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Disclaimer
This a not a textbook. These are lecture notes.
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1 Why we need measure theory

1.1 Probability measures on countable spaces
We usually think of a probability measure µ on a countable set of outcomes Ω as an assign-
ment to each ω ∈Ω of a number between 0 and 1, with the property that these numbers
sum to 1. In this course we will think about it as a function µ : 2Ω→ [0,1] (assigning to each
subset of Ω a number in [0,1]) with the following two properties:

1. Unit mass. µ(Ω)= 1.

2. sigma-additivity. if (A1, A2, . . .) is a sequence of disjoint sets then

µ (∪n An)=
∑
n
µ(An).

For example, let Ω=N= {1,2,3, . . .}, and define µ by µ({n})= 2−n. This is the distribution of
the number of tosses of a fair coin until the first heads. If E is the set of even numbers, then

µ(E)=
∞∑

n=1
2−2n = 1

4
+ 1

16
+ 1

64
= 1

3
.

As another example, when Ω= {0,1}n, the i.i.d. fair coin toss measure can be defined by
letting, for each k ≤ n and a ∈ {0,1}k

µ ({ω : ω1 = a1, . . . ,ωk = ak})= 2−k. (1.1)

This measure has a rich symmetry structure. For k ≤ n, let σk : Ω→Ω be the map that “flips”
the kth entry:

σk(ω1, . . . ,ωn)= (ω1, . . . ,ωk−1,1−ωk,ωk+1, . . . ,ωn).

Denote by σk(A) the set {σk(ω) : ω ∈ A}. Then

µ(σk(A))=µ(A) for all k and A ⊆Ω. (1.2)

That is, if we flip the kth entry in each element of a set of outcomes A, then we do not change
its probability. In fact, it is easy to show that (1.2) implies (1.1), and thus can be taken to be
the definition of µ.

1.2 Probability measures on uncountable spaces
We would like to define the same object for a countable number of coin tosses, which makes
for an uncountable set of outcomes. That is, when Ω= {0,1}N, we would like to define a map
µ : 2Ω → [0,1] that satisfies unit mass and countable additivity, and additionally satisfies
(1.2). Here, σk : Ω→Ω flips the kth entry in the infinite sequence (ω1,ω2, . . .) ∈Ω.

It turns out that no such measure exists. The next section explains why.
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1.3 Vitali sets
Say that θ ∈Ω is basically the same as ω ∈Ω if there is some N such that ωn = θn for all n ≥ N.
That is, if ω and θ agree in all but finitely many entries. Equivalently, θ is basically the same
as ω if there is a finite set k̄ = {k1,k2, . . . ,kn} ⊂N such that θ = σkn ◦σkn−1 ◦ · · · ◦σk1(ω). For
example, θ is basically the same as (0,0,0, . . .) iff θk = 1 for only finitely many k.

Note that if θ is basically the same as ω then ω is basically the same as θ. Note also that
if ω is basically the same as θ, and if θ is basically the same as ζ, then ω is basically the
same as ζ. This makes “basically the same” an equivalence relation. Therefore, if we denote
equivalence classes by

[ω]= {θ that are basically the same as ω}

then [ω] = [θ] iff ω and θ are basically the same, and the collection of equivalence classes
forms a partition of Ω. Denote by K the (countable) set of finite subsets k̄ = {k1, . . . ,kn}⊂N,
and denote σk̄ =σkn ◦ · · · ◦σk1 . Then

[ω]= {σk̄(ω) : k̄ ∈ K},

and so each equivalence class is countable.
Let V be a set of representatives of these equivalence classes. That is, V contains for each

equivalence class [ω] a single element of [ω]. Then σk̄(V ) 6=σ ¯̀(V ) whenever k̄ 6= ¯̀, and

∪k̄∈Kσk̄(V )=Ω.

Suppose by way of contradiction that there is a µ that has all of our desired properties.
Then, by sigma-additivity and unit mass,

µ
(∪k̄∈Kσk̄(V )

)=µ(Ω)= 1.

Since µ(σk̄(V ))=µ(V ), then the r.h.s. of the above equation is zero if µ(V )= 0, and infinite if
µ(V )> 0. We have thus reached a contradiction, and no such µ exists.
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2 Measure theory

2.1 π-systems
Given a set Ω, a π-system on Ω is a collection P of subsets of Ω such that if A,B ∈P then
A∩B ∈P .

Example 2.1. Let Ω=R, and let

P = {(−∞, x] : x ∈R}.

This is a π-system because (−∞, x]∩ (−∞, y]= (−∞,min{x, y}].

Example 2.2. Let Ω= {0,1}N, and let P be the collection of sets {AS} indexed by finite S ⊂N
where

AS = {ω ∈Ω : ωk = 1 for all k ∈ S}.

This is a π-system because AS ∩ AT = AS∪T .

Example 2.3. Let X be a topological space. Then the set of closed sets in X is a π-system.

2.2 Algebras
An algebra of subsets of Ω is a π-system A on Ω with the following additional properties:

1. Ω ∈A .

2. If A ∈A then its complement Ac ∈A .

It is easy to see that if A is an algebra of subsets of Ω then

1. ;∈A .

2. If A,B ∈A then A∪B ∈A .

Example 2.4. Let Ω be any set. Then the collection of subsets of Ω is an algebra.

Example 2.5. Let Ω= {0,1}N, and let Aclopen be the algebra of clopen sets. That is, Aclopen is
the collection of finite unions of sets Ax indexed by finite x ∈ {0,1}n, where

Ax = {ω ∈Ω : ωk = xk for all k ≤ n}.

Exercise 2.6. Show that Aclopen is the collection of finite disjoint unions of sets of the form
Ax.

Example 2.7. Let Ω=N, and let A∞ be the collection of sets A such that either A is finite, or
else Ac is finite.
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Exercise 2.8. Prove that Aclopen and A∞ are algebras.

Given an algebra A , a finitely additive probability measure is a function µ : A → [0,1]
with the following properties:

1. µ(Ω)= 1.

2. µ is additive. That is, if A1, A2 are disjoint (i.e., A1 ∩ A2 =;) then

µ(A1 ∪ A2)=µ(A1)+µ(A2).

Exercise 2.9. Show that µ(;)= 0.

Exercise 2.10. Define a finitely additive measure on the algebra A∞ from Example 2.7.

2.3 Sigma-algebras
An algebra F of subsets of Ω is a sigma-algebra if for any sequence (A1, A2, . . .) of elements
of F it holds that ∪n An ∈F . It follows that ∩n An ∈F .

Exercise 2.11. 1. Let I be a set, and let {Fi}i∈I be a collection of sigma-algebras of subsets
of Ω. Show that ∩i∈IFi is a sigma-algebra.

2. Let C be a collection of subsets of Ω. Then there exists a unique minimal (under
inclusion) sigma-algebra F ⊇C . F is called the sigma-algebra generated by C , which
we write as F =σ(C ).

Exercise 2.12. Prove that A∞ (Example 2.7) is not a sigma-algebra.

Given a topological space, the Borel sigma-algebra B is the sigma-algebra generated by
the open sets. Hence it is also generated by any basis of the topology.

A measurable space is a pair (Ω,F ), where F is a sigma-algebra of subsets of Ω. A
probability measure on (Ω,F ) is a function µ : F → [0,1] with the following properties:

1. µ(Ω)= 1.

2. µ is sigma additive. That is, if (A1, A2, . . .) is a sequence of disjoint sets (i.e., An∩Am =;
for all n 6= m) then

µ (∪n An)=
∑
n
µ(An).
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3 Constructing probability measures

3.1 The Hahn-Kolmogorov Theorem
Theorem 3.1 (Hahn-Kolmogorov Theorem). Let C be a collection of subsets of Ω, and let
F = σ(C ). Let µ0 : C → [0,1] be a countably additive map with µ(Ω) = 1. We say that a
probability measure µ : F → [0,1] extends µ0 if µ(A)=µ0(A) for all A ∈C .

1. If C is a π-system then there exists at most one probability measure µ that extends µ0.

2. If C is an algebra then there exists exactly one probability measure µ that extends µ0.

Example 3.2. Let A =Aclopen be the algebra defined in Example 2.5. Then there is a unique
map µ0 : A → [0,1] that is additive and satisfies

µ0(Ax)= 2−|x|.

Furthermore, this map is countably additive.
Hence µ0 has a unique extension µ : B → [0,1] (where B =σ(A ) is the Borel sigma-algebra

on {0,1}N, equipped with the product topology).

The probability measure µ is sometimes called the Bernoulli measure on {0,1}N.

Exercise 3.3. Prove that µ0 : Aclopen → [0,1] is countably additive.

Example 3.4. Let P be the π-system on the interval [0,1] given by

P = {[0, x] : x ∈ [0,1]},

and let and let µ0 : P → [0,1] be given by µ0 ([0, x])= x. Then there exists a probability measure
µ : B → [0,1] (where B =σ(C ) is the Borel sigma-algebra on [0,1]) that extends µ0.

Note that indeed there always exists such a µ; it is called the Lebesgue measure. To
prove this we naturally extend µ0 to the algebra generated by P , and then show that this
extension is countably additive.

3.2 Basic properties of probability measures
Theorem 3.5. Let (Ω,F ,µ) be a probability space.

1. If (F1,F2, . . .) be a sequence of sets in F such that Fn ⊆ Fn+1 then

µ (∪nFn)= lim
n
µ(Fn).

2. If (F1,F2, . . .) be a sequence of sets in F such that Fn ⊇ Fn+1 then

µ (∩nFn)= lim
n
µ(Fn).
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Proof. 1. Let G1 = F1, and for n > 1 let Gn = Fn \ Fn−1. Then ∪n
k=1Gn = Fn, ∪nFn =∪nGn,

and additionally the Gn’s are disjoint. Hence

µ (∪nFn)=µ (∪nGn)=
∑
n
µ(Gn)= lim

n

n∑
k=1

µ(Gn)= lim
n
µ

(∪n
k=1Gn

)= lim
n
µ(Fn).

2. Left as an exercise.

Corollary 3.6. Let (Ω,F ,µ) be a probability space, and let (F1,F2, . . .) be a sequence of sets in
F .

1. If µ(Fn)= 0 for all n then

µ (∪nFn)= 0.

2. If µ(Fn)= 1 for all n then

µ (∩nFn)= 1.

3.3 Cumulative distribution functions
Let (R,B,µ) be a probability space. The cumulative distribution function (c.d.f.) associated
with µ is

F(x)=µ(
(−∞, x]

)
.

Claim 3.7. The following holds for any cumulative distribution function F:

1. F is monotone non-decreasing.

2. supx F(x)= 1.

3. infx F(x)= 0.

4. F is right-continuous.

Proof. 1. For any x > y by the additivity of µ we have that

F(y)=µ(
(−∞, y]

)=µ(
(−∞, x]∪ (x, y]

)=µ(
(−∞, x]

)+µ(
(x, y)

)= F(x)+µ((x, y])≥ F(x).

2. Let En = (−∞,n). Then En ⊂ En+1 and ∪nEn =R. Hence by Theorem 3.5

lim
n

F(n)= lim
n
µ(En)=µ(R)= 1.

Since F is monotone non-decreasing it follows that supx F(x)= 1.
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3. The proof of this is similar to the proof that supx F(x)= 1.

4. Fix some x ∈R. Let En = (−∞, x+εn), for any decreasing sequence εn of positive numbers
that converges to zero. Then En+1 ⊂ En and ∩nEn = (−∞, x], and so by Theorem 3.5

lim
n

F(x+εn)= lim
n
µ(En)= lim

n
µ
(
(−∞, x]

)= F(x).

Claim 3.8. A probability measure µ on (R,B) is uniquely determined by its cumulative
distribution function.

Proof. Let P be the π-system from Example 2.1, and note that B =σ(P ). Let µ0 : P → [0,1]
be given by

µ0
(
(−∞, x]

)= F(x),

so that µ0 is the restriction of µ to P . Since µ is (trivially) countably additive, by the Hahn-
Kolmogorov Theorem that there is at most one probability measure that extends µ0 to B.
Thus µ is the unique measure with c.d.f. F.

One can in fact show that for any F that satisfies the properties of Claim 3.7 is the
cumulative distribution function of some µ. The proof uses the Hahn-Kolmogorov Theorem.
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4 Events and random variables

4.1 Events
Given a measurable space (Ω,F ), an event A is an element of F . We sometimes call events
measurable sets.

4.2 Sub-sigma-algebras
A sub-sigma-algebra of F is a subset of F that is also a sigma-algebra.

Given another measurable space (Θ,G ), a function f : Ω→Θ is measurable if for all A ∈G

it holds that f −1(A) ∈F .

Exercise 4.1. Prove that f is measurable iff the collection

σ( f )= { f −1(A) : A ∈G }= f −1(G ). (4.1)

is a sub-sigma-algebra of F .

Hence (assuming f is onto, otherwise restrict to its image), f −1 : G →σ( f ) is an isomor-
phism of sigma-algebras.

Fix a measurable space (Ω,F ), and let f be a measurable function to some other mea-
surable space. Given a sub-sigma-algebra G ⊆F , we say that f is G -measurable if σ( f ) is a
sub-sigma-algebra of G .

We say that a sigma-algebra F is separable if it generated by a countable subset. That is,
if there exists some countable C ⊂F such that F =σ(C ).

We say that F separates points if for all ω1 6=ω2 there exists some A ∈F such that ω1 ∈ A
and ω2 6∈ A.

Theorem 4.2. Let (Ω,F ), (Θ1,G1) and (Θ2,G2) be measurable spaces with sigma-algebras
that separate points. Let f : Ω→ Θ1 and g : Ω→ Θ2 be measurable functions. Then g is
σ( f )-measurable iff there exists a measurable h : Θ1 →Θ2 such that g = h◦ f .

Exercise 4.3. Prove for the case that g = h◦ f .

Measurable functions to (R,B) will be of particular interest.

Claim 4.4. Let (Ω,F ) be a measurable space, and let f : Ω→R. Then

1. If C ⊂B satisfies σ(C )=B, and if f −1(A) ∈F for all A ∈C then f is measurable.

2. For each x ∈ R let Ax ⊂Ω be given by Ax = {ω : f (ω) ≤ x}. If each Ax is in F then f is
measurable.

3. If Ω is a topological space with Borel sigma-algebra F , and if f is continuous, then it is
measurable.
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4. If g is a measurable function from (R,B) to itself and f is measurable then g ◦ f is
measurable.

Claim 4.5. Let (Ω,F ) be a measurable space, and let { fn} be a sequence of measurable
functions to (R,B) with 0≤ fn ≤ 1 for all n. Then the following are measurable:

1. infn fn.

2. liminfn fn.

3. The set {ω : limn fn(ω) exists }.

Claim 4.6. The measurable functions (Ω,F )→ (R,B) are a vector space over the reals:

1. If f is measurable then λ f is measurable, for all λ ∈R.

2. If f1 and f2 are measurable, then f1 + f2 is measurable.

4.3 Random variables
Given a probability space (Ω,F ,µ) and a measurable space (Θ,G ), we say that two measurable
functions f , g : Ω→ Θ are equivalent if µ({ω : f (ω) = g(ω)}) = 1. A random variable is an
equivalence class of measurable functions. We will often consider the case that (Θ,G )= (R,B),
in which case we will call X a real random variable. In fact, we will do this so often that we
will often refer to real random variables as just “random variables”.

A few notes:

1. Note we will often just think of random variables as measurable functions. We will say,
for example, that a real random variable is non-negative, by which we will mean that
there is a non-negative function in the equivalence class. We will also define random
variables by just describing one element of the equivalence class.

2. It is easy to verify that sums, products, limits etc. of random variables are well defined,
in the sense that (for example) the equivalence class of f + g is equal to the equivalence
class of f ′+ g′ whenever f and f ′ are equivalent and g and g′ are equivalent.

3. We will want to verify that expressions of the form

µ
(
{X ∈ A}

)=µ(
{w : X (ω) ∈ A}

)
for a random variable X and measurable A are well defined, in the sense that they are
independent of the choice of representative: X (ω) can be taken to mean f (ω), where f
is any member of the equivalence class X .

Example 4.7. Let Ω = {0,1}N, and let P be the Bernoulli measure defined in Example 3.2.
Define the random variable X : Ω→R by

X (ω)=max{n ∈N : ωk = 0 for all k ≤ n}.

Note that X is not well defined at a single point in Ω, the all zeros sequence. We accordingly
extend R to include ∞ (and −∞) and assign X (ω)=∞ in this case.
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Given a random variable X : Ω→ Θ, we define the pushforward measure ν = X∗µ on
(Θ,G ) by

ν(A)=µ(
X−1(A)

)
.

The measure ν is also called the law of X .

Exercise 4.8. Calculate the cumulative distribution function of the random variable defined
in Example 4.7.
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5 Independence and the Borel-Cantelli Lemmas

5.1 Independence
Let (Ω,F ,P) be a probability space. Let (F1,F2, . . .) be sub-sigma-algebras. We say that these
sigma-algebras are independent if for any (A1, A2, . . .) with An ∈Fn and any finite sequence
nk it holds that

P
[∩k Ank

]=∏
k
P

[
Ank

]
. (5.1)

We say that the random variables (X1, X2, . . .) are independent if (σ(X1),σ(X2), . . .) are
independent.

We say that the events (A1, A2, . . .) are independent if their indicators functions (1{A1},1{A2}, . . .)
are independent. Note that σ(1{A})= {;, A, Ac,Ω}.

Claim 5.1. Let the events (A1, A2, . . .) be independent. Then

P [∩n An]=
∏
n
P [An].

Proof. By independence we have that for any m ∈N

P
[∩m

n=1An
]= m∏

n=1
P [An].

Denote Bm = ∩m
n=1An. Then Bn is a decreasing sequence with ∩mBm = ∩n An, and so by

Theorem 3.5 we have that

P [∩n An]=P [∩mBm]= lim
m
P [Bm]= lim

m

m∏
n=1

P [An]=
∏
n
P [An].

It turns out that to prove independence it suffices to show (5.1) for generating π-systems.

5.2 A question about a sequence of random variables
Theorem 5.2. Let (X1, X2, . . .) be a sequence of independent real random variables, each with
the distribution P [Xn > x]= e−x when x > 0 and P [Xn > x]= 1 when x ≤ 0. Let

L = limsup
n

Xn

logn
.

Then P [L = 1]= 1.

To prove this Theorem we will need the Borel-Cantelli Lemmas.
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5.3 The Borel-Cantelli Lemmas
Lemma 5.3 (Borel-Cantelli Lemmas). Let (Ω,F ,P) be a probability space, and let (A1, A2, . . .)
be a sequence of events.

1. If
∑

nP [An]<∞ then

P [ω ∈Ω : ω ∈ An for infinitely many n]= 0.

2. If
∑

nP [An]=∞ and (A1, A2, . . .) are independent then

P [ω ∈Ω : ω ∈ An for infinitely many n]= 1.

To see why independence is needed for the second part, consider the case that all the
events An are equal to some event A with 0<P [A]< 1.

Proof of Lemma 5.3. 1. Note that

{ω : ω ∈ An for infinitely many n}=∩n ∪m≥n Am.

Let Bn = ∪m≥n Am, so that we want to show that P [∩nBn] = 0. Note that Bn is a
decreasing sequence (i.e., Bn+1 ⊆ Bn) and therefore by Theorem 3.5 we have that

P [∩nBn]= lim
n
P [Bn].

Since Bn =∪m≥n Am, we have that P [Bn]≤∑
m≥nP [Am]. But the latter converges to 0,

and so we are done.

2. Note that

{ω : ω ∈ An for infinitely many n}c = {ω : ω ∈ An for finitely many n}
= {ω : ω ∈ Ac

n for all n large enough}
=∪n ∩m≥n Ac

m.

We would hence like to show that P
[∪n ∩m≥n Ac

m
]= 0.

Let Cn =∩m≥n Ac
m. Then by independence and Claim 5.1 we have that

P [Cn]=P[∩m≥n Ac
m

]= ∏
m≥n

(1−P [Am]).

Since 1− x ≤ e−x this implies that

P [Cn]≤ exp
(
− ∑

m≥n
P [Am]

)
= 0.

Finally, by Corollary 3.6, P [∩nCn]= 0.
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Proof of Theorem 5.2. Let An be the event that Xn ≥α logn. Then

P [An]= n−α,

and the events (A1, A2, . . .) are independent (exercise!). Also, note that

∑
n
P [An]

{
=∞ if α≤ 1,
<∞ if α> 1.

Thus, from the Borel-Cantelli Lemmas it follows that

P [Xn ≥α logn for infinitely many n]=
{

1 if α≤ 1,
0 if α> 1.

Now, note that the event {L ≥α} is identical to the event

∩m>0{Xn ≥ (α−1/m) logn for infinitely many n},

and so P [L ≥ 1]= 1, by Corollary 3.6. It also follows that P [L ≥ 1+1/n]= 0 for any n > 0, and
so we have that P [L > 1] = 0, again by Corollary 3.6. Hence P [L ≤ 1] = 1, and so P [L = 1] =
1.
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6 The tail sigma-algebra

6.1 Motivating example
Consider a sequence of independent real random variables (X1, X2, . . .) such that there exists
some M ≥ 0 such that P [|Xn| ≤ M]= 1 for all n. That is, the sequence is uniformly bounded.

Define the random variables

Yn = 1
n

n∑
k=1

Xn and L = limsup
n

Yn.

Claim 6.1. P [|L| ≤ M]= 1.

Proof. Clearly P [|Yn| ≤ M]= 1. Hence P [|Yn| ≤ M for all n]= 1, and thus P [|L| ≤ M]= 1.

Define the event A = {limn Yn exists }.

Theorem 6.2. There exists some c ∈ [−M, M] such that P [L = c]= 1, and P [A] ∈ {0,1}.

An interesting observation is that L is independent of X1. To see this, define

L′ = limsup
n

1
n

n∑
k=2

Xn,

which is clearly independent of X1. But

L = limsup
n

1
n

n∑
k=1

Xn = limsup
n

X1

n
+ 1

n

n∑
k=2

Xn = L′.

In fact, by the same argument, L is independent of (X1, X2, . . . , Xn) for any n. This makes L a
tail random variable, as we now explain.

6.2 The tail sigma-algebra
For each n ∈N define the sigma-algebra Tn by

σ(Xn, Xn+1, . . .),

which is the smallest sigma-algebra that contains (σ(Xn),σ(Xn+1), . . .). Define the tail sigma-
algebra by

T =∩nTn.

A random variable is a tail random variable if it is T -measurable.

Claim 6.3. L is a tail random variable.
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Proof. Using a construction similar to the L′ construction above, it is easy to see that for every
n there exists a function fn such that L = fn(Xn, Xn+1, . . .). It follows that L is Tn-measurable.
Thus for every A ∈σ(A) it holds that L−1(A) ∈Tn, for every n. Thus A ∈∩nTn =T .

Let (Z1, Z2, . . .) be i.i.d random variables, each distributed uniformly over the set of
symbols S = {a,b, c}. Let S∗ be the set of finite strings over S, and define the random variable
Wn taking values in S∗ as follows:

• W1 = Z1.

• If Wn is empty, or if the last symbol in Wn is different than Zn+1, then Wn+1 is the
concatenation WnZn+1.

• If the last symbol in Wn is Zn+1 then Wn+1 is equal to Wn, with this last symbol removed.

We will prove later in the course that with probability one it holds that limn |Wn| =∞, and
hence we can define the random variable T to be the eventual first symbol in all Wn high
enough. It is immediate that T is measurable in the tail sigma-algebra of the sequence
(W1,W2, . . .).

It is also easy to see that P [T = a] = 1/3, since by the symmetry of the definitions,
P [T = a] = P [T = b] = P [T = c], and these must sum to one. By the same argument, the
probability that Wn starts with some string w for all n high enough is 3−1 ·2−|w|.

6.3 The zero-one law
Theorem 6.4 (Kolmogorov’s Zero-One Law). Let T be the tail sigma-algebra of a sequence of
independent random variables. Then P [A] ∈ {0,1} for any A ∈T .

Before proving this theorem we will prove a lemma.

Lemma 6.5. Let the event A be independent of itself. Then P [A] ∈ {0,1}.

Proof. P [A]=P [A∩ A]=P [A] ·P [A].

Proof of Theorem 6.4. Let Gn = σ(X1, . . . , Xn−1), Tn = σ(Xn, Xn+1, . . .) and T = ∩nTn. We
first claim that Gn and Tn are independent. To see this, define T m

n = σ(Xn, . . . , Xn+m),
and note that T m

n and Gn are independent, and so P [A∩B] = P [A] ·P [B] for any A ∈ Gn
and any B ∈ T m

n . Now Cn = ∪mT m
n is not a sigma-algebra, but it is a π-system. Since

P [A∩B]=P [A] ·P [B] for any A ∈Gn and any B ∈Cn, it follows that Gn and σ(Cn)=Tn are
independent.

Since T ⊂Tn then Gn and T are independent. Hence T is independent of

σ(∪nGn)=σ(∪nσ(Xn))=σ(X1, X2, . . .).

Since T ⊂ σ(X1, X2, . . .) it follows that T is independent of T , and so P [A] ∈ {0,1} for any
A ∈T .
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Proof of Theorem 6.2. Since A is a tail random variable then P [A] ∈ {0,1}.
For any q ∈ Q define the tail event Aq = {L ≥ q}. By Kolmogorov’s zero-one, law, the

probability of each of these is either 0 or 1, and so there is some

c = sup{q : P
[
Aq

]= 1}= inf{q : P
[
Aq

]= 0}.

Since Q is countable, P [L ≥ c]=P [L ≤ c]= 1, and so P [L = c]= 1. Finally, c ∈ [−M, M], since
P [L ∈ [−M, M]]= 1.
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7 Expectations

7.1 Expectations in finite probability spaces
Let (Ω,F ,P) be a finite probability space, and let f : Ω→R be any function. The expectation
of f is given by

E [ f ]=
∑
ω∈Ω

f (ω)P [ω].

Another way of writing this is the following:

E [ f ]=
∑

x∈Im f
xP

[
f −1(x)

]
.

Note that this formulation does not reference points in Ω. Relatedly, it has the advantage
that it naturally extends to any probability space, given that f has a finite (or countable)
image. This is the basic idea that is behind our general definition of expectation.

Let (Ω,F ,P) be a probability space. We say that a measurable non-negative f̃ is simple if
it has a finite image,1 and define its expectation E

[
f̃
]

by

E
[
f̃
]= ∑

x∈Im f̃
xP

[
f̃ −1(x)

]
.

7.2 Expectations of non-negative random variables
Given a (non-simple) non-negative real function f , we define its expectation by

E [ f ]= sup
{
E
[
f̃
]

: f̃ is simple and f̃ ≤ f
}
.

Note that this supremum may be infinite.
It is straightforward to verify that for any non-negative functions f , g such that P [ f = g]=

1 it holds that E [ f ]= E [g]. We can therefore define the expectation of a random variable X as
the expectation of any f in the equivalence class. We will henceforth consider expectations of
random variables.

It is likewise straightforward to verify that for any two non-negative random variables
X ,Y :

• Linearity of expectation: For any λ> 0 it holds that

E [X +λY ]= E [X ]+λE [Y ].

• If X ≥Y then E [X ]≥ E [Y ].
1Note that this definition is slightly different than the standard one.
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7.3 Markov’s inequality
Theorem 7.1 (Markov’s Inequality). If X is a non-negative random variable with E [X ]<∞
then for every λ> 0

P [X ≥λ]≤ E [X ]
λ

.

Proof. Let A = {X ≥λ}, and let Y be given by

Y (ω)=λ ·1{A}(ω)=
{
λ if ω ∈ A,
0 otherwise.

Then Y ≤ X , and so E [Y ]≤ E [X ]. Since E [Y ]=λ ·P [A], we get that

λ ·P [X ≥λ]≤ E [X ],

and the claim follows by dividing both sides by λ.

7.4 Pointwise convergence and convergence of expectations
Consider the non-negative random variables (X1, X2, . . .) defined on the interval (0,1] (equipped
with the Borel sigma-algebra and Lebesgue measure) which are given by

Xn(x)=
{

n if x ≤ 1/n,
0 otherwise.

Then

1. E [Xn]= 1.

2. For every x ∈ (0,1] it holds that limn Xn(x) = X (x), where X is the constant function
X (x)= 0.

3. limnE [Xn] 6= E [X ].

Hence it is not necessarily true that if Xn → X pointwise then E [Xn]→ E [X ].

Theorem 7.2 (Monotone Convergence Theorem). Let (Ω,F ,P) be a probability space, and let
(X1, X2, . . .) be a sequence of non-negative random variables such that Xn(ω) is increasing for
every ω ∈Ω. Let X (ω)= limn Xn(ω) ∈ [0,∞]. Then

lim
n
E [Xn]= E [X ] ∈ [0,∞].

Theorem 7.3 (Dominated Convergence Theorem). Let (Ω,F ,P) be a probability space, and
let (X1, X2, . . .) be a sequence of non-negative random variables. Let X ,Y be a non-negative
random variables with E [Y ] < ∞, and such that limn Xn(ω) = X (ω) for every ω ∈ Ω, and
Xn(ω)≤Y (ω) for every ω ∈Ω and n ∈N. Then

lim
n
E [Xn]= E [X ].
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7.5 L p

Given a random variable X , we define the random variables X+ and X− by

X+(ω)=max{X (ω),0} and X−(ω)=max{−X (ω),0},

so that X+ and X− are both non-negative, and X = X+− X−. If E
[
X+]

and E [X−] are both
finite, we define

E [X ]= E[
X+]−E [X−],

and say that X ∈L 1(Ω,F ,P), or just X ∈L 1. Note that X ∈L 1 iff E [|X |] <∞ iff |X | ∈L 1.
For p ≥ 1 we say that X ∈L p if |X |p ∈L 1.

Exercise 7.4. Show that L p is a vector space.

X 7→ E [|X |p]1/p defines a norm on L p.

Theorem 7.5. If r > p ≥ 1 and X ∈L r then X ∈L p and moreover

E
[|X |p]1/p ≤ E[|X |r]1/r.

In fact, if we equip L p with this norm, then it is a Banach space; that is, it is complete
with respect to the metric induced by this norm.

Theorem 7.6. Let (X1, X2, . . .) be a sequence of random variables in L p such that

lim
r

sup
m,n≥r

{E
[|Xn − Xm|p]

}= 0.

Then there exists an X ∈L p such that

lim
n
E
[|Xn − X |p]= 0.

7.6 L 2

A particularly interesting case is p = 2. In this case we can define an inner product (X ,Y ) :=
E [X ·Y ], which makes L 2 a Hilbert space, with completeness given by Theorem 7.6.

Theorem 7.7. Let X ,Y ∈L 2. Then X ·Y ∈L 1.

Proof. Note first that |X |, |Y | ∈L 2. Since L 2 is a vector space then E
[
(|X |+ |Y |)2]<∞, and

so

E
[
X2 +2|X | · |Y |+Y 2]<∞.

By the linearity of expectation

E
[
(|X |+ |Y |)2]= E[

X2]+2 ·E [|X | · |Y |]+E[
Y 2],

and so we have that E [|X | · |Y |]<∞. Now,

E [|X ·Y |]= E [|X | · |Y |],
and so |X ·Y | ∈L 1. Hence X ·Y ∈L 1.
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It follows from Theorems 7.6 and 7.7 that L 2 is a real Hilbert space, when equipped
with the inner product (X ,Y ) := E [X ·Y ]. We can therefore immediately conclude that for any
X ,Y ∈L 2

1. E [X ·Y ]2 ≤ E[
X2] ·E[

Y 2], with equality iff for some λ ∈ R it a.s. holds that X = λ ·Y .
This is the Cauchy-Schwartz inequality.

2. E
[
(X +Y )2]= E[

X2]+E[
Y 2] iff E [X ·Y ]= 0.

Given X ∈L 2, we define the random variable X̃ := X−E [X ], and denote Var(X )= E[
X̃ · X̃

]
and Cov(X ,Y ) = E[

X̃ · Ỹ ]
. We say that X and Y are uncorrelated if Cov(X ,Y ) = 0. Using

these definitions the facts above become

1. Cov(X ,Y )2 ≤Var(X ) ·Var(Y ), with equality iff for some λ ∈R it a.s. holds that X =λ ·Y .

2. Var(X +Y )=Var(X )+Var(Y ) iff X and Y are uncorrelated.
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8 A strong law of large numbers and the Chernoff bound

8.1 Expectation of a product of independent random variables
Theorem 8.1. Let X ,Y ∈L 1 be independent. Then X ·Y ∈L 1 and

E [X ·Y ]= E [X ] ·E [Y ].

To prove this, we first note that it holds for indicator functions by the definition of inde-
pendence, then show that it holds for simple functions, and apply the monotone convergence
theorem to show that it holds in general.

8.2 Jensen’s inequality
Theorem 8.2 (Jensen’s Inequality). Let X be a real random variable with E [X ]= x0 ∈R. Let
ϕ : R→R be a convex function. Then E

[
ϕ(X )

]≥ϕ(E [X ]).

Proof. Since ϕ is convex we can find a,b ∈ R such that ϕ(x) ≥ ax+ b for all x ∈ R, and
ϕ(x0)= ax0 +b. Hence

E
[
ϕ(X )

]≥ E [aX +b]= aE [x]+b = ax0 +b =ϕ(x0)=ϕ(E [X ]).

8.3 SLLN in L 4

Theorem 8.3. Let (X1, X2, . . .) be a sequence of independent random variables uniformly
bounded in L 4 (so that E

[
X4

n
]< K for all n and some K > 0), and with E [Xn]= 0. Let

Yn = 1
n

∑
k≤n

Xn.

Then limn Yn = 0 a.s.

Proof. By independence

E
[
Xk · X3

`

]= E[
Xk · X2

` · Xm
]= 0,

and so, by linearity we have that

E
[
Y 4

n
]= E[(

1
n

n∑
k=1

Xk

)4]
= 1

n4

∑
k≤n

E
[
X4

k
]+ 6

n4

∑
k<`≤n

E
[
X2

k · X2
`

]
.

Again applying independence we get

E
[
Y 4

n
]= 1

n4

∑
k≤n

E
[
X4

k
]+ 6

n4

∑
k<`≤n

E
[
X2

k
] ·E[

X2
`

]
.
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By Jensen’s inequality E
[
X2

k

]2 < K , and so

E
[
Y 4

n
]≤ K

n3 + 6K
n2 ≤ 7K

n2 .

It follows from Markov’s inequality that for any ε> 0

P
[
Y 4

n ≥ ε4]≤ 7K
ε4n2 ,

and so, by Borel-Cantelli, limsupn |Yn| ≤ ε for any ε> 0. Intersecting these probability one
events for ε= 1/2,1/3,1/4, . . . yields that limsupn |Yn| = 0 and thus limn Yn = 0.

8.4 The Chernoff bound
With a little additional effort we can prove that if E [Xn] = µ then limn Yn = µ. A natural
question is: what is the probability that Yn is significantly far from µ, for finite n? For
example, for η>µ, what is the probability that Yn ≥ η?

Theorem 8.4 (Chernoff Bound). Let (X1, X2, . . .) be a sequence of i.i.d. random variables in
L∞, and with E [Xn]=µ. Then for every η>µ there is an r > 0 such that

P
[
Yn ≥ η]≤ e−r·n.

Proof. Denote pn =P[
Yn ≥ η]; we want to show that pn ≤ e−r·n.

Note that the event {Yn ≥ η} is identical to the event {et·n·Yn ≥ et·n·η}, for any t > 0. Since
et·n·Yn is a positive random variable, by the Markov inequality we have that

pn =P
[
et·n·Yn ≥ et·n·η

]
≤ E

[
et·n·Yn

]
et·n·η .

Now,

E
[
et·n·Yn

]
= E

[ ∏
k≤n

et·Xk

]
= ∏

k≤n
E
[
et·Xk

]
,

where the penultimate equality uses independence. Let X be a random variable with the
same distribution as each Xk. Then we have shown that

E
[
et·n·Yn

]
= E

[
et·X

]n
.

We now define the moment generating function of X by MX (t) := E[
etX ]

. The name comes
from the fact that

MX (t)=
∞∑

n=0

tn

n!
E
[
X n]

. (8.1)
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Note that this means that M′
X (0)= E [X ]. Using MX we can write

pn ≤ exp
(−(t ·η− log Mx(t)) ·n)

If we define the cumulant generating function of X by KX (t) := log MX (t), then

pn ≤ exp
(−(t ·η−KX (t)) ·n)

.

Since K ′
X (0)= M′

X (0)/MX (0)= E [X ], and since KX is smooth (as it turns out), it follows that
for t > 0 small enough,

t ·η−KX (t)= t ·η− t ·µ−O(t2)> 0.

Hence, if we define

r = sup
t

{t ·η−KX (t)}

we get that r > 0 and

pn ≤ e−r·n.

It turns out that the Chernoff bound is asymptotically tight. We show this in §21.

28



9 The weak law of large numbers

9.1 L 2

Theorem 9.1. Let (X1, X2, . . .) be a sequence of independent real random variables in L 2, let
E [Xn]=µ, Var(Xn)≤σ2, and let Yn = 1

n
∑

k≤n Xn. Then for every ε> 0 and n ∈N

P
[|Yn −µ| ≥ ε

]≤ σ2

nε
,

and in particular

lim
n
P

[|Yn −µ| ≥ ε
]= 0.

In this case we say that Yn converges in probability to µ. More generally, we say that a
sequence of real random variables Yn converges in probability to a real random variable Y if

lim
n
P [|Yn −Y | ≥ ε]= 0.

Exercise 9.2. Does convergence in probability imply pointwise convergence? Does pointwise
convergence imply convergence in probability?

To prove this Theorem we will need Chebyshev’s inequality, which is just Markov’s
inequality in disguise.

Lemma 9.3 (Chebyshev’s Inequality). For every X ∈L 2 and for every λ> 0 it holds that

P [|X −E [X ]| ≥λ]≤ Var(X )
λ2 .

Proof of Theorem 9.1. Note that E [Yn]=µ, and that, by independence,

Var(Yn)=Var

(
1
n

∑
k≤n

Xk

)
= 1

n2 Var

( ∑
k≤n

Xk

)
= 1

n2

∑
k≤n

Var(Xk)≤ σ2

n
.

Hence Chebyshev’s inequality yields that for every λ> 0 we have that

P
[|Yn −µ| ≥ ε

]≤ σ2

nε

9.2 L 1

We can relax the assumption X ∈L 2 to X ∈L 1 and still prove the weak law of large numbers.
In fact, even the strong law holds in this setting (for i.i.d. random variables), but we will
leave the proof of that for after we prove the Ergodic Theorem.
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Theorem 9.4. Let (X1, X2, . . .) be a sequence of i.i.d. real random variables in L 1, let E [Xn]=
µ, and let Yn = 1

n
∑

k≤n Xn. Then for every ε> 0

lim
n
P

[|Yn −µ| ≥ ε
]= 0.

Proof. We assume µ= 0; the reduction is straightforward.
Let X = X1. For N ∈N, and a r.v. X denote

X≤N = X ·1{|X |≤N} and X>N = X ·1{|X |>N},

so that X = X≤N + X>N . By the Dominated Convergence Theorem

E
[
|X>N |

]
→ 0 and E

[
X≤N

]
→ E [X ]= 0, (9.1)

since both are dominated by |X |.
Fix ε,δ > 0. To prove the claim (under our assumption that µ = 0) we show that

P [|Yn| ≥ ε]< δ for all n large enough. For any N ∈N we can write Yn as

Yn = 1
n

∑
k≤n

X≤N
k + X>N

k =Y≤
n +Y>

n ,

where

Y≤
n := 1

n

∑
k≤n

X≤N
k and Y>

n = 1
n

∑
k≤n

X>N
k .

Note that Y≤
n is not the same as Y≤N

n ; we will not need the latter. Likewise, Y>
n is not the

same as Y>N
n .

Choose N large enough so that E
[|X>N |]< ε ·δ/4; this is possible by (9.1). Now,

E
[|Y>

n |]= E[
1
n

∣∣∣∣∣ ∑
k≤n

X>N
k

∣∣∣∣∣
]
≤ E

[
1
n

∑
k≤n

∣∣∣X>N
k

∣∣∣]= E
[∣∣∣X>N

∣∣∣]< ε ·δ/4.

Therefore, by Markov’s inequality, we have that

P
[|Y>

n | ≥ ε/2]< δ/2.

Since X≤N
k is bounded it is in L 2. Therefore, by independence,

Var
(
Y≤

n
)= Var

(
X≤N

k

)
n

≤ N2

n
.

By linearity of expectations E
[
Y≤

n
] = E

[
X≤N

n
]
, and thus tends to zero, by (9.1). It thus

from Chebyshev’s inequality that for n large enough P
[|Y≤

n | ≥ ε/2]< δ/2. Since P [|Yn| ≥ ε]≤
P

[|Y≤
n | ≥ ε/2 and |Y>

n | ≥ ε/2]
, the claim follows by the union bound.
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10 Conditional expectations

10.1 Why things are not as simple as they seem
Consider a point chosen uniformly from the surface of the (idealized, spherical) earth, so that
the probability of falling on a set is proportional to its area.

Say we condition on the point falling on the equator. What is the conditional distribution?
It obviously has to be uniform: by symmetry, there cannot be a reason that it is more likely
to be in one time zone than another.

Say now that we condition on the point falling on a particular meridian m. By the same
reasoning, the conditional distribution is uniform, and so, for example, the probability that
we are within 2 meters of the north pole is the same as the probability that we are within
1 meter from the equator. Integrating over m we get that regardless of the meridian, the
probability of being 2 meters from the north pole is the same as the probability of being
1 meter from the equator. But the area within 2 meters of the north pole is about 4πm2,
whereas the area within 1 meter of the equator is about 80000m2.

10.2 Conditional expectations in finite spaces
Consider a probability space (Ω,F ,P) with |Ω| <∞, F = 2Ω, and P [ω]> 0 for all ω ∈Ω. Let
Ω= {1, . . . ,n}2, let Z be the random variable given by Z(ω1,ω2)=ω1, and let G =σ(Z) be the
sigma-algebra generated by the sets Ak = {k}× {0, . . . ,n}. Let X be a real random variable.
Then the usual definition is the E [X |Z] is the random variable Ω→R given by

E [X |Z](ω)=
∑
ω′∈Z−1(ω) X (ω′)P

[
ω′]∑

ω′∈Z−1(ω)P [ω′]
·

This notation can be confusing - E [X |Z] is a random variable and not a number! But given
A ∈F with P [A]> 0, we denote by E [X |A] the number

E [X |A]= 1
P [A]

E
[
X ·1{A}

]
.

As G = σ(Y ), it will often be less confusing to write instead E [X |G ], which denotes the
same random variable.

Exercise 10.1. Let Y = E [X |G ].

1. Y = argminW∈L 2(Ω,G ,P)E
[
(X −W)2].

2. Y is G -measurable.

3. If A ∈G with P [A]> 0 then E
[
X ·1{A}

]= E[
Y ·1{A}

]
.
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10.3 Conditional expectations in L 2

Fix a probability space (Ω,F ,P). Given a sub-sigma-algebra G ⊆F , we know by Theorem 7.6
that the subspace L 2(Ω,G ,P)⊆L 2(Ω,F ,P) is closed. We can therefore define the projection
operator

PG : L 2(Ω,F ,P)→L 2(Ω,G ,P)

by

PG (X )= argmin
Y∈L 2(Ω,G ,P)

E
[
(X −Y )2].

Some immediate observations:

1. PG (X ) is G -measurable.

2. If Y ∈ L 2(Ω,F ,P) then E [(X −PG (X )) ·Y ] = 0, or E [X ·Y ] = E [PG (X ) ·Y ]. Thus given
A ∈G with P [A]> 0 we have that E

[
X ·1{A}

]= E[
PG (X ) ·1{A}

]
.

10.4 Conditional expectations in L 1

Theorem 10.2. Let (Ω,F ,P) be a probability space with a r.v. X ∈ L 1 and a sub-sigma-
algebra G ⊆F . Then there exists a unique random variable Y with the following properties:

1. Y ∈L 1(Ω,G ,P).

2. For every A ∈G it holds that E
[
Y ·1{A}

]= E[
X ·1{A}

]
.

We denote E [X |G ] :=Y . For A ∈F with P [A]> 0 we denote E [X |A]= E[
X ·1{A}

]
/P [A].

Proof. We first prove uniqueness. Let Y and Z both satisfy the two conditions in the
theorem, and assume by contradiction that P [Y > Z]> 0. Then there is some ε> 0 such that
P [Y −ε> Z]> 0. Let A = {Y −ε> Z}, and note that A ∈G . Then

E
[
Y ·1{A}

]= E[
(Y −ε) ·1{A}

]+εP [A]
> E[

Z ·1{A}
]+ε ·P [A]

> E[
Z ·1{A}

]
.

But since A ∈G we have that both P
[
Y ·1{A}

]
and P

[
Z ·1{A}

]
are equal to E

[
X ·1{A}

]
- contra-

diction.
We prove the reminder under the assumption that X ≥ 0; the reduction is straightforward.

Let Xn = X ·1{X≤n}. Then Xn is bounded, and in particular is in L 2. Let Yn = PG (Xn).
We claim that Y is non-negative. To see this, assume by contradiction that P [Yn <−ε] > 0
for some ε > 0, and let A = {Yn < −ε}. Then E

[
Yn ·1{A}

] < −ε ·P [A] < 0, but E
[
Yn ·1{A}

] =
E
[
X ·1{A}

]≥ 0.
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Now, Yn is a monotone increasing sequence. To see this, note that Xn is monotone
increasing, and that PG is a linear operator, and so Yn+1−Yn = PG (Xn+1−Xn) is non-negative,
by the same proof as above.

Since Yn is monotone increasing then so is Yn ·1{A}, for any A ∈G . Therefore, if we define
Y = limn Yn, then E

[
Yn ·1{A}

]→ E
[
Y ·1{A}

]
. But E

[
Yn ·1{A}

]= E [Xn · A], and, since Xn ·1{A} is
also monotone increasing with X ·1{A} = limn Xn ·1{A}, we have that

E
[
Y ·1{A}

]= lim
n
E [Yn · A]= lim

n
E
[
Xn ·1{A}

]= E[
X ·1{A}

]
.

Finally, each Yn is G -measurable by construction, and therefore so is Y .

10.5 Some properties of conditional expectation
Exercise 10.3. 1. If X is G -measurable (i.e., σ(X )⊆G ) then E [X |G ]= X .

2. The Law of Total Expectation. If G2 ⊆G1 then E [E [X |G1]|G2]= E [X |G2]. In particular
E [E [X |G ]]= E [X ].

3. If Z ∈L∞(Ω,G ,P) then

E [Z · X |G ]= Z ·E [X |G ].
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11 The Galton-Watson process

11.1 Definition
Consider an asexual organism (in the original work these were Victorian men) whose number
of offspring X0 is chosen at random from some distribution on N0 = {0,1,2, . . .}. Each of
its descendants i ∈ {1, . . . , X0} has X i offspring, with the random variables (X0, X1, X2, . . .)
distributed independently and identically. An interesting question is: what is the probability
that the organism’s progeny will live forever, and what is the probability that there will be a
last one to its name?2

Formally, consider generations {1,2, . . .}, and to each generation n associate an infinite se-
quence of random variables (Xn,1, Xn,2, . . .), with all the random variables (Xn,i) independent
and identically distributed on N0. We will, to simplify some expressions, define X = X1,1. We
assume that

0< E [X ]<∞,

and denote µ= E [X ]. We also assume that P [X = 0]> 0.
To each generation n we define the number of organisms Zn, which is also a random

variable. It is defined recursively by Z1 = 1 and Zn+1 = ∑Zn
i=1 Xn,i. Clearly Zn = 0 implies

Zn+1 = 0.

11.2 The probability of extinction
We are interested in the event that Zn = 0 for some n, or that, equivalently, Zn = 0 for all n
large enough. This is again equivalent to the event

∑
n Zn <∞, since each Zn is an integer.

We denote this event by E (for extinction), and denote En = {Zn = 0}.
Note that the sequence En is increasing and E =∪nEn. Therefore, by Theorem 3.5,

P [E]= lim
n
P [Zn = 0].

We first calculate the expectation of Zn+1. Since Zn is independent of (Xn,1, Xn,2, . . .), it
holds that

E [Zn+1]= E
[

Zn∑
i=1

Xn,i

]

= E
[
E

[
Zn∑
i=1

Xn,i

∣∣∣∣∣Zn

]]
= E [Zn ·E [X |Zn]]
= E [Zn] ·E [X ],

2Neither of the names Galton and Watson have died out (as of 2018), although Galton is rather rare:
https://forebears.io/surnames/galton.
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and so

E [Zn+1]=µn.

Claim 11.1. If µ< 1 then P [E]= 1.

Proof 1. By Markov’s inequality, P [Zn ≥ 1]≤ µn. Thus by the Borel-Cantelli Lemma w.p. 1
there will be some n with Zn < 1, and thus Zn = 0.

Proof 2. Note that E
[∑

n Zn
]=∑

nE [Zn]<∞, and so P
[∑

n Zn =∞]= 0.

It is also true that P [E]= 1 when µ= 1. Note that in this case

E [Zn+1|Z1, Z2, . . . , Zn]= E [Zn+1|Zn]= Zn ·E [X ]= Zn.

The first equality makes Zn a Markov chain. The second makes it a Martingale; we will
discuss both concepts formally. By the Martingale Convergence Theorem we have that Zn
converges almost surely to some r.v. Z∞. But clearly Zn cannot converge to anything but 0,
and so P [E]= 1.

Note that the event E is equal to the union of the event that X1,1 = 0 with the event that
X1,1 > 0 but each of the sub-tree of the Z2 offspring goes extinct. Since the process on each
subtree is identical, and since the probability that all of such k offspring trees goes extinct is
P [E]k, we have that P [E] must satisfy

P [E]=
∑

k∈N0

P [X = k]P [E]k. (11.1)

11.3 The probability generating function
We accordingly define f : [0,1]→ [0,1], the probability generating function of X , by

f (t)= ∑
k∈N0

P [X = k] · tk = E
[
tX

]
,

where we take 00 = 1. Then (11.1) is equivalent to observing that P [E] is a fixed point of f .
Note that 1 is always a fixed point, but in general there might be more.

Some observations:

1. f (0)=P [X = 0] and f (1)= 1.

2. f ′(t) = ∑
k∈NP [X = k] · k · tk−1 = E

[
X · tX−1]. Hence f ′(1) = E [X ] = µ. Note also that

f ′(t)≥ 0.

3. Likewise, the kth derivative of f is non-negative. Thus f is convex.
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Let fn(t)= E[
tZn

]
be the generating function of Zn. Then

fn+1(t)= E
[
tZn+1

]
= E

[
E
[
tZn+1

∣∣∣Zn

]]
= E

[
E
[
t
∑Zn

k=1 Xn,k
∣∣∣Zn

]]
= E

[
E
[
tX

]Zn
]

= E
[

f (t)Zn
]

= fn( f (t)),

where we again used the fact that Zn is independent of (Xn,1, Xn,2, . . .). Since f1(t)= t, fn+1 is
the n-fold composition of f with itself:

fn+1 = f ◦ f ◦ · · · ◦ f .

Now P [Zn = 0]= fn(0). Since f is analytic,

P [E]= lim
n
P [En]= lim

n
fn(0)

will be the fixed point of f that one converges to by applying f repeatedly to 0. Furthermore,
f (0)=P [X = 0]> 0, f (1)= 1, and f is increasing and convex. Thus f will have a unique fixed
point. Finally, since f ′(1)=µ, this fixed point will be 1 iff µ≤ 1.
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12 Markov chains

12.1 Definition
Let the state space S be a countable or finite set. A sequence of S-valued random variables
(X0, X1, X2, . . .) is said to be a Markov chain if for all x ∈ S and n > 0

P [Xn = x|X0, X1, . . . , Xn−1]=P [Xn = x|Xn−1].

A Markov chain is said to be time homogeneous if P [Xn = x|Xn−1] does not depend on n.
In this case it will be useful to study the associated stochastic S-indexed matrix P(x, y) =
P [Xn+1 = y|Xn = x]. It is easy to see that P [Xn+m = y|Xn = x]= Pm(x, y), where Pm denotes
the usual matrix exponentiation. We call P the transition matrix of the Markov chain.

In the context of a transition matrix P, we will denote by Px the measure of the Markov
chain for which P [X0 = x]= 1.

The next claim is needed to formally apply the Markov property.

Claim 12.1. Let (X0, X1, . . .) be a time homogeneous Markov chain. Fix some measurable
f : SN→R and denote

Yn = f (Xn, Xn+1, . . .).

Then for any n,m ∈N and x ∈ S such that P [Xn = x]> 0 and P [Xm = x]> 0 it holds that

E [Yn+1|Xn = x]= E [Ym+1|Xm = x].

Example: let S = Z, let X0 = 0, and let P(x, y) = 1
21{|x−y|=1}. This is called the simple

random walk on Z. More generally (in some direction), one can consider a graph G = (S,E)
with finite positive out-degrees d(x)= |E∩ {x}×S| and let

P(x, y)= 1{(x,y)∈E}

d(x)
·

The lazy random walk on Z has transition probabilities P(x, y)= 1
31{|x−y|≤1}.

12.2 Irreducibility and aperiodicity
We say that a (time homogeneous) Markov chain is irreducible if for all x, y ∈ S there exists
some m so that Pm(x, y) > 0. We say that an irreducible chain is aperiodic if for some
(equivalently, every) x ∈ S it holds that Pm(x, x)> 0 for all m large enough.

Exercise 12.2. Show that if an irreducible chain is not aperiodic then for every x ∈ S there is
a k ∈N so that Pm(x, x)= 0 for all m not divisible by k.

Exercise 12.3. 1. Show that the simple random walk on Z is irreducible but not aperiodic.

2. Show that the lazy random walk on Z is irreducible and aperiodic.
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3. Show that the simple random walk on a directed graph is irreducible iff the graph is
strongly connected.

4. Show that the simple random walk on a connected, undirected graph is aperiodic iff the
graph is not bipartite.

12.3 Recurrence
We define the hitting time to x ∈ S by

Tx =min{n > 0 : Xn = x}.

This is a random variable taking values in N∪ {∞}. An irreducible Markov chain is said to be
recurrent if P [Tx <∞]= 1 whenever P [X0 = x]> 0. A non-recurrent random walks is called
transient.

Theorem 12.4. Fix an irreducible Markov chain with P [X0 = x] > 0 for all x ∈ S. Then the
following are equivalent.

1. The Markov chain is recurrent.

2. For some (all) x ∈ X it holds that

P [Xn = x i.o.]= 1.

3. For some (all) x ∈ X it holds that
∑

m Pm(x, x)=∞.

Proof. Choose any x ∈ S. Since P [Tx <∞]= 1, and since P [X0 = y]> 0 for any y ∈ S, we have
that P [Tx <∞|X0 = y]= 1, or that

P [Xn = x for some n > 0|X0 = y]= 1.

By irreducibility we have that P [Xm = y] > 0 for any m, and so by the Markov property it
follows that

P [Xn = x for some n > m|Xm = y]= 1.

Summing over y yields that

P [Xn = x for some n > m]= 1,

and so

P [Xn = x i.o.]= 1.

We have thus shown that (1) implies (2).

38



Note that Pm(x, x)=P [Xm = x|X0 = x]. Now, (2) implies that

P [Xn = x i.o.|X0 = x]= 1

and so, by Borel-Cantelli, (2) implies (3).
Finally, to show that (3) implies (1), assume that the Markov chain is transient. Then

P [Tx <∞] < 1, and so P [Tx <∞|X0 = x] < 1. Denote the latter by p. Hence, by the Markov
property,

p =P [Xn = x for some n > m|Xm = x].

Therefore, conditioned on X0 = x, the probability that x is visited k more times is pk(1− p).
In particular the expected number of visits is finite, and since this expectation is equal to∑

m Pm(x, x), the proof is complete.

Exercise 12.5. Prove that every irreducible Markov chain over a finite state space is recurrent.

Exercise 12.6. Let P be the transition matrix of a Markov chain over S, and for ε > 0 let
Pε = (1−ε)P+εI, where I is the identity matrix. Thus Pε is the ε-lazified version of P. Consider
two Markov chains over S: both with X0 = x, and one with transition matrix P and the other
with transition matrix Pε. Prove that either both are recurrent or both are transitive.

12.4 The simple random walk on Zd

Corollary 12.7. The simple random walk on Z is recurrent.

Proof. Note that P [X2n+1 = 0]= 0 and that

P [X2n = 0]= 2−2n

(
2n
n

)
.

By Stirling (
2n
n

)
≥ 22n−1

p
n

,

and so

P [X2n = 0]≥ 1
2
p

n
.

Hence ∑
m

Pm(0,0)≥ 1
2
p

m
=∞,

and the claim follows by Theorem 12.4.
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Consider now a random walk with a drift on Z. For example, let P(x, y)= p if y= x+1 and
P(x, y)= 1− p if y= x−1. In this case, assuming X0 = 0, Xn =∑

k≤n Yn where the Yn are i.i.d.
r.v. with P [Yn = 1]= p and P [Yn =−1]= 1− p. It follows from the strong law of large numbers
that a.s. limn Xn/n = 2p−1 > 0, and so in particular limn Xn =∞, and the random walk is
transient. The same argument holds whenever the transition probabilities correspond to an
L 1 random variable with non-zero expectation, by the same argument (although we have
yet to prove an L 1 SLLN).

Exercise 12.8. Prove that the simple random walk on Z2 (given by P(x, y) = 1
41{|x−y|=1}) is

recurrent, but that the simple random walk on Zd (given by P(x, y)= 1
d1{|x−y|=1}) is transient

for all d ≥ 3.
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13 Martingales

13.1 Definition
A filtration Φ = (F1,F2, . . .) is a sequence of increasing sigma-algebras F1 ⊆ F2 ⊆ ·· · . A
natural (and in some sense only) example is the case that Fn =σ(Y1, . . . ,Yn) for some sequence
of random variables (Y1,Y2, . . .).

A process (X1, X2, . . .) is said to be adapted to Φ if each Xn is Fn-measurable. A sequence
of real random variables (X1, X2, . . .) that is adapted to Φ and is in L 1 is called a martingale
with respect to Φ if for all n ≥ 1

E [Xn+1|Fn]= Xn.

It is called a supermartingale if

E [Xn+1|Fn]≤ Xn.

Note that if (X1, X2, . . .) is a martingale then E [Xn] = E [X1] and by subtracting the
constant E [X1] from all Xn’s we get that (X0, X1, . . .) is a martingale with X0 = 0. A similar
statement holds for supermartingales.

As a first example, let Wn be i.i.d. r.v. with P [Wn =+1] = P [Wn =−1] = 1/2, let Xn =∑
k≤n Wn, and let Fn = σ(X1, . . . , Xn). Then Xn is the amount of money made in n fair

bets (or the locations of a simple random walk on Z) and is a martingale with respect to
(F1,F2, . . .). If we set P [Wn =+1]= 1/2−ε and P [Wn =−1]= 1/2+ε for some ε> 0 then Xn is
a supermartingale.

13.2 Examples
As a second example we introduce Pólya’s urn. Consider an urn in which there are initially a
single black ball and a single white ball. In each time period we reach in, pull out a ball, and
then put back two balls of the same color. Formally, let (Y1,Y2, . . .) be i.i.d. random variables
distributed uniformly over [0,1], and let the number of black balls at time n be Bn, given by
B1 = 1 and

Bn+1 = Bn +1{Yn<Bn/(n+1)}.

Denote by Rn = Bn/(n+1) the fraction of black balls. Then

E [Rn+1|B1, . . . ,Bn]= E [Rn+1|Bn],

since the process (B1,B2, . . .) is a Markov chain. Furthermore

E [Rn+1|Bn]= 1
n+2

E [Bn+1|Bn]

= 1
n+2

(
Bn + Bn

n+1

)
= Bn

n+1
= Rn,
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and so Rn is a martingale with respect to Fn =σ(B1, . . . ,Bn).
As a third example let X ∈L 2 (e.g., X is a standard Gaussian), let Y1,Y2, . . . be i.i.d. in

L 2, and let Zn = X +Yn. This can be thought of as a model of independent measurements
(Zn) with noise (Yn) of a physical quantity (X ). Under this interpretation,

X̃n = E [X |Y1, . . . ,Yn]

is a natural estimator of X . By the law of total expectations

E
[
X̃n+1

∣∣Y1, . . . ,Yn
]= X̃n,

and thus X̃n is also a martingale.

13.3 Martingale convergence in L 2

Theorem 13.1 (Martingale Convergence in L 2). Let Φ= (F1,F2, . . .) be a filtration, and let
(X1, X2, . . .) be a martingale w.r.t. Φ. Furthermore, assume that there exists a K such that
E
[
X2

n
]< K for all n. Then there exists a random variable X ∈L 2 such that E

[
(X − Xn)2]→ 0.

Proof. Set X0 = 0, and for n ≥ 1 let Yn = Xn − Xn−1. Since Xn−1 = E [Xn|Fn−1], we have that
Yn is orthogonal to any Fn−1-measurable r.v., and in particular is orthogonal to Ym for any
m < n. Now, ∑

k≤n
Yn = Xn

and so by the orthogonality of the Yn’s it follows that∑
k≤n

E
[
Y 2

k
]= E[

X2
n
]< K .

Thus ∑
k
E
[
Y 2

n
]< K ,

and we have that Xn is a Cauchy sequence in L 2. Therefore, since L 2 is complete (Theo-
rem 7.6) there exists some X ∈L 2 such that E

[
(X − Xn)2]→ 0.

The next theorem shows that, in fact, convergence is pointwise, and an L 1 assumption
suffices.

13.4 The Martingale Convergence Theorem
Theorem 13.2 (Martingale Pointwise Convergence). Let Φ= (F1,F2, . . .) be a filtration, and
let (X1, X2, . . .) be a supermartingale w.r.t. Φ. Furthermore, assume that there exists a K such
that E [|Xn|]< K for all n. Then there exists a random variable X ∈L 1 such that almost surely
limn Xn = X .
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Before proving this theorem we will need the following lemmas.

Lemma 13.3. Let (X0, X1, X2, . . .) be a supermartingale w.r.t. Φ= (F1,F2, . . .) with X0 = 0, let
Bn be {0,1}-values random variables adapted to Φ, and let Yn =∑

k≤n Bk−1 · (Xk − Xk−1). Then
Yn is a supermartingale and E [Yn]≤ 0.

The idea behind this lemma is the following: imagine that you are gambling at a casino
with non-positive expected wins from every gamble. Say that you have some system for
deciding when to gamble and when to stay out (i.e., the Bn’s). Then you do not expect to win
more than you would have if you stayed in the game every time.

Proof.

E [Yn+1|Fn]= E
[ ∑

k≤n+1
Bk−1 · (Xk − Xk−1)

∣∣∣∣∣Fn

]
= E [Yn +Bn · (Xn+1 − Xn)|Fn]
=Yn +BnE [Xn+1 − Xn|Fn]
=Yn +Bn(E [Xn+1|Fn]− Xn)
≤Yn.

Thus Yn is a supermartingale, and by induction E [Yn]≤ 0.

Lemma 13.4. Let (X0, X1, X2, . . .) be a supermartingale w.r.t. Φ = (F1,F2, . . .) with X0 = 0.
Fix some a < b, and let Bn be defined as follows: B0 = 0, and Bn+1 is the indicator of the union
of the events

1. Bn = 1 and Xn ≤ b.

2. Bn = 0 and Xn < a.

Let Ua,b
n be the number of k ≤ n such that Bk = 0 and Bk−1 = 1. Then

E
[
Ua,b

n

]
≤ E [(Xn −a)−]

b−a
.

Proof. By picture, it is clear that for

Yn = ∑
k≤n

Bn−1 · (Xn − Xn−1)

it holds that

Yn ≥ (b−a)Ua,b
n − (Xn −a)−.

By Lemma 13.3 we have that E [Yn]≤ 0, and so the claim follows by taking expectations.

43



Proof of Theorem 13.2. For a given a < b, let Ua,b
∞ = limn Ua,b

n . The limit exists since this is a
monotone increasing sequence, and it also follows that

E
[
Ua,b

∞
]
= lim

n
E
[
Ua,b

n

]
≤ lim

n

E [(Xn −a)−]
b−a

≤ |a|+K
b−a

<∞.

Thus P
[
Ua,b

∞ <∞
]
= 1, and it follows that with probability zero it occurs that limsupn Xn ≥ b

and liminfn Xn ≤ a. Applying this to a countable dense set of pairs (a,b) we get that with
probability zero limsupn Xn > liminfn Xn, and so limsupn Xn = liminfn Xn almost surely.

Exercise 13.5. Let Rn be the fraction of black balls in Pólya’s urn. Show that limn Rn is
distributed uniformly on (0,1). Hint: calculate the distribution of Rn.
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14 Stopping times

14.1 Definition
Let Φ = (F1,F2, . . .) be a filtration, and let (X0, X1, X2, . . .) be a supermartingale w.r.t. Φ.
Denote F∞ =σ(∪nFn).

A random variable T taking values in N∪ {∞} is called a stopping time if for all n ≤∞ it
holds that the event {T ≤ n} is Fn-measurable.

Example: (X1, X2, . . .) is a Markov chain over the state space S, and Tx is the hitting time
to x ∈ S given by

Tx =min{n > 0 : Xn = x}.

Example: (X1, X2, . . .) is the simple random walk on Z, and T is the first n ≥ 3 such that
Xn < Xn−1 < Xn−2.

Given a stopping time T, we define the stopped process

(X T
1 , X T

2 , . . .)= (X1, X2, . . . , XT−1, XT , XT , . . .).

That is, X T
n = Xn if n ≤ T, and X T

n = XT if n ≥ T. Equivalently, X T
n = Xmin{T,n}. Intuitively,

the stopped process corresponds to the process of a gambler’s bank account, when the gambler
decides stopping at time T.

Theorem 14.1. If (X0, X1, X2, . . .) is a (super)martingale (with X0 = 0) then (X T
0 , X T

1 , X T
2 , . . .)

is a (super)martingale.

Proof. We prove for the case of supermartingales; the proof for martingales is identical.
Let Bn =1{T≥n} and Yn =∑

k≤n Bk−1 · (Xk − Xk−1). Then by Lemma 13.3 we have that Yn
is a supermartingale. But Yn = X T

n .

So the gambler’s bank account is still a martingale, no matter what the stopping time
is, and in particular E

[
X T

n
]≤ 0 (with equality for martingales). However, consider a simple

random walk on Z, with stopping time T1. That is, the gambler stops once she has earned a
dollar. Then clearly E

[
XT1

]= 1. The following theorem gives conditions for when E [XT]= 0.

14.2 Optional Stopping Time Theorem
Theorem 14.2 (Doob’s Optional Stopping Time Theorem). Let (X0, X1, . . .) be a supermartin-
gale, and let T be a stopping time. Assume that P [T =∞] = 0, and that one of following
holds:

1. ∃N s.t. P [T ≤ N]= 1.

2. ∃K s.t. P [|Xn| ≤ K for all n]= 1.

3. E [T]<∞ and ∃K s.t. P [|Xn+1 − Xn| ≤ K for all n]= 1.
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4. Xn is non-negative.

Then E [XT]≤ E [X0], with equality if (X0, X1, . . .) is a martingale.

To prove this theorem we will need the following important lemma.

Lemma 14.3 (Fatou’s Lemma). Let (Z1, Z2, . . .) be a sequence of non-negative real random
variables. Then

E
[
liminf

n
Zn

]
≤ liminf

n
E [Zn].

Recall from the Galton-Watson example that indeed this may be a strict inequality.

Exercise 14.4. Prove Fatou’s Lemma. Hint: use the Monotone Convergence Theorem.

Proof. We prove that E [XT]≤ 0; the equality in case of the martingales follows easily.
Note that E

[
X T

n
]≤ 0, by Theorem 14.1. Also limn X T

n = XT , since P [T <∞]= 1 under all
conditions.

1. XT = X T
N .

2. By the Bounded Convergence Theorem E
[
X T]= limnE

[
X T

n
]≤ 0.

3. ∣∣∣X T
n

∣∣∣= ∣∣∣∣∣min{T,n}∑
k=1

Xk − Xk−1

∣∣∣∣∣≤ K ·T.

Hence by the Dominated Convergence Theorem E [XT]= E[
X T

n
]
.

4. By Fatou’s Lemma,

E [XT]≤ liminf
n

E
[
X T

n

]
≤ 0.

Corollary 14.5. Let T1 be the hitting time to 1 of the simple random walk on Z. Then
E [T1]=∞.
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15 Harmonic and superharmonic functions

15.1 Definition
Let (X0, X1, . . .) be a Markov chain over the state space S with transition matrix P. We say
that a function f : S →R is P-harmonic if P f = f . Here P f : S →R is

[P f ](x)= ∑
y∈S

P(x, y) f (y).

We say that f is P-superharmonic if [P f ](x)≤ f (x) for all x ∈ S.

15.2 Harmonic functions and martingales
Claim 15.1. Assume that P is irreducible, so that for all x there exists an n such that
P [Xn = x]> 0. Let Zn = f (Xn). Then Zn is a (super)martingale iff f is (super)harmonic.

Proof. We prove for the (super) case:

E [ f (Xn+1)|X0, . . . , Xn]= E [ f (Xn+1)|Xn]=
∑
y∈S

P(Xn, y) f (y)≤ f (Xn)

iff f is superharmonic.

15.3 Superharmonic functions and recurrence
Theorem 15.2. Let P be irreducible. Then the following are equivalent.

1. Every Markov chain with transition matrix P is recurrent.

2. Some Markov chain with transition matrix P is recurrent.

3. Every non-negative P-superharmonic function is constant.

Proof. The equivalence of (1) and (2) follows easily from Theorem 12.4.
To see that (1) implies (3), let Ty be the hitting time to y, and note that Px

[
Ty <∞]= 1,

by recurrence. Let f be a non-negative superharmonic function, and let Zn = f (Xn). Then we
can apply the Optional Stopping Time Theorem to ZTy

n to get that

Ex
[
ZTy

]≤ Ex [Z0].

The l.h.s. is equal to f (y) and the r.h.s. is equal to f (x), and so f is constant.
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Assume (3), and note that

Px
[
Ty <∞]=Px

[
X1 = y,Ty <∞]+Px

[
X1 6= y,Ty <∞]

=Px [X1 = y]+
∑
z 6=y

Px
[
X1 = z,Ty <∞]

=Px [X1 = y]+
∑
z 6=y

Px
[
Ty <∞∣∣X1 = z

] ·Px [X1 = z]

= P(x, y)+ ∑
z 6=y

P(x, z) ·Pz
[
Ty <∞]

≥∑
z

P(x, z) ·Pz
[
Ty <∞]

.

Hence f (x) = Px
[
Ty <∞]

is superharmonic, and thus constant by assumption. Say p =
Px

[
Ty <∞]

. By irreducibility p > 0. Hence, by the Markov property, for every N the expected
number of visits at times n > N is at least p, and so the expected number of visits is infinite.
Thus the random walk is recurrent.

15.4 Bounded harmonic functions
The following claim is a direct consequence of Claim 15.1 and the Martingale Convergence
Theorem.

Claim 15.3. Let f : S → R be bounded and superharmonic. Then Zn = f (Xn) is a bounded
supermartingale and therefore converges almost surely to Z := limn Zn.

Recall that Tn =σ(Xn, Xn+1, . . .) and that

T =∩nTn

is the tail sigma-algebra. We think of our probability space as being (Ω,F ,P) withΩ= SN and
F the Borel sigma-algebra of the product of the discrete topologies. Then A ∈Tn iff A is of
the form Sn ×B for some measurable B ∈F . Equivalently, A ∈Tn iff for every (x0, x1, . . .) ∈ A,
and (y0, . . . , yn−1) ∈ Sn it holds that

(y0, . . . , yn−1, xn, xn+1, . . .) ∈ A.

15.5 The shift-invariant sigma-algebra
Another important sigma-algebra is the shift-invariant sigma-algebra I . To define it, let
ϕ : SN→ SN be the shift map given by ϕ(x0, x1, x2, . . .)= (x1, x2, . . .). Then I is the ϕ-invariant
subsets of SN. That is,

I = {A ⊂ SN : ϕ−1(A)= A}.

Equivalently, A ∈I iff for every (x0, x1, . . .) ∈ A, and y ∈ S it holds that

(y, x1, x2, . . .) ∈ A
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and

(x2, x3, . . .) ∈ A.

Exercise 15.4. Show that I ⊂T , but that the two are not equal.

Exercise 15.5. Find an irreducible Markov chain on the state space N that has a random
variable that is T -measurable but not I -measurable.

Claim 15.6. Let Z = limn f (Xn) for some bounded harmonic f . Then Z is I -measurable.

The proof is a (perhaps tedious) application of the definition.
Since Z is bounded we have that Z ∈L∞(I ).

Theorem 15.7. For every Z ∈ L∞(I ) there is a bounded harmonic function f such that
Z = limn f (Xn).

Proof. For x ∈ S choose any n such that P [Xn = x]> 0, and let f (x)= E [Z|Xn = x]. This is well
defined (i.e., independent of the choice of n) because Z is I -measurable. It is straightforward
to check that f is bounded.

If P [Xn = x]> 0 then P [Xn+1 = y]> 0 for all y such that P(x, y)> 0, and so

[P f ](x)=∑
y

P(x, y) f (y)

=∑
y
P [Xn+1 = y|Xn = x] ·E [Z|Xn+1 = y]

=∑
y
P [Xn+1 = y|Xn = x] ·E [Z|Xn+1 = y, Xn = x]

= E [Z|Xn = x]
= f (x),

where the equality before last follows from the Markov property. Thus f is harmonic.
To see that Z = limn f (Xn), note that, by the martingale convergence theorem,

Z = lim
n
E [Z|X1, . . . , Xn].

By the Markov property

E [Z|X1, . . . , Xn]= E [Z|Xn]= f (Xn),

and so Z = limn f (Xn).

To summarize, denote by h∞(S,P) ⊂ `∞(S) the bounded P-harmonic functions. If f ∈
h∞(S,P), then Z = limn f (Xn) is in L∞(I ). Conversely, if Z ∈L∞(I ) then f = E [Z|Xn = x]
is in h∞(S,P).

It turns out that the map Φ : L∞(T )→ h∞(S,P) given by Φ : Z 7→ f is a linear isometry.
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16 The Choquet-Deny Theorem

16.1 The asymptotic direction of a random walk
As motivation, consider the simple random walk (X1, X2, . . .) on Z3. Let Pn = Xn/|Xn| be the
projection of Xn to the unit sphere (and assume Pn = 0 whenever Xn = 0). Since this random
walk is transient, it is easy to deduce that limn |Xn| =∞. It follows that limn |Pn+1 −Pn| = 0;
that is, the projection moves more and more slowly. A natural question is: does Pn converge?

Theorem 16.1 (Choquet-Deny Theorem). Let (Y1,Y2, . . .) be i.i.d. random variables taking
values in some countable abelian group G. Let Xn = ∑

k≤n Yn. Then (X1, X2, . . .) is a time
homogeneous Markov chain over the state space G. If (X1, X2, . . .) is also irreducible then every
W ∈L∞(I ) is constant.

For the proof of this theorem we will need an important classical result from convex
analysis.

16.2 The Krein-Milman Theorem
Theorem 16.2 (Krein-Milman Theorem). Let X be a Hausdorff locally convex topological
space. A point x ∈ C is extreme if whenever x is equal to the non-trivial convex combination
αy+ (1−α)z then y= z.

Let C be compact convex subset of X . Then every x ∈ C can be written as the limit of convex
combinations of extreme points in C.

Proof of Theorem 16.1. Denote by P the transition matrix of (X1, X2, . . .), and let µ(g) =
P [Yn = g]. Then P(g,k)=µ(k− g). Thus, if f is P-harmonic then

f (g)= ∑
k∈G

f (k)P(g,k)= ∑
k∈G

f (k)µ(k− g)= ∑
k∈G

f (g+k)µ(k).

Let H = h[0,1](G,P) be the set of all P-harmonic functions with range in [0,1]. We note
that harmonicity is invariant to multiplication by a constant and addition, and so if we show
that every f ∈ h[0,1](G,P) is constant then we have shown that every f ∈ H is constant. It
then follows that every W ∈L∞(I ) is constant, by the fact that Φ is an isometry.

We state three properties of H that are easy to verify.

1. H is invariant to the G action: for any f ∈ H and g ∈G, the function f g : G →R given
by [ f g](k)= f (k− g) is also in H.

2. H is compact in the topology of pointwise convergence.

3. H is convex.
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As a convex compact space, H is the closed convex hull of its extreme points; this is the
Krein-Milman Theorem. Thus H has extreme points. Let f ∈ H be an extreme point. Then,
since f is harmonic,

f (g)= ∑
k∈G

f (g+k)µ(k)= ∑
k∈G

f −k(g)µ(k).

By the first property of H each f −k is also in H, and thus we have written f as a convex
combination of functions in H. But f is extreme, and so f = f −k for all k in the support of µ.
But since the Markov chain is irreducible, the support of µ generates G. Hence f is invariant
to the G-action, and therefore constant.

An immediate corollary of the Choquet-Deny Theorem is that every event in I has
probability either 0 or 1. As an application, consider the question on the simple random
walk on Z3. We would like to show that Pn does not converge pointwise. Note that the event
that Pn converges is a shift-invariant event, and therefore has measure in {0,1}. Assume
by contradiction that it has measure 1, and let P = limn Pn. For each Borel subset B of the
sphere, the event that P ∈ B is shift-invariant, and therefore has measure in {0,1}. It follows
that there is some p such that P = p almost surely. But by the symmetry of the problem the
probability that P = p is the same as he probability that P =−p, which is impossible.

Exercise 16.3. Derive Kolmogorov’s zero-one law from Theorem 16.1.
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17 Basics of information theory

17.1 Shannon entropy
Fix a probability space (Ω,F ,P). Let X be a simple random variable taking values in some
measurable space (Θ,G ). We define the Shannon entropy of X by

H(X )=− ∑
θ∈Θ

P [X = θ] logP [X = θ],

where we use the convention 0log0= 0. Since X is simple, there is some finite subset of Θ,
which we will denote by supp X , for which P [X = θ]> 0. Furthermore,

∑
θ inΘP [X = θ]= 1.

Denote by P [X ] the random variable given by P [X ](ω)=P [X = X (ω)]. Then we can write
the entropy as

H(X )= E [− logP [X ]].

Exercise 17.1. Show that if |supp X | = n then H(X )≤ logn, with equality iff X is distributed
uniformly on its support. Hint: use Jensen’s inequality, and the `1-`2 inequality, which states
that for every z ∈Rn it holds that ‖x‖1 ≤

p
n‖x‖2.

The first important property of Shannon entropy is the following form of monotonicity:

Claim 17.2. Let X ,Y be simple random variables. Suppose Y is σ(X )-measurable (i.e.,
Y = f (X ) for some function f ). Then H(Y )≤ H(X ).

Proof. Note that P [Y ]≤P [X ] almost surely. Hence

H(Y )= E [− logP [Y ]]≤ E [− logP [X ]]= H(X ).

Given two random variables X and X ′ taking values in Θ,Θ′, we can consider the pair
(X , X ′) as a single random variable taking values in Θ×Θ′. We denote the entropy of this
random variable as H(X , X ′). The second important property of Shannon entropy is additivity
with respect to independent random variables.

Claim 17.3. Let X ,Y be independent simple random variables. Then H(X ,Y )= H(X )+H(Y ).

Proof. By independence, P [X ,Y ]=P [X ] ·P [Y ]. Hence

H(X ,Y )= E [− logP [X ,Y ]]= E [− logP [X ]− logP [Y ]]= H(X )+H(Y ).
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17.2 Conditional Shannon entropy
Let G be a sub-sigma-algebra of F . For a simple random variable X , define the random
variable P [X |G ](ω)=P [X = X (ω)|G ](ω), and denote the conditional Shannon entropy by

H(X |G )= E [− logP [X |G ]].

For a simple random variable X and any random variable Y , we denote H(X |Y )= H(X |σ(Y )).

Claim 17.4. H(X |G )≤ H(X ), with equality if and only if X is independent of G .

Proof. By the law of total expectation, P [X |G ] = E [P [X ]|G ]. Since x 7→ − log(x) is a convex
function, it follows from Jensen’s inequality that

H(X |G )= E [− logP [X |G ]]
= E [− logE [P [X ]|G ]]
≤ E [E [− logP [X ]|G ]]
= E [− logP [X ]]
= H(X ).

When X is independent of G , P [X ]=P [X |G ], and we therefore have equality. It thus remains
to be shown if X is not independent of G then the inequality is strict. Indeed, in that case
P [X ] 6=P [X |G ] with positive probability, and thus Jensen’s inequality is strict with positive
probability, from which it follows that our inequality is also strict.

The same proof shows more generally that if G1 ⊆G2 then H(X |G1)≥ H(X |G2).

Exercise 17.5. Suppose G =∩∞
i=nGn, and Gn+1 ⊆Gn. Then

H(X |G )= lim
n

H(X |Gn)= sup
n

H(X |Gn).

17.3 Mutual information
We denote the mutual information of X and G by I(X ;G ) = H(X )−H(X |G ). By the above,
I is non-negative, and is equal to 0 if and only if X is independent of G . For two random
variables X ,Y , we denote I(X ;Y )= I(X ;σ(Y )).

Claim 17.6. Let X ,Y be simple random variables. Then

I(X ;Y )= H(X )+H(Y )−H(X ,Y )= I(Y ; X ).

Proof. By definition,

I(X ;Y )= E [− logP [X ]]−E [− logP [X |Y ]]
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By Bayes’ Law, P [X |Y ]P [Y ]=P [X ,Y ]. Hence logP [X |Y ]= logP [X ,Y ]− logP [Y ], and

I(X ;Y )= E [− logP [X ]]−E [− logP [X ,Y ]+ logP [Y ]]
= E [− logP [X ]]−E [− logP [X ,Y ]]+E [− logP [Y ]]
= H(X )−H(X ,Y )+H(Y ).

It follows that

H(X |Y )= H(X )− I(X ;Y )= H(X )− I(Y ; X )= H(X )+H(Y |X )−H(Y ),

and so

H(X |Y )= H(Y |X )−H(Y )+H(X ). (17.1)

17.4 The information processing inequality
Let X1, X2, X3, . . . be a Markov chain, with each Xn simple.

Claim 17.7. I(X3; X1, X2)= I(X3; X2). Likewise, for m > n, I(Xn;σ(Xm, Xm+1, . . .))= I(Xn; Xm).

The claim is a consequence of the fact that by the Markov property, P [X3|X1, X2] =
P [X3|X2].
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18 Random walks on groups

18.1 Finitely generated groups
Let G be a group. We will denote the group operation by g ·h, or just gh. A subset S of G
is said to generate G if each g ∈G is equal to a product of elements in S. We say that G is
finitely generated if it admits a finite generating set S. Note that finitely generated groups
are countable.

Example 18.1. • G =Z, where the operation is addition, and S = {−1,1}.

• SL(2,Z): the integer matrices with determinant 1, with the operation of matrix multipli-
cation. It is not immediate that the following is a generating set:(

0 −1
1 0

) (
0 1
−1 0

) (
1 1
0 1

) (
1 −1
0 1

)

• The free group generated by {a,b,a−1,b−1}.

18.2 Random walks on finitely generated groups
Let G be finitely generated by S. Let X1, X2, . . . be i.i.d. random variables taking value in G,
and such that P [Xn = g]> 0 iff g ∈ S. Denote by µ(g)=P [Xn = g] the distribution of Xn. Let
Zn = X1 · X2 · · ·Xn. Note that Z is a Markov chain, with transition matrix P(g,h)=µ(g−1h).

18.3 Random walk entropy
Let hn = 1

n H(X1, . . . , Xn).

Claim 18.2. H(Zn+m)≤ H(Zn)+H(Zm).

Proof.

Zn+m = (X1 · · ·Xn) · (Xn+1 · · ·Xn+m),

and so

H(Zn+m)≤ H(X1 · · ·Xn, Xn+1 · · ·Xn+m).

These two random variables are independent, and so

H(Zn+m)≤ H(X1 · · ·Xn)+H(Xn+1 · · ·Xn+m).

The distribution of Zm = X1 · · ·Xm is identical to that of Xn+1 · · ·Xn+m, and so

H(Zn+m)≤ H(Zn)+H(Zm).
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This claim shows that the sequence H(Zn) is subadditive. Fekete’s Subadditive Lemma
states that if (an)n is a subadditive sequence then an

n converges, and that furthermore

lim
n

an

n
= lim

n
an+1 −an.

. We accordingly define the random walk entropy hµ by

h(µ)= lim
n→∞

1
n

H(Zn).

Note that 1
n H(Zn)≤ 1

n H(X1, . . . , Xn)= H(X1), and thus h(µ) is finite.

18.4 The Kaimanovich-Vershik Theorem
Theorem 18.3. The Markov chain Z1, Z2, . . . has a trivial tail sigma-algebra if and only if
h(µ)= 0.

Proof. We calculate the mutual information I(Z1;T ), where T is the tail sigma-algebra.
Recall that T =∩nTn, where Tn =σ(Zn, Zn+1, . . .). Hence, by Exercise 17.5,

H(Z1|T )= lim
n

H(Z1|Zn, Zn+1, . . .).

By the Markov property it follows that

H(Z1|T )= lim
n

H(Z1|Zn).

By (17.1)

H(Z1|T )= lim
n

H(Zn|Z1)−H(Zn)+H(Z1).

Now, Z1 = X1, and Zn = X1 · · ·Xn, and so

H(Z1|T )= lim
n

H(X1 · · ·Xn|X1)−H(Zn)+H(Z1).

Note that conditioned on X1 = g, the distribution of X1 · · ·Xn is identical to the distribution
of gX1 · · ·Xn−1, which has the same entropy as X1, . . . , Xn−1 = Zn−1. Hence H(X1 · · ·Xn|X1)=
H(Zn−1), and we get that

H(Z1|T )= lim
n

H(Zn−1)−H(Zn)+H(Z1).

Thus

I(Z1;T )= lim
n

H(Zn)−H(Zn−1)= h(µ).

It follows that if h(µ)> 0 then T is not independent of Z1, and in particular T is non-trivial.
For the other direction, a calculation similar to the one above shows that I(Z1, . . . , Zn;T )=

nh(µ). Thus, if h(µ)= 0, then T is independent of (Z1, . . . , Zn) for all n, and, as in the proof of
Kolmogorov’s zero-one law, is trivial.
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For a finitely generated group G with generating set S, we denote by |g| the minimum
number of elements of S whose product is equal to g. It is easy to see that |gh| ≤ |g|+ |h|. We
denote Br = {g ∈G : |g| ≤ r}. We say that G has subexponential growth if |Br| is smaller than
any exponent. That is, if limr

1
r log |Br| = 0.

Corollary 18.4. If G has subexponential growth then T is trivial.

Proof. Since Zn is supported on Br, H(Zn)≤ log |Bn|. Hence

h(µ)= lim
n

1
n

H(Zn)≤ lim
n

1
n

log |Bn|.

Hence if G is subexponential then h(µ)= 0 and T is trivial.
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19 Characteristic functions and the Central Limit The-
orem

19.1 Convergence in distribution
Let (X , X1, X2, . . .) be real random variables. Denote their c.d.f.s by F,F1,F2, . . .. We say that
Xn converges in distribution to X if Fn(x) converges to F(x) for every x that is a continuity
point of F.

Claim 19.1. The following are equivalent.

1. Xn converges in distribution to X .

2. limnE [h(Xn)]= E [h(X )] for every bounded continuous h : R→R.

19.2 The characteristic function
Let X be a real random variables. The characteristic function ϕX : R→C of X is given by

ϕX (t)= E
[
eitX

]
= E [cos(tX )]+ i ·E [sin(tX )].

This expectation exists for any real random variable X and any real t, since the sine and
cosine functions are bounded.

Note that

ϕaX+b(t)= E
[
eit(aX+b)

]
= E

[
eitaX ·eitb

]
=ϕaX ·eitb.

Exercise 19.2. ϕX is continuous, and is differentiable n times if X ∈ L n. In this case
ϕ(n)

X (0)= in ·E [X n].

If X and Y are independent, then

ϕX+Y (t)= E
[
eit(X+Y )

]
= E

[
eitX

]
·E

[
eitY

]
=ϕX (t) ·ϕY (t).

A real random variable X is said to have a probability distribution function (or p.d.f.)
fX : R→R if for any measurable h : R→R it holds that

E [h(X )]=
∫ ∞

−∞
h(x) fX (x)dx,
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whenever the l.h.s. exists. In this case the cumulative distribution function

F(x)=P [X ≤ x]=
∫ x

−∞
fX (x)dx,

so that f is the derivative of F. Also,

ϕX (t)=
∫ ∞

−∞
eitx fX (x)dx,

So that ϕX is the Fourier transform of fX .
We saw in Claim 3.8 that F uniquely determines the distribution of X .

Theorem 19.3 (Lévy’s Inversion Formula). Let X be a real random variable. For every b > a
such that P [X = a]=P [X = b]= 0 it holds that

F(b)−F(a)= lim
T→∞

∫ T

−T

e−ita −e−itb

it
ϕX (t)dt.

Since there are at most countably many c ∈R such that P [X = c]> 0, F is determined by
ϕX .

Theorem 19.4 (Lévy’s Continuity Theorem). Let (X , X1, X2, . . .) be real random variables.
Then the following are equivalent:

1. Xn converges in distribution to X .

2. ϕXn(t) converges to ϕX (t) for every t ∈R.

19.3 The characteristic function of normalized i.i.d. sums
Let X be a standard Gaussian (or normal) random variable. This is a real random variable
with p.d.f. fX (x)= 1

2πe−x2/2. It is easy to calculate that

ϕX (t)= e−
1
2 t2

.

Thus if X1 and X2 are independent standard Gaussian then

ϕ(X1+X2)/
p

2(t)= e−
1
2 t2

,

and more generally the same holds for (X1 +·· ·+ Xn)/
p

n.
If (X1, X2, . . .) are (not necessarily Gaussian) i.i.d. and Yn =∑

k≤n Xk then

ϕYn(t)=ϕXn(t)n.

If we define

Zn = 1p
n

Yn = 1p
n

∑
k≤n

Xn
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then

ϕZn(t)=ϕX (t/
p

n)n.

Now, let E [X ]= 0 and E
[
X2]= 1. Since X ∈L 2 then ϕX is twice differentiable and

ϕX (0)= 1 ϕ′(0)= 0 ϕ′′(0)= 1.

It is an exercise to show that it follows that

ϕX (t)= 1− 1
2

t2 + o(t2),

where here we mean by o(t2) that as t → 0 it holds that

|ϕX (t)−1− 1
2

t2| · t2 → 0.

Thus we have that

ϕZn(t)=ϕX (t/
p

n)n = (1− 1
2 t2/n+ o(t2/n2))n,

and thus

lim
n
ϕZn(t)= e−

1
2 t2

.

As we know, e−
1
2 t2

is the characteristic function of a standard Gaussian. Thus we have proved
that if G is a standard Gaussian then for any t ∈R it holds that

E
[
eitZn

]
→ E

[
eitG

]
.

Hence ϕZn converges pointwise to ϕG . Using Lévy’s Continuity Theorem, we have thus
proved the Central Limit Theorem:

Theorem 19.5. Let (X1, X2, . . .) be i.i.d. real random variables with E [Xn]= 0 and E
[
X2

n
]= 1.

Then the sequence Zn = 1p
n

∑
k≤n Xn converges in distribution to a standard Gaussian.
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20 The Radon-Nikodym derivative and absolute conti-
nuity

20.1 The Radon-Nikodym derivative
Let (Ω,F ,P) be a probability space. Given a non-negative r.v. X with E [X ]= 1, we can define
a the measure Q= X ·P by

Q[A]= E[
1{A} · X

]
.

It is easy to show that X is the unique r.v. such that Q= X ·P.
In this case we call X the Radon-Nikodym derivative of Q with respect to P, and denote

dQ
dP

(ω)= X (ω).

20.2 Absolute continuity
Note that

P[A]= 0 implies Q[A]= 0, (20.1)

so that not every measure Q can be written as X ·P for some X . When Q and P satisfy (20.1)
then we say that Q is absolutely continuous relative to P.

Example 20.1. • The uniform distribution on [0,1] is absolutely continuous relative to
the uniform distribution on [0,2].

• If P [A]> 0 then P [·|A] is absolutely continuous relative to P.

• The point mass δ1/2 is not absolutely continuous relative to the uniform distribution on
[0,1].

• The i.i.d. q measure on {0,1}N is not absolutely continuous relative to the i.i.d. p measure
on {0,1}N, unless p = q.

Lemma 20.2. If Q is absolutely continuous relative to P, then for each ε > 0 there exists a
δ> 0 such that, for every measurable A, P[A]< δ implies Q[A]< ε.
Proof. Assume the contrary, so that there is some ε and a sequence of events (A1, A2, . . .) with
P[An] < 2−n and Q[An] ≥ ε. Let A =∩n ∪m>n Am be the event that infinitely many of these
events occur. Then by Borel-Cantelli P[A]= 0. On the other hand Q[A]≥ ε, in contradiction
to absolute continuity.
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20.3 The Radon-Nikodym Theorem
Recall that F is separable if it generated by a countable subset {F1,F2, . . .}. We can assume
w.l.o.g. that this subset is a π-system.

Theorem 20.3 (Radon-Nikodym Theorem). Let (Ω,F ,P) be a probability space with F

separable, and let Q be absolutely continuous relative to P. Then there exists a r.v. X such that
Q= X ·P.

Proof. Let Fn =σ(F1, . . . ,Fn). Then Fn is a finite sigma-algebra, and as such is the set of all
possible unions of {Bn

1 , . . . ,Bn
k}, a finite partition of Ω. Define the Fn-measurable r.v. Xn as

follows. For a given ω ∈Ω there is a unique Bn ∈ {Bn
1 , . . . ,Bn

k} such that ω ∈ Bn. Set

Xn(ω)= Xn(Bn)= Q[Bn]
P[Bn]

,

where we take 0/0= 0. It is easy to verify that E [Xn]= 1, and that for every B ∈Fn it holds
that

Q[B]= E[
1{B} · Xn

]
,

so that on Fn it holds that Xn is the Radon-Nikodym derivative dQ/dP.
Now, since (F1,F2, . . .) is a filtration, each element in Bn is the disjoint union of (at most)

two sets Bn+1
i and Bn+1

j . Hence

E [Xn+1|Fn](ω)=
Xn+1(Bn+1

i ) ·P[
Bn+1

i

]+ Xn+1(Bn+1
j ) ·P

[
Bn+1

j

]
P

[
Bn+1

i

]+P[
Bn+1

j

]

=
Q[Bn+1

i ]
P[Bn+1

i ]
·P[

Bn+1
i

]+ Q[Bn+1
j ]

P[Bn+1
j ]

·P
[
Bn+1

j

]
P [Bn]

=
Q[Bn+1

i ]+Q[Bn+1
j ]

P [Bn]

= Q[Bn]
P [Bn]

= Xn(ω),

and thus (X1, X2, . . .) is a martingale w.r.t. the filtration (F1,F2, . . .). Since it is non-negative
then it converges almost surely to some r.v. X .

We now claim that (X1, X2, . . .) are uniformly integrable, in the sense that for every ε there
exists a K such that for all n it holds that

E
[
Xn ·1{Xn>K}

]< ε.
62



To see this, recall that E [Xn]= 1, note that Xn is non-negative, and apply Markov’s inequality
to arrive at

P [Xn > K]< 1
K

.

Now, by Lemma 20.2, if we choose K large enough then this implies that Q[Xn > K]< ε. But
the event {Xn > K} is in Fn, since Xn is Fn-measurable. Hence

E
[
Xn ·1{Xn>K}

]=Q[Xn > K]< ε.

This proves that (X1, X2, . . .) are uniformly integrable. An important result (which is not
hard but which we will not prove) is that if Xn → X almost surely, then uniform integrability
implies that this convergence is also in L 1, in the sense that E [|Xn − X |]→ 0. It follows that
for any Fi ∈ {F1,F2, . . .}

lim
n
E
[
1{Fi} · (Xn − X )

]≤ lim
n
E
[
1{Fi} · |Xn − X |]= 0,

and thus

E
[
1{Fi} · X

]= lim
n
E
[
1{Fi} · Xn

]=Q[Fi].

Thus the measure X ·P agrees with Q on the generating algebra {F1,F2, . . .}, and thus
Q= X ·P.
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21 Large deviations
Let (X1, X2, . . .) be i.i.d. real random variables. Denote X = X1 and let µ= E [X ]. Let

Zn = 1
n

n∑
k=1

Xk.

By the law of large numbers we expect that Zn should be close to µ for large n. What is the
probability that it is larger than some η>µ? We already proved the Chernoff lower bound.
We here prove an asymptotically matching upper bound.

21.1 The cumulant generating function
Recall that the moment generating function of X is

M(t)= E
[
etX

]
,

and that its cumulant generating function is

K(t)= log M(t)= logE
[
etX

]
.

Of course, these may be infinite for some t. Let I, the domain of both, be the set on which
they are finite, and note that 0 ∈ I.

Claim 21.1. I is an interval, and K is convex on I.

For the proof of this claim we will need Hölder’s inequality. For p ∈ [1,∞] and a real r.v. X
denote

|X |p = E[|X |p]1/p.

Lemma 21.2 (Hölder’s inequality). For any p, q ∈ [1,∞] with 1/p+1/q = 1 and r.v.s X ,Y it
holds that

|X ·Y |1 ≤ |X |p · |Y |q .

Exercise 21.3. Prove Hölder’s inequality. Hint: use Young’s inequality, which states that for
every real x, y≥ 0 and p, q > 1 with 1/p+1/q = 1 it holds that

xy≤ xp

p
+ yq

q
.

Proof of Claim 21.1. Assume a,b ∈ I. Then for any r ∈ (0,1)

K(ra+ (1− r)b)= logE
[
e(ra+(1−r)b)X

]
= logE

[(
eaX

)r (
ebX

)1−r
]
.
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By Hölder’s inequality

K(ra+ (1− r)b)≤ logE
[(

eaX
)r]1/r

+ logE
[(

ebX
)1−r

]1/(1−r)

= logE
[
eaX

]r + logE
[
ebX

]1−r

= r logE
[
eaX

]
+ (1− r) logE

[
ebX

]
= rK(a)+ (1− r)K(b).

Since K is non-negative it follows that it is finite on ra+ (1− r)b, and thus I is an interval on
which it is convex.

Applying the Dominated Convergence Theorem inductively can be used to show that M
and K are smooth (i.e., infinitely differentiable) on the interior of I.

21.2 The Legendre transform
Let the Legendre transform of K be given by

K?(η)= sup
t>0

(tη−K(t)).

It turns out that the fact that K is smooth and convex implies that K? is also smooth and
convex. Therefore, if the supremum in this definition is obtained at some t, then K ′(t) = η.
Conversely, if K ′(t)= η for some t, then this t is unique and K?(η)= tη−K(t).

Theorem 21.4 (Chernoff bound).

P
[
Zn ≥ η]≤ e−K?(η)n.

Proof. For any t ≥ 0

P
[
Zn ≥ η]≤P[

tZn ≥ tη
]

=P
[
et

∑
k≤n Xk ≥ etηn

]
≤ E

[
e

∑
k≤n tXk

]
etηn

= e−(tη−K(t))n.

Optimizing over t yields the claim.

21.3 Large deviations
Theorem 21.5. If η= K ′(t) for some t in the interior of I then

P
[
Zn ≥ η]= e−K?(η)n+o(n).
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Proof. One side is given by the Chernoff bound. It thus remains to prove the upper bound.
Let Zn =∑n

k=1 Xk. We want to prove that

P
[
Zn ≥ ηn

]= e−K?(η)n+o(n).

For a given n and t ≥ 0, define the measure P̃ by

dP̃
dP

= entZn−nK(t).

Under this measure (X1, . . . , Xn) are still i.i.d., and that their distribution does not depend on
n:

P̃[X1 ∈ A1, . . . , Xn ∈ An]= Ẽ
[

n∏
i=1

1{X i∈A i}

]

= E
[

entZn−nK(t)
n∏

i=1
1{X i∈A i}

]

= E
[

et(X1+···+Xn)−nK(t)
n∏

i=1
1{X i∈A i}

]

= E
[

n∏
i=1

1{X i∈A i}e
tX i−K(t)

]

=
n∏

i=1
E
[
1{X i∈A i}e

tX i−K(t)
]

.

Using the fact that the expectation of a random variable is equal to the derivative at zero
of its cumulant generating function, a simple calculation shows that

Ẽ[X1]= Ẽ[Zn]= K ′(t).

Choose any η< η and t such that K ′(t) ∈ (η,η), so that Ẽ[Zn]= K ′(t) ∈ (η,η). Then

P
[
η≤ Zn

]≥P[
η≤ Zn ≤ η]

= E
[
1{η≤Zn≤η}

]
= Ẽ

[
1{η≤Zn≤η}e

−(ntZn−nK(t))
]

≥ Ẽ
[
1{η≤Zn≤η}e

−(ntη−nK(t))
]

= e−(tη−K(t))nẼ
[
1{η≤Zn≤η}

]
= e−(tη−K(t))nP̃

[
η≤ Zn ≤ η] .

Since Ẽ[Zn] ∈ (η,η), and since (X1, . . . , Xn) are i.i.d. under P̃ with a distribution that does
not depend on n, by the law of large numbers,

P̃[η≤ Zn ≤ η]→n 1,
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and so

lim
n→∞

1
n

logP
[
η≤ Zn

]≥−(tη−K(t)).

Since this holds for any η > η and η > K ′(t) > η, it also holds for η = η and t∗ such that
K ′(t∗)= η. So

lim
n→∞

1
n

logP
[
η≤ Zn

]≥−(t∗η−K(∗t))

or

P
[
η≤ Zn

]≥ e−(t∗η−K(t∗))n+o(n).

Finally, since K is convex and smooth, and since K ′(t∗)= η, then t is the maximizer of tη−K(t),
and thus t∗η−K(t∗)= K?(η). We have thus shown that

P
[
η≤ Zn

]≥ e−K?(η)n+o(n).
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22 Stationary distributions and processes
Given a transition matrix P on some state space S, and given a Markov chain (X1, X2, . . .)
over this P, the law of X2 is given by

P [X2 = t]=
∑
s
P [X1 = s, X2 = t]

=∑
s
P [X1 = s]P [X2 = t|X1 = s]

=∑
s
P [X1 = s]P(s, t).

Thus, if we think of the distributions of X1 and X2 as vectors v1,v2 ∈ `1(S), then we have
that v2 = v1P.

A non-negative left eigenvector of P is called a stationary distribution of P. It corresponds
to a distribution of X1 that induces the same distribution on X2. By the Perron-Frobenius
Theorem, if S is finite then P has a stationary distribution. Furthermore, if P is also
irreducible then this distribution is unique.

Exercise 22.1. The uniform distribution on Z/nZ is the unique stationary distribution of the
µ random walk (recall that µ is generating).

Let (Y1,Y2, . . .) be a general process. We say that this process is stationary (or shift-
invariant) if its law is the same as the law of (Y2,Y3, . . .). Equivalently, for every n, the law of
(Yk+1, . . . ,Yk+n) is independent of k.

Exercise 22.2. Show that the two definitions are indeed equivalent.

Claim 22.3. If (Y1,Y2, . . .) is a Markov chain, and if the distribution of Y1 is stationary, then
(Y1,Y2, . . .) is a stationary process.

Returning to our scenery reconstruction problem, we can use what we learned above to
deduce that (Z1, Z2, . . .) is a stationary process. It easily follows that

(F1,F2, . . .)= ( f (Z1), f (Z2), . . .)

is also a stationary process.
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23 Stationary processes and measure preserving trans-
formations

We say that a stationary process (Y1,Y2, . . .) is ergodic if its shift-invariant sigma-algebra is
trivial. That is, if for every shift-invariant event A it holds that P [A] ∈ {0,1}.

Some examples:

• An i.i.d. process is obviously stationary. By Kolmogorov’s zero-one law its tail sigma-
algebra is trivial, and so its shift-invariant sigma-algebra is also trivial. Thus it is
ergodic.

• Let (Y1,Y2, . . .) be binary random variables such that

P [(Y1,Y2, . . .)= (1,1, . . .)]= 1/2

and

P [(Y1,Y2, . . .)= (0,0, . . .)]= 1/2.

This process is stationary but not ergodic; the event limn Yn = 1 is shift-invariant and
has probability 1/2.

• Let (Y1,Y2, . . .) be binary random variables such that

P [(Y1,Y2, . . .)= (1,0,1,0, . . .)]= 1/2

and

P [(Y1,Y2, . . .)= (0,1,0,1, . . .)]= 1/2.

This process is stationary and ergodic.

• Let P be chosen uniformly over [0,1], and let (Y1,Y2, . . .) be binary random variables,
which conditioned on P are i.i.d. Bernoulli with parameter P. This process is stationary
but not ergodic. For example, the event that

lim
n

1
n

∑
k≤n

Yk ≤ 1/2

is a shift-invariant event that has probability 1/2.

• Let (Y1,Y2, . . .) be a Markov chain, with the distribution of Y1 equal to some stationary
distribution. Then this process is stationary. It is ergodic iff the distribution of Y1 is
not a non-trivial convex combination of two different stationary distributions.

• Let Y1 be distributed uniformly on [0,1). Fix some 0 < α < 1, and let Yn+1 = Yn +α
mod 1. This is a stationary process, and it is ergodic iff α is irrational. We will show
this later.
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A generalization of the last example is the following. Let (Ω,F ,ν) be a probability space,
and let T : Ω→Ω be a measurable transformation that preserves ν. That is, ν(A)= ν(T−1(A))
for all A ∈F . We say that A ∈F is T-invariant if T−1(A)= A, and note that the collection of
T-invariant sets is a sub-sigma-algebra. Let Y1 have law ν, and let each Yn+1 = T(Yn). Then
(Y1,Y2, . . .) is a stationary process.

Claim 23.1. (Y1,Y2, . . .) is ergodic iff for every T-invariant A ∈F it holds that ν(A) ∈ {0,1}.

Proof. The map π : Ω→ΩN given by π(ω)= (ω,T(ω),T2(ω), . . .) is a bijection that pushes the
measure ν to the law P of (Y1,Y2, . . .), and thus these two probability spaces are isomorphic.
Furthermore, if we denote the shift by σ : ΩN→ΩN , then π is equivariant, in the sense that
π◦T =σ◦π. It follows that the T-invariant sigma-algebra is mapped to the shift-invariant
sigma-algebra, and thus one is trivial iff the other is trivial.

Of course, if we have a process (Y1,Y2, . . .) taking values in Ωn, then stationarity is
precisely invariance w.r.t. the shift transformation T : Ω→ Ω given by T(x1, x2, x3, . . .) =
(x2, x3, . . .). Thus stationary processes and measure preserving transformations are two
manifestations of the same object. We say that T is ergodic if the T-invariant sigma-algebra
is trivial. That is, if for every measurable A such that T−1(A)= A it holds that A has measure
in {0,1}.

Claim 23.2. Let (Ω,F ,P) be a probability space, with T : Ω→Ω an ergodic measure preserv-
ing transformation.

If Z : Ω→R is a T-invariant random variable (i.e., Z(ω)= Z(T(ω)) for almost every ω ∈Ω)
then there is some z ∈R such that P [Z = z]= 1.

Exercise 23.3. Prove this claim. Hint: If Z is T-invariant then for any a < b ∈R, the event
Z ∈ [a,b] is T-invariant, and thus has measure either 0 or 1.

Consider the map Rα : S1 → S1 given by Rα(e2πiz)= e2πi(z+α). This is a measure preserving
transformation of S1, equipped with the uniform measure.

Proposition 23.4. Rα is ergodic iff α is irrational.

Proof. If α= k/m is rational, then the set {e2πiz : z ∈∪m−1
n=0 [n/m,n/m+1/2m]} is Rα-invariant

and has measure 1/2. Hence Rα is not ergodic.
If α is irrational, let f : S1 → {0,1} be the indicator of an Rα-invariant set. We can use the

Fourier transform to write f as

f (z)= ∑
k∈Z

cne2πikz

for some coefficients (cn). Then [Rα f ](z) is

[Rα f ](z)= ∑
k∈Z

cke2πik(z−α) = ∑
k∈Z

dke2πikz,

where dk = cke−2πikα. Since A is Rα-invariant then Rα f = f , and so ck = dk. Since α is
irrational, e−2πikα 6= 1 unless k = 0, and so we have that ck = 0 unless k = 0. Thus f is
constant, and so it must be the indicator of a set of measure either 0 or 1.
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24 The Ergodic Theorem
Theorem 24.1 (The Pointwise Ergodic Theorem). Let (Ω,F ,P) be a probability space, with
T : Ω→Ω a measure preserving transformation. If T is ergodic then for every X ∈L 1(Ω,F ,P)
it holds that for ν-almost every ω ∈Ω

lim
n

1
n

n−1∑
k=0

X (Tk(ω))= E [X ].

In the language of stationary processes, one can say that if (Y1,Y2, . . .) is a stationary
process with trivial shift-invariant sigma-algebra, and if f (Y1,Y2, . . .) ∈ L 1, then almost
surely

lim
n

1
n

n∑
k=1

f (Yk,Yk+1, . . .)= E [ f (Y1,Y2, . . .)].

This Theorem was originally proved by Birkhoff [?]. We give a proof due to Katznelson
and Weiss [?].

Proof. We assume without loss of generality that X is non-negative; otherwise apply the
proof separately to X+ and X−. Define X∗ : Ω→Ω by

X∗(ω)= lim
n

1
n

n−1∑
k=0

X (Tk(ω))

whenever this limit exists. We want to show that it exists w.p. 1, and that P [X∗ = E [X ]]= 1.
Define X : Ω→R by

X (ω)= limsup
n

1
n

n−1∑
k=0

X (Tk(ω)),

and likewise

X (ω)= liminf
n

1
n

n−1∑
k=0

X (Tk(ω)).

Note that both are T-invariant, and so there are some x and x such that

P
[
X = x, X = x

]
= 1.

Proving that

x ≤ E [X ]≤ x (24.1)

will thus finish the proof.
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Fix some ε> 0. Let N(ω) be the first positive integer such that

1
N(ω)

N(ω)−1∑
k=0

X (Tk(ω))+ε≥ x (24.2)

Since N(ω) is a.s. finite, there is some K ∈N such that the set A = {ω : N(ω)> K} has measure
less than ε/x. Define

X̃ (ω)=
{

X (ω) ω 6∈ A
max{X (ω), x} ω ∈ A,

and also

Ñ(ω)=
{

N(ω) ω 6∈ A
1 ω ∈ A.

Note that in analogy to (24.2) we have that

1
Ñ(ω)

Ñ(ω)−1∑
k=0

X̃ (Tk(ω))+ε≥ x,

or, rearranging, that

Ñ(ω)−1∑
k=0

X̃ (Tk(ω))≥ Ñ(ω)(x−ε). (24.3)

Now X and X̃ only differ on A, and when they do differ then it is at most by x, since X is
non-negative. Hence

E
[
X̃

]= E[
X + (X̃ − X )

]
= E [X ]+E[

X̃ − X
]

= E [X ]+E[
(X̃ − X ) ·1{A}

]
≤ E [X ]+E[

x ·1{A}
]

≤ E [X ]+ x ·ε/x
= E [X ]+ε. (24.4)

Now, let L = K x/ε. For each ω ∈Ω, let ω0 =ω and let

ω j+1 = T Ñ(ω j)(ω j).

It follows that

ω j = T Ñ(ω0)+Ñ(ω1)+···+Ñ(ω j−1)(ω).
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Let J(ω) be the maximal j such that

Ñ(ω0)+ Ñ(ω1)+·· ·+ Ñ(ω j)< L,

and let

ÑL(ω)= Ñ(ω0)+ Ñ(ω1)+·· ·+ Ñ(ωJ(ω)).

Note that ÑL(ω)> L−K . Then we can write

L−1∑
k=0

X̃ (Tk(ω))=
Ñ(ω0)∑
k=0

X̃ (Tk(ω0))+·· ·+
Ñ(ωJ(ω))∑

k=0
X̃ (Tk(ωJ(ω)))+

L−1∑
k=ÑL(ω)

X̃ (Tk(ω))

Applying (24.3) to each term but the last yields

L−1∑
k=0

X̃ (Tk(ω))≥ ÑL(ω)(x−ε)+
L−1∑

k=ÑL(ω)
X̃ (Tk(ω)),

and using the fact that X is non-negative means

L−1∑
k=0

X̃ (Tk(ω))≥ ÑL(ω)(x−ε).

Since ÑL(ω)> L−K we can apply this estimate too, and, rearranging, arrive at

1
L

L−1∑
k=0

X̃ (Tk(ω))≥ x− K
L

x−ε

which by the choice of L we can write as

1
L

L−1∑
k=0

X̃ (Tk(ω))≥ x−2ε.

Now, by T-invariance the expectation of the l.h.s. is just equal to the expectation of X̃ . Hence

E
[
X̃

]≥ x−2ε.

Putting this together with (24.4) yields

x ≤ E[
X̃

]+2ε≤ E [X ]+3ε,

and taking ε to zero yields x ≤ E [X ]. This completes the first half of the proof of (24.1); the
second follows by a similar argument.

Exercise 24.2. Use the Ergodic Theorem to prove the strong law of large numbers.
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25 The weak topology and the simplex of invariant mea-
sures

Let X be a compact metrizable topological space. By the Riesz Representation Theorem we
can identify P (X ), the set of probability measures on X , with the positive bounded linear
functionals on C(X ) that assign 1 to the constant function 1. The space X∗ of bounded linear
functionals on C(X ) comes equipped with the compact, metrizable weak* topology, under
which ϕn →ϕ if ϕn( f )→ϕ( f ) for all f ∈ C(X ). The restriction of this topology to the (closed)
set of probability measures yields what probabilists call the weak topology on the probability
measures on X .

In the important case that X = {0,1}N we have that νn → ν weakly if for every clopen A it
holds that νn(A)→ ν(A). In the case X =R∪ {−∞,∞} we have that νn → ν if limsupnνn(A)≤
ν(A) for all closed A, or if liminfnνn(A)≥ ν(A) for all open A.

Let X = {0,1}Z, and denote by I (X ) the set of stationary (or shift-invariant) probability
measures on X .

Claim 25.1. I (X ) is a closed subset of P (X ).

Proof. Denote the shift by σ : X → X . Assume that νn is a sequence in I (X ) that converges
to some ν ∈P (X ). We prove the claim by showing that ν is stationary.

Let A be a clopen subset of X . Then

ν(A)= lim
n
νn(A)= lim

n
νn(σ(A))= ν(σ(A)),

where the last equality follows from the fact that A being clopen implies that σ(A) is clopen.
Thus ν is invariant on a generating sub-algebra of the sigma-algebra, and by a standard
argument it is invariant.

Clearly, I (X ) is a convex set. The next proposition shows (a more general claim which
implies) that its extreme points Ie(X ) are the ergodic measures.

Proposition 25.2. A T-invariant measure ν on (Ω,F ) is ergodic iff it is extreme.

Proof. Assume that ν is not ergodic. Then there is some T-invariant A ∈ F such that
p := ν(A) ∈ (0,1). Let ν1 be given by ν1(B) = ν(B | A) = 1

pν(B∩ A), and let ν2(B) = ν(B | Ac).
Then

ν1(T−1B)= 1
p
ν((T−1(B))∩ A))

= 1
p
ν((T−1(B))∩T−1(A)))

= 1
p
ν((T−1(B∩ A)))

= 1
p
ν(B∩ A)

= ν1(B).
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And thus ν1 is T-invariant. The same argument applies to ν2, since Ac is also T-invariant.
Finally, ν= pν1 + (1− p)ν2.

For the other direction, assume ν = pν1 + (1− p)ν2 for some p ∈ (0,1). Clearly, ν1 is
absolutely continuous relative to ν, and so we write ν1 = X ·ν for some X ∈L 1(ν).

We now claim that X is T-invariant; we prove this for the case that T is invertible
(although it is true in general). In this case, for any A ∈F

ν1(A)= ν1(T(A))=
∫
Ω
1{A}(T−1(ω)) · X (ω)dν(ω)

=
∫
Ω
1{A}(T−1(ω)) · X (ω)dν(T−1(ω))

=
∫
Ω
1{A}(ω) · X (T(ω))dν(ω),

and so X ◦T is also a Radon-Nikodym derivative dν1/dν. But by the uniqueness of this
derivative X and X ◦T agree almost everywhere. It is a now nice exercise to show that there
exists some X ′ that is equal to X almost everywhere and is T-invariant. It then follows by
Claim 23.2, and by the fact that E [X ]= 1, that P [X = 1]= 1, and thus ν= ν1.

This Theorem has an interesting consequence.

Exercise 25.3. Assume ν,µ are both T-invariant ergodic measures on (Ω,F ). Show that
there exist two disjoint set A,B ∈ F such that ν(A) = 0 and µ(A) = 1, while ν(B) = 1 and
µ(B)= 0.

Thus ν and µ “live in different places.”
In fact, it is possible to show that there is a map β : Ie(X )→F with the properties that

1. µ(βµ)= 1 for all µ ∈Ie(X ).

2. For all µ 6= ν ∈Ie(X ) it holds that βµ∩βν =;.

Using this, it is possible to show that I (X ) is in fact a simplex: a compact convex set in which
there is a unique way to write each element as a convex integral of the extreme points.

Proposition 25.4. The ergodic measures Ie(X ) are dense in I (X ).

Thus the simplex I (X ) has the interesting property that its extreme points are dense. It
turns out that there is only one such simplex (up to affine homeomorphisms), which is called
the Poulsen simplex.

Proof. It suffices to show that for ν,µ ∈Ie(X ) and θ = 1
2ν+ 1

2µ it is possible to find θn ∈Ie(X )
s.t. limnθn = θ.

To this end, fix n and define θn as follows. Let the law of the r.v.s (Xk)k∈Z be µ, and the law
of (Yk)k∈Z be ν. For m ∈Z, let (X m

0 , . . . , X m
n−1) be independent of all previously defined random

variables, and with law equal to that of (X0, . . . , Xn−1). Define (Y m
0 , . . . ,Y m

n−1) analogously.
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Define (Wk)k∈Z by

Wk =
{

X bk/nc
k mod n if bk/nc is even

Y bk/nc
k mod n if bk/nc is odd.

Finally, choose N uniformly at random from {0,1, . . . ,2n−1}, and define (Zk)k∈Z by

Zk =Wk+N .

Let θn be the law of (Zk).
It is straightforward (if tedious) to verify that (Zk) is stationary. We leave it as an exercise

to show that it is ergodic. Thus to finish the proof we have to show that limnθn = θ.
Fix M ∈N, and consider the event that N ∈ {1, . . . , M}. As n tends to infinity, the probability

of this event tends to zero. Thus, if we condition on N, with probability that tends to 1/2
we have that the law of (Z1, . . . , ZM) is equal to the law of (X1, . . . , XM), and likewise for
(Y1, . . . ,YM). This completes the proof.
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26 Percolation
Let V be a countable set, and let G = (V ,E ) be a locally finite, simple symmetric graph. That
is, E is a symmetric relation on V with E ∩ {v}×V finite for each v ∈ V . We also assume that
G is connected, so that the transitive closure of E is V ×V .

The i.i.d. p percolation measure on {0,1}E is simply the product Bernoulli measure, in
which we choose each edge independently with probability p. We will denote this measure
by Pp [·], and will denote by E the random edge set with this law. G = (V ,E) will be the
corresponding random graph.

Note that G will in general not be connected. For each v ∈ V we denote by K(v) the
(random) connected component that v belongs to in G. We denote by {v ↔∞} the event that
K(v) is infinite. We denote by K∞ the event that there is some v for which K(v) is infinite.

Claim 26.1. The probability of K∞ is either 0 or 1. In the former case, for every v ∈ V ,
Pp [v ↔∞]= 0, while in the latter Pp [v ↔∞]> 0.

Proof. Enumerate E = (e1, e2, . . .), and let An = {e i ∈ E}. Then (A1, A2, . . .) is an i.i.d. sequence.
Clearly K∞ is σ(A1, A2, . . .)-measurable, and also clearly it is a tail event. Hence the first
part of the claim follows by Kolmogorov’s 0-1 law.

Since the event K∞ contains {v ↔∞}, it is immediate that Pp [K∞]= 0 implies Pp [v ↔∞]=
0. Assume now that Pp [K∞]= 1. Then there is some w ∈ V such that, with positive probability,
Pp [w ↔∞]. Let P = (e1, e2, . . . , en) be a path between v and w.

Consider the random variable Ẽ taking values in {0,1}E defined as follows: for every edge
e 6∈ P, we set e ∈ Ẽ iff e ∈ E. And we set e ∈ Ẽ for all e ∈ P. We (you) prove in the exercise
below that the law of Ẽ is absolutely continuous relative to the law of E.

Denote G̃ = (V , Ẽ), and denote by K̃(v) the connected component of v in G̃. Now, K̃(v)=
K̃(w), since v and w are connected in G̃. Also, K̃(w) contains K(w), since Ẽ contains E. Hence
the event {|K̃(w)| =∞} occurs with positive probability, and so the same holds for K̃(v)= K̃(w).
Finally, by absolute continuity, the same holds for K(v), and so Pp [v ↔∞]> 0.

Exercise 26.2. Prove that the law of Ẽ is absolutely continuous relative to the law of E.

Claim 26.3. If q > p then Pq [K∞]≥Pp [K∞].

To prove this claim we prove a stronger theorem, and in the process introduce the
technique of coupling. Let Ω = {0,1}N, with F the Borel sigma-algebra. We consider the
natural partial order on Ω given by ω ≥ ω′ if ωn ≥ ω′

n for all n ∈ N. We say that A ∈ F is
increasing if for all ω ≥ ω′ it holds that ω′ ∈ A implies ω ∈ A. Let Pp [·] denote the i.i.d. p
measure on Ω.

Theorem 26.4. If A is increasing then q > p implies Pq [A]≥Pp [A].

Proof. Let (X1, X2, . . .) be i.i.d. random variables, each distributed uniformly on [0,1]. For
each n let Qn =1{Xn≤q} and Pn =1{Xn≤p}. Note that P [Qn = 1]= q and P [Pn = 1]= p, and that
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(Q1,Q2, . . .) is i.i.d., as is (P1,P2, . . .). Hence the law of (Q1,Q2, . . .) (resp., (P1,P2, . . .)) is Pq [·]
(resp., Pp [·]). Note also that

(Q1,Q2, . . .)≥ (P1,P2, . . .),

since q > p. Hence for any increasing event A ⊂ {0,1}N it holds that (P1,P2, . . .) ∈ A implies
(Q1,Q2, . . .) ∈ A, and thus Pq [A]≤Pp [A].

The construction in this proof is an example of coupling. Formally, a coupling of two
probability spaces (Ω,F ,P) and (Ω′,F ′,P′), is a probability space (Ω×Ω′,σ(F ×F ′),Q) such
that the projections on the two coordinates pushes Q forward to P and P′.

Since Pp [K∞] ∈ {0,1}, since Pp [K∞] is weakly increasing in p, we are interested in the
critical percolation probability

pc = sup{p : Pp [K∞]= 0}.

An interesting (and often hard) question is whether Ppc [K∞] is zero or one.
Let G be the infinite k-ary tree with root o. In this case we can calculate pc, by noting

that the event {o ↔∞} can be thought of as the event that the Galton-Watson tree with
children distribution B(k, p) is infinite. We know that this happens with positive probability
iff p > 1/k. Hence in this case pc = 1/k, and Ppc [K∞]= 0.
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27 The mass transport principle
Let G = (V ,E ) be a locally finite, countable graph. A graph automorphism is a bijection
f : V → V such that (v,w) ∈ E iff ( f (v), f (w)) ∈ E . The automorphisms of a graph form the
group Aut(G ) under composition. We say that G is transitive if its automorphism group acts
on it transitively. That is, if for all v,w ∈ V there is a graph automorphism f s.t. f (v) = w.
Intuitively, this means that the geometry of the graph “looks the same” from the point of
view of every vertex.

An important example is when Γ is finitely generated by a symmetric finite subset S,
and G = (V ,E ) with V = Γ is the corresponding Cayley graph. In this case it is easy to
see that the Γ action on itself is an action by graph automorphisms, which is furthermore
already transitive. We will restrict our discussion to this setting, even though it all extends
to unimodular transitive graphs; these are graphs with a unimodular automorphism group.

A map f : Γ×Γ→ [0,∞) is a mass-transport if it is invariant under the diagonal Γ-action:

f (h,k)= f (gh, gk)

for all g,h,k ∈Γ. It is useful to think about f as indicating how much “mass” is passed from
h to k, where the amount passed can depend on identities of h and k, but in a way that (in
some sense) only depends on the geometry of the graph and not on their names.

Theorem 27.1 (Mass Transport Principle for Groups). For every mass transport f : Γ×Γ→
[0,∞) and g ∈Γ it holds that ∑

k∈G
f (g,k)= ∑

k∈G
f (k, g).

That is, the total mass flowing out of g is equal to the total mass flowing in.

Proof. By invariance ∑
k∈G

f (g,k)= ∑
k∈G

f (k−1 g, e).

Changing variables to h = k−1 g yields

= ∑
h∈G

f (h, e).

Applying invariance again yields ∑
h∈G

f (gh, g)

and again changing variables to k = gh yields the desired result.
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Figure 1: Spanning forest.

As an application, consider the following random subgraph E of the standard Cayley graph
of Z2. For each z,w1,w2 ∈Z2 such that w1 = z+ (0,1) and w2 = z+ (1,0), we independently set
(z,w1) ∈ E, (z,w2) 6∈ E w.p. 1/2, and (z,w1) 6∈ E, (z,w2) ∈ E w.p. 1/2.

For distinct z,w ∈Z2, we say that w is a descendant of z (and z is an ancestor of w) in E
if there is a path between w and z, and if w ≤ z in both coordinates.

Note that, by construction,

1. E has no cycles, and each node is adjacent to at least one edge, and so E is a spanning
forest.

2. Each w has infinitely many ancestors.

3. If w ≤ z then the number of descendants of w is independent of the number of descen-
dants of z.
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Proposition 27.2. The number of descendants of each w ∈ Z is almost surely finite, with
infinite expectation.

Proof. Let f (w, z) equal the probability that z is an ancestor of w, and note that by the
invariance of the definitions f is a mass transport.

The sum
∑

z f (w, z) is the expected number of ancestors of w, which is infinite, since w a.s.
has infinitely many ancestors. It follows by the mass transport principle that

∑
z f (z,w), the

expected number of descendants of w, is likewise infinite.
It is easy to see that the expected number of direct descendants of any w is 1. By the

independence property mentioned above, the process (N1, N2, . . .) - where Nk is the number
of descendants at distance k from w - is a non-negative martingale. It thus converges, and
moreover must converge to an integer, and so converges to 0.

Note that we can define the same process on Zd, where now each vertex has d potential
ancestors, with the proof applying as is. We can further generalize to groups that have a set
S such that S∪S−1 generates Γ and the graph induced by S has no cycles.

Exercise 27.3. On Zd, prove that E is a spanning tree iff d ≤ 3.
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28 Majority dynamics
Let G = (V ,E ) be a locally finite, countable (or finite) graph, and denote by N(v) the neighbors
of v ∈ V . We would like |N(v)| to be odd, and so we either add or remove v to N(v) to achieve
this.

Let (V1,V2, . . .) be random subsets of V , with the property that if v,w ∈Vn then (v,w) 6∈ E;
that is, each Vn is an independent set.

Let Θ= {−1,+1}V , and consider the following sequence of random variables (X1, X2, . . .),
each taking values in Θ. First, let X1 be chosen i.i.d. 1/2. Given Xn, we define Xn+1 as follows.
For v 6∈Vn let Xn+1(v)= Xn(v). For v ∈Vn let

Xn+1(v)= sgn
∑

w∈N(v)
Xn(w).

Note that since |N(v)| is odd then the sum is never 0, and there is no ambiguity with taking
the signum. This process is called majority dynamics, or zero temperature Glauber dynamics.

Proposition 28.1. If G is finite then Xn converges (hence stabilizes) almost surely.

Proof. Let

Hn = ∑
(v,w)∈E

Xn(v) · Xn(w),

so that Hn is the number of edges in the graph along which there is agreement, minus the
number of edges along which there is disagreement.

Note that in majority dynamics, whenever a node changes its label and non of its neighbors
do, the total number of disagreements in the graph strictly decreases, and thus Hn decreases.
Since Vn is an independent set, changes at a node are always done while keeping its neighbors
constant, and thus Hn decreases by at least 2 with each change in Xn. Since Hn is bounded
from below by −|E|, Xn must stabilize.

In fact, this proof can be generalized to the case that G is infinite, but with bounded
degrees and subexponential growth. This is no longer true on general graphs:

Exercise 28.2. Prove that on the 3-regular tree Xn does not in general stabilize.

It is also not true if the Vn are not independent sets.
Let G be a Cayley graph of a finitely generated group Γ, and choose (V1,V2, . . .) from a

distribution that is invariant to the Γ-action. For example, to choose Vn one can choose
an independent uniform number for each node, and include in Vn only those nodes whose
numbers are higher than all of their neighbors’.

Theorem 28.3. In this setting Xn converges pointwise almost surely.
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Proof. Let

hn = ∑
g∈N(e)

E [Xn(e) · Xn(g)]

Now,

hn+1 −hn = ∑
g∈N(e)

E [Xn+1(e) · Xn+1(g)]−
∑

g∈N(e)
E [Xn(e) · Xn(g)]

= ∑
g∈N(e)

E [Xn+1(e) · Xn+1(g)− Xn(e) · Xn(g)]

If e 6∈Vn and also g 6∈Vn then the term in the expectation is zero. Hence

= ∑
g∈N(e)

E
[
Xn+1(e) · Xn+1(g)− Xn(e) · Xn(g) ·1{e∈Vn}

]
+E[

Xn+1(e) · Xn+1(g)− Xn(e) · Xn(g) ·1{g∈Vn}
]
,

since the two conditioned events {e ∈Vn} and {g ∈Vn} are mutually exclusive. Furthermore,
this implies

= ∑
g∈N(e)

E
[
Xn+1(e) · Xn(g)− Xn(e) · Xn(g) ·1{e∈Vn}

]
+E[

Xn(e) · Xn+1(g)− Xn(e) · Xn(g) ·1{g∈Vn}
]
,

which by the mass transport principle

= 2
∑

g∈N(e)
E
[
Xn+1(e) · Xn(g)− Xn(e) · Xn(g) ·1{e∈Vn}

]
.

Rearranging yields

= 2E

[
(Xn+1(e)− Xn(e)) · ∑

g∈N(e)
Xn(g) ·1{e∈Vn}

]
,

and since, conditioned on e ∈Vn, Xn+1(e)= sgn
∑

g∈N(e) Xn(g), then

= 2E

[
21{Xn+1(e)6=Xn(e)} · |

∑
g∈N(e)

Xn(g)| ·1{e∈Vn}

]
,

Now, by definition 1{Xn+1(e) 6=Xn(e)}·1{e∈Vn} =1{Xn+1(e) 6=Xn(e)}. Also, since |N(e)| is odd, |∑g∈N(e) Xn(g)| ≥
1, and so

≥ 4P [Xn+1(e) 6= Xn(e)].

Hence hn is non-decreasing. Since it is bounded by |N(e)| it converges to some h∞ < ∞.
Furthermore

h∞−h1 ≥ 4
∞∑

n=1
P [Xn+1(e) 6= Xn(e)],

and so the expected number of n such that Xn+1(e) 6= Xn(e) is finite, and in particular Xn(e)
stabilizes w.p. 1. By invariance this holds for every Xn(g), and we have proved our claim.
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29 Scenery Reconstruction: I
Fix n, and let (X = X1, X2, . . .) be i.i.d. random variables on the abelian group Z/nZ. Denote
by µ(k)=P [X = k] their law. Let X0 be uniformly distributed on Z/nZ, and let Zn =∑n

k=0 Xn
be the corresponding random walk. We assume throughout that the support of µ generates
Z/nZ.

Some important examples to keep in mind:

• µ(1)= 1.

• µ(1)= 1−ε, µ(2)= ε.
Fix some f ∈ {0,1}n, and let Fn = f (Zn). The law of (F1,F2, . . .) depends on f ; we think of

these distributions as a family indexed by f . We denote by P f [·] the distribution when we fix
a particular f . Note that P f [·] does not change if we shift f .

Exercise 29.1. Prove this.

Denote by [ f ] the equivalence class of f under shifts. That is, f ′ ∈ [ f ] if there is some
k ∈Z/nZ such that for every m ∈Z/nZ it holds that f ′(k+m)= f (m).

The question of scenery reconstruction is the following: is it possible to determine [ f ]
given (F1,F2, . . .)? In particular we say that we can reconstruct f if there is some measurable

f̂ : {0,1}N→ {0,1}n

such that for every f ∈ {0,1}n it holds that

P f
[
f̂ (F1,F2, . . .) ∈ [ f ]

]= 1. (29.1)

Equivalently, if

P
[
f̂ ( f (Z1), f (Z2), . . .) ∈ [ f ]

]= 1.

In statistics, f̂ is called an estimator of f , and the existence of such an f̂ is called
identifiability (of f ). This clearly depends on µ, and so we say that µ is reconstructive if this
holds.

One can reformulate (29.1) in finitary terms. It is equivalent to the existence of a sequence
( f̂1, f̂2, . . .) with f̂k being σ(F1, . . . ,Fk)-measurable and with

lim
k
P f

[
f̂k(F1, . . . ,Fk) ∈ [ f ]

]= 1

for all f ∈ {0,1}n.
A very interesting question is how quickly does this converge to one (when it does), for µ

chosen uniformly over n; for example for µ(1)= 0.99, µ(2)= 0.01.
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Question 29.2. Let N(n,ε) be the smallest k such that there is an f̂k : {0,1}k → {0,1}n with

P f
[
f̂k(F1, . . . ,Fk) ∈ [ f ]

]≥ 1−ε

for all f . For fixed ε (say 1/3), how does N(n,ε) grow with n?

This is not known; it is not even known if N(·,ε) is exponential or polynomial. The
question of whether a given µ is reconstructive is much better understood.

Theorem 29.3. Let n be a prime > 5, and let µ ∈Qn. Then µ is reconstructive iff ϕµ(k) 6=ϕµ(m)
for all k 6= m. Here ϕµ is given by

ϕµ(k)=ϕX (k)= E
[
e

2πi
n ·k·X

]
= ∑
`∈Z/nZ

e
2πi
n ·k·Xµ(k).

where k · X is multiplication mod n.

The first direction (the case that ϕµ(k) 6=ϕµ(m) for all k 6= m) does not require the extra
assumptions on n and µ. This is due to Matzinger and Lember [?].

To prove this theorem we will need to study a few new concepts.
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30 Scenery reconstruction: II
Fix n ∈N, f ∈ {0,1}n and µ a generating probability measure on Z/nZ, and recall our process
in which X0 is uniform on Z/nZ, (X1, X2, . . .) are i.i.d. with law µ, Zn = X0+ X1+·· ·+ Xn and
Fn = f (Zn). Recall also that are we are interested in guessing (correctly, almost surely) what
[ f ] is (the equivalence class of functions that are shifts of f ) from a single random instance of
(F1,F2, . . .).

Define the a : Z/nZ→R, autocorrelation of f by

a(k)= 1
n

n∑
m=0

f (m) · f (m+k),

and note that a is the same for any f ′ ∈ [ f ]. Imagine that we are willing to settle on
reconstructing a rather than [ f ]. We will show that if the values of the characteristic function
ϕµ are unique then we can reconstruct the a(k)’s.

To this end, we define A : N→R, the autocorrelation of F by

αk = E [FT ·FT+k]

for some T ∈N; by stationarity, the choice of T is immaterial. We will show that if we know
the αk’s the we can infer the ak’s. But this will not help us, unless there some measurable
α̂k : {0,1}N→R such that

P f [α̂k(F1,F2, . . .)=αk]= 1.

A natural candidate for α̂k is the empirical average; we take limsup rather than lim to make
sure α̂k is well defined:

α̂k = limsup
m

1
m

m∑
T=1

FT ·FT+k.

A statement such as “α̂k =αk almost surely” sounds a lot like the strong law of large numbers.
We will show later that this is indeed true, and that it follows from the Ergodic Theorem,
which is a generalization of the SLLN.

Let µ∗µ be the convolution of µ with itself, which is given by

[µ∗µ](k)=∑
m
µ(k−m) ·µ(m).

This is a probability distribution which is exactly the law of X1 + X2. Define analogously the
k-fold convolution µ(k), which is the law of X1 +·· ·+ Xk.

Claim 30.1. For every k ∈N it holds that

αk =
∑
m
µ(k)(m) ·am.
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Proof. We set T = 0, condition on X0 and Zk and thus

αk = E [ f (Z0) · f (Zk)]
= ∑

m,`
E [ f (X0) · f (Zk)|X0 = `, Zk = `+m] ·P [X0 = `, Zk = `+m]

= ∑
m,`

f (`) · f (`+m) · 1
n
·µ(k)(m)

=∑
m

am ·µ(k)(m).

It follows that if we denote by α the column vector (α0, . . . ,αn−1), by a the column vector
(a0, . . . ,an−1), and by M the n×n matrix Mk,m =µ(k)(m) then α= Ma. Assuming (as we will
show later) that we can determine α, it follows that we can determine a if M is invertible.

Claim 30.2. M is invertible iff the values of the characteristic function ϕµ are unique.

Proof. We apply the Fourier transform to each row of M. Since the Fourier transform is an
orthogonal linear transformation, the resulting matrix M̂ is invertible iff M is invertible.

Now, over Z/nZ the Fourier transform is identical to the characteristic function. Since
the kth row of M is the law of X1 +·· ·+ Xk, the kth row of M̂ is given by

ϕX1+···+Xk (m)= E
[
e

2πi
n ·m·(X1+···+Xk)

]
=ϕX (m)k.

Thus M̂ is a Vandermonde matrix, and is invertible iff ϕX has unique values.

Recall that we are interested in reconstructing [ f ] rather than a. To this end we need to
define the two-fold autocorrelation

ak,` =
1
n

n∑
m=0

f (m) · f (m+k) · f (m+k+`),

and its analogue

αk,` = E [FT ·FT+k ·FT+k+`].

It is then easy to show that there is also a linear relation between these two objects, with
the corresponding matrix being M⊗M, the tensor product of M with itself. This is invertible
iff M is invertible, and so we get the same result. However, this still does not suffice, and
we need to add still more indices and calculate n-fold autocorrelations. The appropriate
matrices are again invertible iff M is, and moreover [ f ] is uniquely determined by the n-fold
autocorrelation.
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