

and so

H(Zn+m)≤ H(X1 · · ·Xn, Xn+1 · · ·Xn+m).

These two random variables are independent, and so

H(Zn+m)≤ H(X1 · · ·Xn)+H(Xn+1 · · ·Xn+m).

The distribution of Zm = X1 · · ·Xm is identical to that of Xn+1 · · ·Xn+m, and so

H(Zn+m)≤ H(Zn)+H(Zm).

This claim shows that the sequence H(Zn) is subadditive. It thus follows from Fekete’s

Lemma (Lemma 7.3) that
H(Zn)

n
converges. We accordingly define the random walk entropy

h(µ) by

h(µ)= lim
n→∞

1

n
H(Zn).

Note that 1
n

H(Zn)≤ 1
n

H(X1, . . . , Xn)= H(X1), and thus h(µ) is finite.

12.2 The Kaimanovich-Vershik Theorem

Theorem 12.2. The random walk (Z0, Z1, Z2, . . .) has a trivial tail sigma-algebra if and only

if h(µ)= 0.

Proof. We calculate the mutual information I(Z1;T ), where T is the tail sigma-algebra.

Recall that T =∩nTn, where Tn =σ(Zn, Zn+1, . . .). Hence, by Claim A.4,

H(Z1|T )= lim
n

H(Z1|Zn, Zn+1, . . .).
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By the Markov property it follows that

H(Z1|T )= lim
n

H(Z1|Zn).

By (A.1)

H(Z1|T )= lim
n

H(Zn|Z1)−H(Zn)+H(Z1).

Now, Z1 = X1, and Zn = X1 · · ·Xn, and so

H(Z1|T )= lim
n

H(X1 · · ·Xn|X1)−H(Zn)+H(Z1).

Note that conditioned on X1 = g, the distribution of X1 · · ·Xn is identical to the distribution

of gX1 · · ·Xn−1, which has the same entropy as X1, . . . , Xn−1 = Zn−1. Hence H(X1 · · ·Xn|X1)=
H(Zn−1), and we get that

H(Z1|T )= lim
n

H(Zn−1)−H(Zn)+H(Z1).

Thus

I(Z1;T )= lim
n

H(Zn)−H(Zn−1)= h(µ).

It follows that if h(µ)> 0 then T is not independent of Z1, and in particular T is non-trivial.

For the other direction, a calculation similar to the one above shows that I(Z1, . . . , Zn;T )=
nh(µ). Thus, if h(µ)= 0, then T is independent of (Z1, . . . , Zn) for all n, and, as in the proof

of Kolmogorov’s zero-one law, is trivial.

We say that G has subexponential growth if GR(G) = 0. That is, if limr
1
r

log |Br| = 0; see

(7.1).

Corollary 12.3. If G has subexponential growth then T is trivial.

Proof. Since Zn is supported on Bn, H(Zn)≤ log |Bn|. Hence

h(µ)= lim
n

1

n
H(Zn)≤ lim

n

1

n
log |Bn|.

Hence if G is subexponential then h(µ)= 0 and T is trivial.

Corollary 12.4. Let µ be the flip-walk-flip random walk on the lamplighter group Z2 ≀Z (see

§6.2). Then T is trivial.

Proof. Denote by π : Z2 ≀Z→ Z the projection π( f , x) = x. Then π(Zn) is the simple random

walk on Z.

Denote by Vn = {π(Z0),π(Z1), . . . ,π(Zn)} the locations visited by the random walk. Note

that Vn is a subinterval of [−n, n], and can thus take at most n2 values. Hence

H(Zn)= H(Zn|Vn)+H(Vn)−H(Vn|Zn)≤ H(Zn|Vn)+H(Vn)≤ H(Zn|Vn)+2log n
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and

h(µ)= lim
n

1

n
H(Zn|Vn).

As discussed in §6.2, P [Zn|Vn]= 2−|Vn|. Hence

H(Zn|Vn)= E [− logP [Zn|Vn]]= E [|Vn|],

and so

h(µ)= lim
n

1

n
E [|Vn|].

By the Hoeffding bound the probability that |π(Zn)| > n0.6 is at most 2e−n0.2/2. Hence

P

[

max
k≤n

|π(Zk)| > n0.6

]

≤ 2ne−n0.2/2.

It follows by the union bound that

P
[

|Vn| > 2n0.6
]

≤ 2ne−n0.2/2.

Since |Vn| ≤ 2n, it follows that

E [|Vn|]≤ 2n0.6+4n2e−n0.2 /2,

and in particular limn
1
n
E [|Vn|]= 0.
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13 Ponzi flows, mass transport and non-amenable groups

13.1 Topological actions

Fix a finitely generated group G = 〈S〉. Let Λ be a compact Hausdorff space. A topological

action of G on Λ associates with each g ∈G a continuous bijection τg : Λ→Λ so that τg◦τh =
τgh. Formally, τ : G → Homeo(Λ) is a group homomorphism. Informally, it means that we

can think of G as a group of continuous bijections of Λ. Whenever it is unambiguous we will

overload notation and simply write g rather than τg.

An example of such a space is the space of µ-harmonic functions taking value in [0,1],

where the action is by left translations, i.e., τg = L g. As another example denote by ℓ(G,S, AS)

the set of functions θ : G×S →R such that θ(g, s)=−θ(gs, s−1). We equip this space with the

topology of pointwise converges, under which it is a Hausdorff (indeed, metric) space. There

is also a natural topological action of G on this space, given again by the left translations

[gθ](h, s) = θ(g−1h, s). If we restrict ourselves to functions taking values in [−1,1] then we

have a compact space.

We denote by P (Λ) the space of Borel probability measures on Λ, equipped with the weak

topology. This means that a sequence νn ∈P (Λ) converges to ν ∈P (Λ) if limn

∫

Λ
f (x)dνn(x)=

∫

Λ
f (x)dν(x) for every continuous f : Λ→ R. It turns out that P (Λ) is compact, since Λ is

compact and Hausdorff. Given a ν ∈P (Λ) and g ∈G, we denote by gν the push-forward mea-

sure given by [gν](A)= ν(g−1 A). This makes the map g : P (Λ)→P (Λ), ν 7→ gν a continuous

bijection too. We say that ν is G-invariant if gν= ν for all g ∈G.

13.2 The mass transport principle

Let Λ⊂ ℓ(G,S, AS) be the space of θ ∈ ℓ(G,S, AS) taking values in [−1,1]. This is a compact

metric space, equipped with the topological G action of left-translations described above. We

think of this space as the space of flows on the Cayley graph of G, where the flow on each

edge is between 0 and 1, at one of the two possible directions.

Theorem 13.1 (The mass transport principle). Let ν ∈P (Λ) be G-invariant. Then
∫

∑

s

θ(s, s−1)dν(θ)= 0.

Proof. Since ν is G-invariant,
∫

∑

s

θ(s, s−1)dν(θ)=
∑

s

∫

θ(s, s−1)dsν(θ)

=
∑

s

∫

[sθ](s, s−1)dν(θ)

=
∫

∑

s

θ(e, s−1)dν(θ)

=
∫

∑

s

θ(e, s)dν(θ),
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where in the last equality we used the fact that S is symmetric. Since θ is anti-symmetric,

=−
∫

∑

s

θ(s, s−1)dν(θ),

and we are done.

13.3 Stationary measures

Given a probability measure µ on G, we say that ν ∈ P (Λ) is µ-stationary if ν =
∑

hµ(h)hν.

Equivalently, if we choose a random variable Y taking values in Λ from the distribution ν,

then the process (Z0Y , Z1Y , Z2Y , . . .) is stationary. Clearly, if ν is G-invariant then it is also

stationary, but we will see that the converse is not true.

Theorem 13.2 (Markov fixed point theorem). Let a finitely generated group G act on a

compact Hausdorff space Λ, and let µ be a probability measure on G. Then there exists a

µ-stationary measure in P (Λ).

Proof. Note that the map ν 7→ ν=
∑

hµ(h)hν is continuous. We denote it by T. Let ν0 be any

probability measure on Λ. Define

νn =
1

n

n−1
∑

k=0

Tnν0.

Note that

Tνn −νn =
1

n
(Tnν0 −ν0).

Let f : Λ→ R be continuous. Since Λ is compact, the image of f is contained in [−k, k] for

some k ≥ 0. Hence
∣

∣

∣

∣

∫

f (x)dTνn(x)−
∫

f (x)dνn(x)

∣

∣

∣

∣

≤
4k

n
.

Finally, since P (Λ) is compact, the sequence νn has a subsequence that converges to some

ν, and since T is continuous, Tν= ν.

There is a close relation between stationary measures and bounded harmonic functions.

Suppose that ν ∈P (Λ) is µ-stationary. Then for every Borel A ⊂Λ

ϕ(g)= [gν](A)= ν(g−1 A).

is a harmonic function taking values in [0,1], since

∑

s

µ(s)ϕ(gs)=
∑

s

µ(s)[gsν](A)=
∑

s

µ(s)[sν](g−1A)= ν(g−1 A) =ϕ(g).

Thus, if there exists a µ-stationary measure that is not invariant, then µ has non-constant

bounded harmonic functions.
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13.4 Ponzi flows

Fix ε > 0 and denote by Λε the set of θ ∈ ℓ(G,S, AS) taking values in [−1,1] and such that

for every g ∈G

∑

s

θ(gs, s−1)≥ ε.

These are known as Ponzi flows. For the free group F2 we can construct a Ponzi flow for ε= 2

by sending 1 towards the identity. Can we do the same on Z
2 for some ε> 0?

Claim 13.3. Suppose that G is amenable. Then G does not have Ponzi flows.

Proof. Let F be a finite subset of G. Then

∑

g∈F

∑

s

θ(gs, s−1)≤ |∂F|,

since if g, gs ∈ F then θ(gs, s−1)=−θ(g, s) and so the only terms left in the sum are those on

the boundary.

Suppose that θ ∈Λε. Then the left-hand side above is at least |Fn|ε, and we have that

|F|ε≤ |∂F|,

or

|∂F|
|F|

≥ ε,

and so, since this holds for any F, G is not amenable.

It turns out that when G is non-amenable, then it does have Ponzi flows for ε small

enough. The proof relies on a max-cut min-flow argument.

Theorem 13.4. Suppose that G = 〈S〉 is non-amenable, and let µ be a non-degenerate proba-

bility measure on G. Then there are non-constant bounded µ-harmonic functions.

Proof. Choose ε small enough so that Λε is non-empty. Let ν be a µ-stationary probabil-

ity measure on G, which exists by the Markov fixed point theorem (Theorem 13.2). Let

p =
∫

∑

s θ(s, s−1)dν(θ). Then p ≥ ε, since θ(s, s−1)≥ ε. By the mass transport principle (Theo-

rem 13.1), it is impossible that ν is G-invariant. Hence, there is some A ⊂Λ and some h ∈G

such that ν(h−1 A) 6= ν(A), and so

ϕ(g)= ν(g−1 A)

is a non-constant bounded harmonic function.
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A Basics of information theory

A.1 Shannon entropy

Fix a probability space (Ω,F ,P). Let X be a (simple) random variable taking values in some

finite set Θ. We define the Shannon entropy of X by

H(X )=−
∑

θ∈Θ
P [X = θ] logP [X = θ],

where we use the convention 0log0= 0.

Denote by P [X ] the random variable given by P [X ](ω)=P [X = X (ω)]. Then we can write

the entropy as

H(X )= E [− logP [X ]].

The first important property of Shannon entropy is the following form of monotonicity:

Claim A.1. Let X ,Y be simple random variables. Suppose Y is σ(X )-measurable (i.e., Y =
f (X ) for some function f ). Then H(Y )≤ H(X ).

Proof. Note that P [Y ]≥P [X ] almost surely. Hence

H(Y )= E [− logP [Y ]]≤ E [− logP [X ]]= H(X ).

Given two random variables X and X ′ taking values in Θ,Θ′, we can consider the pair

(X , X ′) as a single random variable taking values in Θ×Θ′. We denote the entropy of this ran-

dom variable as H(X , X ′). The second important property of Shannon entropy is additivity

with respect to independent random variables.

Claim A.2. Let X ,Y be independent simple random variables. Then H(X ,Y ) = H(X )+H(Y ).

Proof. By independence, P [X ,Y ]=P [X ] ·P [Y ]. Hence

H(X ,Y )= E [− logP [X ,Y ]]= E [− logP [X ]− logP [Y ]]= H(X )+H(Y ).

A.2 Conditional Shannon entropy

Let G be a sub-sigma-algebra of F . For a simple random variable X , define the random

variable P [X |G ](ω)=P [X = X (ω)|G ](ω), and denote the conditional Shannon entropy by

H(X |G ) = E [− logP [X |G ]].

For a simple random variable X and any random variable Y , we denote H(X |Y ) = H(X |σ(Y )).
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Claim A.3. H(X |G ) ≤ H(X ), with equality if and only if X is independent of G .

Proof. By the law of total expectation, P [X |G ] = E [P [X ]|G ]. Since x 7→ − log(x) is a convex

function, it follows from Jensen’s inequality that

H(X |G ) = E [− logP [X |G ]]

= E [− logE [P [X ]|G ]]

≤ E [E [− logP [X ]|G ]]

= E [− logP [X ]]

= H(X ).

When X is independent of G , P [X ] = P [X |G ], and we therefore have equality. It thus re-

mains to be shown if X is not independent of G then the inequality is strict. Indeed, in that

case P [X ] 6= P [X |G ] with positive probability, and thus Jensen’s inequality is strict with

positive probability, from which it follows that our inequality is also strict.

The same proof shows more generally that if G1 ⊆G2 then H(X |G1)≥ H(X |G2).

Claim A.4. Suppose G =∩∞
i=n

Gn, and Gn+1 ⊆Gn. Then

H(X |G ) = lim
n

H(X |Gn)= sup
n

H(X |Gn).

A.3 Mutual information

We denote the mutual information of X and G by I(X ;G ) = H(X )−H(X |G ). By the above,

I is non-negative, and is equal to 0 if and only if X is independent of G . For two random

variables X ,Y , we denote I(X ;Y )= I(X ;σ(Y )).

Claim A.5. Let X ,Y be simple random variables. Then

I(X ;Y )= H(X )+H(Y )−H(X ,Y ) = I(Y ; X ).

Proof. By definition,

I(X ;Y )= E [− logP [X ]]−E [− logP [X |Y ]]

By Bayes’ Law, P [X |Y ]P [Y ] =P [X ,Y ]. Hence logP [X |Y ]= logP [X ,Y ]− logP [Y ], and

I(X ;Y )= E [− logP [X ]]−E [− logP [X ,Y ]+ logP [Y ]]

= E [− logP [X ]]−E [− logP [X ,Y ]]+E [− logP [Y ]]

= H(X )−H(X ,Y )+H(Y ).

It follows that

H(X |Y ) = H(X )− I(X ;Y )= H(X )− I(Y ; X )= H(X )+H(Y |X )−H(Y ),

and so

H(X |Y ) = H(Y |X )−H(Y )+H(X ). (A.1)
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A.4 The information processing inequality

Let X1, X2, X3, . . . be a Markov chain, with each Xn simple.

Claim A.6. I(X3; X1, X2)= I(X3; X2). Likewise, for m> n, I(Xn;σ(Xm, Xm+1, . . .))= I(Xn; Xm).

The claim is a consequence of the fact that by the Markov property, P [X3|X1, X2] =
P [X3|X2].
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B Exercises

1. Let (X1, X2, . . .) be a sequence of independent (but not necessarily identically distributed)

integer random variables with E [Xn]= 0 and |Xn| ≤ M almost surely for all n and some

M. Let Zn = X1+·· ·+Xn. Prove a strong law of large numbers, i.e., 1
n

limn Zn = 0 almost

surely.

Hint. Use the Hoeffding lemma (Lemma 1.4).

2. Let µ be a finitely supported distribution on Z
d for some d ≥ 1, and let (Z1, Z2, . . .) be

the µ-random walk on Z
d. I.e., (X1, X2, . . .) are i.i.d. µ and Zn = X1 +·· ·+ Xn.

Using the SLLN for Z (Theorem 1.6), prove a strong law of large numbers, i.e., limn
1
n

Zn =
E [Z1] almost surely.

Hint. for i ∈ {1, . . ., d} consider the projection πi(x1, . . . , xd)= xi and the process (Z i
1
, Z i

2
, . . .)

given by Z i
n =πi(Zn). Prove that (Z i

1
, Z i

2
, . . .) is a random walk on Z and use the SLLN

for Z.

3. Let Zn be a µ-random walk on Z with drift α= E [Z1]. Prove that for every β> α and

every γ>β with β,γ<maxsuppµ there is an r > 0 such that

lim
n

P
[

Zn ≤ γn
∣

∣Zn ≥βn
]

≥ 1−e−rn+o(n).

4. Let µ be a non-degenerate, finitely supported probability measure on Z (i.e., for all

x ∈ Z there exists an n such that µ(n)(x) > 0). Let F be a finite subset of Z. Suppose

that ϕ(x) = ϕ(y) for all x, y 6∈ F, and that ϕ : Z → R is µ-harmonic at all x ∈ F (i.e.,

ϕ(x)=
∑

yϕ(x+ y)µ(y)). Prove that ϕ is constant.

Hint. Prove first that ϕ attains its maximum on the complement of F.

5. Prove Claim 3.9 from the lecture notes.

Hint. Define ϕ(x)=P [{x+Z0, x+Z1, x+Z2, . . .}⊂ F] and use (4).

6. Let Zn be a µ-random walk on Z with drift E [Z1] = 0. For M > 0, let AM
n be the event

that Zn ≥
p

nM. Prove that for every M, the probability of (AM
n )n i.o. is 1.

Hint. Use the Central Limit Theorem and the fact that limsupn Zn/
p

n is a tail ran-

dom variable with respect to (X1, X2, . . .).

7. Let µ0 be the simple random walk on Z, let µ=µ0×·· ·×µ0 be the product measure on

Z
d, and let Zn be the µ-random walk on Z

d. Let

P = {(z1, . . . , zd) ∈Z
d : z1 > 0, . . . , zd > 0}⊂Z

d

be the positive octant in Z
d. Show that

(a) limnP [Zn+1 ∈ P|Zn ∈ P]= 1.
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(b) P [Zn ∈ P for all n large enough]= 0.

Hint. Use the Central Limit Theorem for Z for the first part. Use the recurrence of

the simple random walk on Z for the second.

8. Let S = {a,a−1, b, b−1} be the standard generating set of the free group on two gener-

ators. Let µ be a measure whose support is equal to S (so that, in particular, µ is

non-degenerate), and let Zn be the µ-random walk.

(a) Suppose that µ(s)< 1/2 for all s ∈ S. Show that Zn is transient.

Hint. Let p = maxs∈S µ(s) and let β= (1−p)/p. Show that ϕ(g)=β−|g| is a positive

non-constant µ-superharmonic function on F2 and deduce that the random walk

is transient from Theorem 5.1.

(b) Suppose that µ(s)≥ 1/2 for some s ∈ S. Show that Zn is transient.

Hint. Suppose that µ(a) ≥ 1/2. Consider the quotient π : F → Z given by π(a) =
1, π(b) = 0 and π(gh) = π(g)+π(h). This is the map that sums the number of

occurrences of a minus the number of occurrences of a−1 in a word of the free

group. Show that the π∗µ-random walk on Z is transient, and conclude that so is

the µ-random walk on F.

9. Recall that the lamplighter group
⊕

ZZ2⋊Z is generated by {(0,1), (0,−1), (δ0,0)}. Con-

sider the random walk on this group given by µ(0,1)= 1/3, µ(0,−1)= 1/6 and µ(δ0,0)=
1/2: the lamplighter moves right with probability 1/3, left with probability 1/6, and

flips the lamp at the current location with probability 1/2. Find a non-trivial event in

the tail of the µ-random walk (Z1, Z2, . . .).

Hint. Write each Zn as a pair Zn = (Fn, Z̃n) where Fn takes values in
⊕

ZZ2 and Z̃n

takes values in Z. Show that Fn(0) converges almost surely and is a non-trivial tail

random variable.

10. Prove that the simple random walk on the infinite dihedral group is recurrent. This

is the group generated by {a,a−1, b} where a, b : Z → Z are given by a(z) = z+1 and

b(z)=−z. The simple random walk is given by µ(a)=µ(a−1)=µ(b)= 1/3.

Hint. Draw the Cayley graph of this group and relate this random walk to a symmetric

random walk on Z.

11. Prove Claim 7.1 from the lecture notes. Use it to prove that the exponential growth

rate of a finitely generated group vanishes for one generating set if and only if it does

for another.

12. Prove (8.2).

13. Let M be the Markov operator of a symmetric non-degenerate probability measure µ

on a finitely generated group G. Suppose that µ(e)> 0. Show that for every g ∈G

‖M‖ = lim
n

P [Zn = g]
1/n.
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Hint. Approximate P [Zn = g] by P [Z2m = e] for m close to n/2 and apply Theorem 8.3.

14. Let µ be a symmetric, finitely supported, non-degenerate probability measure on G,

and let M be the associated Markov operator. Let Z1, Z2, . . . be the µ-random walk.

Let ℓn = E [|Zn|] be the expected norm (i.e., distance from the origin) of the random

walk at time n.

(a) Show that ℓ := limn
1
n
ℓn exists.

(b) Show that if the norm of M is strictly lower than 1 then ℓ> 0.

Hint. Use Theorem 8.3 to show that for ε small enough, the probability that

|Zn| < εn decays exponetially, since there are at most about exp(GR(G)εn) ele-

ments in the ball of radius εn.

15. Let G = 〈S〉 = 〈T〉. Let Fn be a sequence of finite subsets of G. Show that

lim
n

|∂SFn|
|Fn|

= 0 iff lim
n

|∂T Fn|
|Fn|

= 0.

16. Let G = 〈S〉 be a finitely generated group, and let S = {s1, . . . , sk}. We call Z2 ≀G =
⊕

G Z2⋊G the lamplighter group on G. An element of this group is a pair ( f , x) where

f : G → Z2 is finitely supported and x ∈ G. As in the case of G = Z, the operation is

given by

( f1, x1)( f2, x2)= ( f1 +αx1
( f2), x1 · x2),

where αx :
⊕

G Z2 →
⊕

G Z2 is the shift

[αx( f )](y)= f (x−1 y).

(a) Show that Z2 ≀G is generated by

Sd =
{

(δ0,0), (0, s1), . . . , (0, sk)
}

.

(b) Show that if G is amenable then Z2 ≀G is amenable.

Hint. Use a Følner sequence on G to construct a Følner sequence on Z2 ≀G.

(c) Show that if G is non-amenable then Z2 ≀G is non-amenable.

Hint. Project a random walk on Z2 ≀G to a random walk on G via ( f , x) 7→ x

and argue that the return probabilities of the latter are higher than those of the

former. Then use Kesten’s theorem (Theorem 9.2).

17. Let µ be a symmetric, finitely supported, non-degenerate probability measure on a

finitely generated group G = 〈S〉 with suppµ = S. Let M be the associated Markov

operator.
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As in (10.1), the energy of ϕ ∈ ℓ2(G) is

〈

ϕ, (I −M)ϕ
〉

=
1

2

∑

g∈G

∑

s

µ(s)(ϕ(gs)−ϕ(g))2.

Suppose that F is a connected finite subset of G. Fix a function ϕ̂ : ∂F → R. Denote

by Ω the set of functions in ℓ2(G) that agree with ϕ̂ on ∂F and vanish outside F ∪∂F.

Show that ϕ ∈Ω has minimal energy among all elements of Ω iff ϕ ∈ ℓµ(F).

Hint. Show that if ϕ ∈ Ω does not satisfy µ-harmonicity at some g ∈ F then there

is a ϕ′ ∈ Ω that has lower energy. For the other direction, argue that the energy is

continuous and strictly convex, then explain why this implies that there is a unique

minimizer of the energy.

18. Let µ be a finitely supported, non-degenerate probability measure on Z
d. We say that

ψ : Zd →R+ is multiplicative if ψ(x+ y)=ψ(x)ψ(y).

(a) Prove that every multiplicative ψ : Zd →R+ with ψ(0)= 1 is of the form ψ(z)= et·z

for some t ∈ R
d. Show that such a ψ is furthermore µ-harmonic iff E

[

et·X ]

= 1,

where X has distribution µ.

(b) Prove that every ψ∈ ∂µ(Zd) is multiplicative.

Hint. First suppose that ψ is extreme. Then use the facts that if ψ ∈ ℓµ(Zd,1)

then ψ =
∑

s Rsψµ(s) and
∑

sψ(s)µ(s) = 1. Then prove that 1
ψ(s)

[Rsψ] ∈ ℓµ(Zd,1),

and use the extremality of ψ. Finally, use this to extend the proof to all of ∂µG.

19. Bonus. Let µ be the simple random walk on the free group F2. Prove that ∂µF2 is the

set of functions of the form (11.1).
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