MA144A, HOMEWORK 2
DUE THURSDAY, OCTOBER 18th

Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.

(1) Consider the Bernoulli measure on \(\{0, 1\}^\mathbb{N} \) which is the unique extension (as we have shown in class / homework) of \(\mu_0: \mathcal{A}_{\text{clopen}} \to [0, 1] \) with

\[
\mu_0(A_x) = 2^{-|x|}.
\]

(a) For \(n \in \mathbb{N} \) let the real random variable \(X_n: \Omega \to \mathbb{R} \) be given by \(X_n(\omega) = \omega_n \). Show that \(X_n \) is indeed a random variable, and prove that the random variables \((X_1, X_2, \ldots) \) are independent.

(b) Let the real random variable \(Y: \Omega \to \mathbb{R} \) be given by

\[
Y(\omega) = \sum_{n=1}^{\infty} 2^{-n} \omega_n.
\]

Prove that \(Y \) is indeed a random variable, and that its law is the uniform (Lebesgue) measure on \([0, 1) \). (Hint: you can use the fact that the algebra of diadic intervals \([m2^{-n}, (m+1)2^{-n})\), \(m < 2^n \) generates the Borel sigma-algebra on \([0, 1)\).)

(c) Construct independent random variables \((Y_1, Y_2, \ldots) \), each with the uniform distribution on \([0, 1)\).

(2) Consider a casino in which there is an infinite sequence of slot machines. On machine \(n \) a gambler gains a dollar with probability \(1 - 2^{-n} \), and loses \(2^n \) dollars with probability \(2^{-n} \). Consider a gambler who starts out with 0 dollars in her account, and proceeds to gamble on each machine in turn. That is, her balance is the sequence of random variables \(\{X_n\} \) with \(X_0 = 0 \) and \(X_{n+1} = X_n + Y_{n+1} \), where \(\{Y_n\} \) is a sequence of independent random variables with \(\mathbb{P}[Y_n = 1] = 1 - 2^{-n} \) and \(\mathbb{P}[Y_n = -2^n] = 2^{-n} \).

Omer Tamuz. Email: tamuz@caltech.edu.
(a) Show that $E[X_n] < 0$ for all $n > 0$.

(b) Show that $P[\lim X_n = \infty] = 1$.