LECTURE NOTES ON PROBABILITY

BY

OMER TAMUZ

California Institute of Technology

2018
Contents

1 Why we need measure theory ... 5
 1.1 Riddle 1 ... 5
 1.2 Riddle 2 (Gabay-O'Connor game) 5
 1.3 Riddle 3 ... 5
 1.4 Why we need measure theory ... 5
 1.5 Bonus riddle ... 6

2 Measure theory ... 7
 2.1 π-systems, algebras and sigma-algebras 7

3 Hahn-Kolmogorov Theorem and constructing measures 10

4 Events and random variables ... 13

5 Independence and the Borel-Cantelli Lemmas 15

6 The tail sigma-algebra .. 18

7 Expectations .. 20

8 A strong law of large numbers and the Chernoff bound 23

9 The weak law of large numbers .. 26

10 Conditional expectations ... 28
 10.1 Why things are not as simple as they seem 28
 10.2 Conditional expectations in finite spaces 28
 10.3 Conditional expectations in L^2 29
 10.4 Conditional expectations in L^1 29
 10.5 Some properties of conditional expectation 30

11 The Galton-Watson process ... 31

12 Markov chains .. 34

13 Martingales .. 38

14 Stopping times ... 41

15 Harmonic and superharmonic functions 43

16 The Choquet-Deny Theorem ... 46

17 Characteristic functions and the Central Limit Theorem 48
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Large deviations</td>
<td>50</td>
</tr>
<tr>
<td>19 The Radon-Nikodym derivative</td>
<td>53</td>
</tr>
<tr>
<td>20 Stationary distributions and processes</td>
<td>56</td>
</tr>
<tr>
<td>21 Stationary processes and measure preserving transformations</td>
<td>57</td>
</tr>
<tr>
<td>22 The Ergodic Theorem</td>
<td>59</td>
</tr>
<tr>
<td>23 The weak topology and the simplex of invariant measures</td>
<td>62</td>
</tr>
<tr>
<td>24 Percolation</td>
<td>65</td>
</tr>
<tr>
<td>25 The mass transport principle</td>
<td>67</td>
</tr>
<tr>
<td>26 Majority dynamics</td>
<td>70</td>
</tr>
<tr>
<td>27 Scenery Reconstruction: I</td>
<td>72</td>
</tr>
<tr>
<td>28 Scenery reconstruction: II</td>
<td>74</td>
</tr>
</tbody>
</table>
Disclaimer

This is not a textbook. These are lecture notes.
1 Why we need measure theory

1.1 Riddle 1

There are \(N \) people standing in a line. Each person \(n \in \{1, \ldots, N\} \) has a bit \(X_n \in \{0, 1\} \) written above her head. Each person can see the bits of the people in front of her but not her own or the bits of those behind, so that person \(n \) can see \((X_{n+1}, X_{n+2}, \ldots, X_N)\).

Starting with person 1, each person \(n \) declares in turn a bit \(Y_n \), and this declaration is heard by the rest. \(Y_n \) has to be a function of what is known to person \(n \). Hence \(Y_n = f_n(Y_1, \ldots, Y_{n-1}, X_{n+1}, \ldots, X_N) \) for some function \(f_n : \{0, 1\}^{N-1} \to \{0, 1\} \).

Show that there exist functions \((f_1, \ldots, f_n)\) such that for any assignment of bits to \((X_1, \ldots, X_n)\) it holds that \(Y_n = X_n \) for all \(n > 1 \).

1.2 Riddle 2 (Gabay-O’Connor game)

This time there is a countably infinite line of people, so that person \(n \) can see \((X_{n+1}, X_{n+2}, \ldots)\), and, as before, hears \((Y_1, \ldots, Y_{n-1})\). Thus \(Y_n = f_n(Y_1, \ldots, Y_{n-1}, X_{n+1}, \ldots) \) for some \(f_n : \{0, 1\}^\mathbb{N} \to \{0, 1\} \).

Show that there exist functions \((f_1, f_2, \ldots)\) such that for any assignment of bits to \((X_1, X_2, \ldots)\) it holds that \(Y_n = X_n \) for all \(n > 1 \).

1.3 Riddle 3

Now there are again countably infinitely many people, but they do not hear the declarations and so \(Y_n = f_n(X_{n+1}, X_{n+2}, \ldots) \) for some \(f_n : \{0, 1\}^\mathbb{N} \to \{0, 1\} \).

Show that there exist functions \((f_1, f_2, \ldots)\) such that for any assignment of bits to \((X_1, X_2, \ldots)\) the set of \(n \in \mathbb{N} \) for which \(Y_n \neq X_n \) is finite.

1.4 Why we need measure theory

Assume that the \(X_n \)'s are i.i.d random variables with \(\mathbb{P}[X_n = 0] = \mathbb{P}[X_n = 1] = \frac{1}{2} \). In the setting of riddle 3, fix any functions \((f_1, f_2, \ldots)\).

Since \(Y_n \) is a function of \((X_{n+1}, X_{n+2}, \ldots)\) it is independent of \(X_n \). Thus

\[
\mathbb{P}[Y_n = X_n] = \mathbb{P}[Y_n = X_n, X_n = 0] + \mathbb{P}[Y_n = X_n, X_n = 1] \\
= \mathbb{P}[Y_n = 0, X_n = 0] + \mathbb{P}[Y_n = 1, X_n = 1] \\
= \mathbb{P}[Y_n = 0] \cdot \mathbb{P}[X_n = 0] + \mathbb{P}[Y_n = 1] \cdot \mathbb{P}[X_n = 1] \\
= (\mathbb{P}[Y_n = 0] + \mathbb{P}[Y_n = 1]) \cdot \frac{1}{2} \\
= \frac{1}{2}.
\]

Define \(K \in \{1, 2, \ldots, \infty\} \) by \(K = \max\{n : X_n \neq Y_n\} \), with \(K = \infty \) if this maximum does not exist.
If $Y_n \neq X_n$ then $K \geq n$. Hence, and since $\mathbb{P}[Y_n \neq X_n] = \frac{1}{2}$, we have that $\mathbb{P}[K \geq n] \geq \frac{1}{2}$ for all n. Hence $\mathbb{P}[K < n] < \frac{1}{2}$ for all n. Thus

$$\sum_{m=1}^{n-1} \mathbb{P}[K = m] = \mathbb{P}[K < n] < \frac{1}{2}. $$

Taking the limit $n \to \infty$ we have shown that

$$\sum_{m=1}^{\infty} \mathbb{P}[K = m] < \frac{1}{2},$$

and so $\mathbb{P}[K < \infty] < \frac{1}{2}$. Thus $\mathbb{P}[K = \infty] > \frac{1}{2}$, and in particular with positive probability infinitely many people guess wrongly.\(^1\)

Exercise 1.1. *Show that in the setting of riddle 2, $\mathbb{P}[Y_n = X_n \text{ for all } n > 1] < 1$.*

Another similar (and better known) example is the *Banach-Tarski paradox*.

1.5 Bonus riddle

Prove or disprove: every subset of \mathbb{R}^2 of size 9 is contained in the disjoint union of 9 closed disks of radius 1.

\(^1\)In fact this happens w.p. 1.
2 Measure theory

A probability measure μ on a finite space Ω assigns to each $\omega \in \Omega$ a number between 0 and 1, and has the property that these numbers sum to 1. We can also think about it as a function $\mu : 2^\Omega \to [0,1]$ that assigns to each subset of Ω a number, and has the properties that

1. $\mu(\Omega) = 1$.
2. μ is additive. That is, if A_1, A_2 are disjoint (i.e., $A_1 \cap A_2 = \emptyset$) then
 \[\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2). \]

For example, when $\Omega = \{0,1\}^n$, the i.i.d. fair coin toss measure can be defined by letting, for each $k \leq n$

\[\mu(\{\omega : \omega_1 = 1, \omega_2 = 1, \ldots, \omega_k = 1\}) = 2^{-k} \]

for each $\omega \in \Omega$.

We would like to define the same object for a countable number of coin tosses. That is, when $\Omega = \{0,1\}^\mathbb{N}$, we would like to define a map $\mu : 2^\Omega \to [0,1]$ that has the above properties, satisfies

\[\mu(\{\omega : \omega_1 = 1, \omega_2 = 1, \ldots, \omega_k = 1\}) = 2^{-k} \]

and is furthermore countably additive: if (A_1, A_2, \ldots) is a sequence of disjoint sets then

\[\mu(\bigcup_n A_n) = \sum_n \mu(A_n). \]

As we saw in the riddle from the previous lecture, this is impossible. In order to solve this problem we will introduce some measure theoretical concepts.

2.1 π-systems, algebras and sigma-algebras

Given a set Ω, a π-system on Ω is a collection \mathcal{P} of subsets of Ω such that if $A, B \in \mathcal{P}$ then $A \cap B \in \mathcal{P}$.

Example 2.1. Let $\Omega = \mathbb{R}$, and let

\[\mathcal{P} = \{(-\infty, x] : x \in \mathbb{R}\}. \]

This is a π-system because $(-\infty, x] \cap (-\infty, y] = (-\infty, \min(x, y)]$.

Example 2.2. Let $\Omega = \{0,1\}^\mathbb{N}$, and let \mathcal{P} be the collection of sets $\{A_S\}$ indexed by finite $S \subset \mathbb{N}$ where

\[A_S = \{\omega \in \Omega : \omega_k = 1 \text{ for all } k \in S\}. \]

This is a π-system because $A_S \cap A_T = A_{S \cup T}$.

Example 2.3. Let X be a topological space. Then the set of closed sets in X is a π-system.

An algebra of subsets of Ω is a π-system \mathcal{A} on Ω with the following additional properties:

1. $\Omega \in \mathcal{A}$.
2. If $A \in \mathcal{A}$ then its complement $A^c \in \mathcal{A}$.

It is easy to see that if \mathcal{A} is an algebra of subsets of Ω then

1. $\emptyset \in \mathcal{A}$.
2. If $A, B \in \mathcal{A}$ then $A \cup B \in \mathcal{A}$.

Example 2.4. Let Ω be any set. Then the collection of subsets of Ω is an algebra.

Example 2.5. Let $\Omega = \{0, 1\}^\mathbb{N}$, and let $\mathcal{A}_{\text{clopen}}$ be the algebra of clopen sets. That is, $\mathcal{A}_{\text{clopen}}$ is the collection of finite unions of sets A_x indexed by finite $x \in \{0, 1\}^n$, where

$$A_x = \{ \omega \in \Omega : \omega_k = x_k \text{ for all } k \leq n \}.$$

Exercise 2.6. Show that $\mathcal{A}_{\text{clopen}}$ is the collection of finite disjoint unions of sets of the form A_x.

Example 2.7. Let $\Omega = \mathbb{N}$, and let \mathcal{A}_∞ be the collection of sets A such that either A is finite, or else A^c is finite.

Exercise 2.8. Prove that $\mathcal{A}_{\text{clopen}}$ and \mathcal{A}_∞ are algebras.

Given an algebra \mathcal{A}, a finitely additive probability measure is a function $\mu : \mathcal{A} \to [0, 1]$ with the following properties:

1. $\mu(\Omega) = 1$.
2. μ is additive. That is, if A_1, A_2 are disjoint (i.e., $A_1 \cap A_2 = \emptyset$) then

$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2).$$

Exercise 2.9. Show that $\mu(\emptyset) = 0$.

Exercise 2.10. Define a finitely additive measure on the algebra \mathcal{A}_∞ from Example 2.7.

An algebra \mathcal{F} of subsets of Ω is a sigma-algebra if for any sequence (A_1, A_2, \ldots) of elements of \mathcal{F} it holds that $\bigcup_n A_n \in \mathcal{F}$. It follows that $\cap_n A_n \in \mathcal{F}$.

Exercise 2.11. 1. Let I be a set, and let $\{\mathcal{F}_i\}_{i \in I}$ be a collection of sigma-algebras of subsets of Ω. Show that $\cap_{i \in I} \mathcal{F}_i$ is a sigma-algebra.
2. Let \(\mathcal{C} \) be a collection of subsets of \(\Omega \). Then there exists a unique minimal (under inclusion) sigma-algebra \(\mathcal{F} \supseteq \mathcal{C} \). \(\mathcal{F} \) is called the sigma-algebra generated by \(\mathcal{C} \), which we write as \(\mathcal{F} = \sigma(\mathcal{C}) \).

Exercise 2.12. Prove that \(\mathcal{A}_\infty \) (Example 2.7) is not a sigma-algebra.

Given a topological space, the **Borel sigma-algebra** \(\mathcal{B} \) is the sigma-algebra generated by the open sets. Hence it is also generated by any basis of the topology.

A **measurable space** is a pair \((\Omega, \mathcal{F})\), where \(\mathcal{F} \) is a sigma-algebra of subsets of \(\Omega \). A **probability measure** on \((\Omega, \mathcal{F})\) is a function \(\mu : \mathcal{F} \to [0,1] \) with the following properties:

1. \(\mu(\Omega) = 1 \).

2. \(\mu \) is countably additive. That is, if \((A_1, A_2, \ldots)\) is a sequence of disjoint sets (i.e., \(A_n \cap A_m = \emptyset \) for all \(n \neq m \)) then

\[
\mu(\bigcup_n A_n) = \sum_n \mu(A_n).
\]
3 Hahn-Kolmogorov Theorem and constructing measures

Theorem 3.1 (Hahn-Kolmogorov Theorem). Let \(\mathcal{C} \) be a collection of subsets of \(\Omega \), and let \(\mathcal{F} = \sigma(\mathcal{C}) \). Let \(\mu_0: \mathcal{C} \to [0, 1] \) be a countably additive map with \(\mu(\Omega) = 1 \). We say that a probability measure \(\mu: \mathcal{F} \to [0, 1] \) extends \(\mu_0 \) if \(\mu(A) = \mu_0(A) \) for all \(A \in \mathcal{C} \).

1. If \(\mathcal{C} \) is a \(\pi \)-system then there exists at most one probability measure \(\mu \) that extends \(\mu_0 \).
2. If \(\mathcal{C} \) is an algebra then there exists exactly one probability measure \(\mu \) that extends \(\mu_0 \).

Example 3.2. Let \(\mathcal{A} = \mathcal{A}_{\text{clopen}} \) be the algebra defined in Example 2.5. Then there is a unique map \(\mu_0: \mathcal{A} \to [0, 1] \) that is additive and satisfies
\[
\mu_0(A_x) = 2^{-|x|}.
\]
Furthermore, this map is countably additive.

Hence \(\mu_0 \) has a unique extension \(\mu: \mathcal{B} \to [0, 1] \) (where \(\mathcal{B} = \sigma(\mathcal{A}) \) is the Borel sigma-algebra on \(\{0, 1\}^\mathbb{N} \), equipped with the product topology).

The probability measure \(\mu \) is sometimes called the Bernoulli measure on \(\{0, 1\}^\mathbb{N} \).

Exercise 3.3. Prove that \(\mu_0: \mathcal{A}_{\text{clopen}} \to [0, 1] \) is countably additive.

Example 3.4. Let \(\mathcal{P} \) be the \(\pi \)-system on the interval \([0, 1] \) given by
\[
\mathcal{P} = \{[0, x] : x \in [0, 1] \},
\]
and let and let \(\mu_0: \mathcal{P} \to [0, 1] \) be given by \(\mu_0([0, x]) = x \). Then there exists a probability measure \(\mu: \mathcal{B} \to [0, 1] \) (where \(\mathcal{B} = \sigma(\mathcal{C}) \) is the Borel sigma-algebra on \([0, 1] \)) that extends \(\mu_0 \).

Note that indeed there always exists such a \(\mu \); it is called the Lebesgue measure. To prove this we naturally extend \(\mu_0 \) to the algebra generated by \(\mathcal{P} \), and then show that this extension is countably additive.

Theorem 3.5. Let \((\Omega, \mathcal{F}, \mu) \) be a probability space.

1. If \((F_1, F_2, \ldots) \) be a sequence of sets in \(\mathcal{F} \) such that \(F_n \subseteq F_{n+1} \) then
\[
\mu(\bigcup_n F_n) = \lim_n \mu(F_n).
\]
2. If \((F_1, F_2, \ldots) \) be a sequence of sets in \(\mathcal{F} \) such that \(F_n \supseteq F_{n+1} \) then
\[
\mu(\bigcap_n F_n) = \lim_n \mu(F_n).
\]

Proof. 1. Let \(G_1 = F_1 \), and for \(n > 1 \) let \(G_n = F_n \setminus F_{n-1} \). Then \(F = \bigcup_n G_n \), and additionally the \(G_n \)'s are disjoint. Hence
\[
\mu(\bigcup_n F_n) = \sum_n \mu(G_n) = \lim_n \sum_k \mu(G_n) = \lim_n \mu(\bigcup_{k=1}^n G_n) = \lim_n \mu(F_n).
\]
Corollary 3.6. Let \((\Omega, \mathcal{F}, \mu)\) be a probability space, and let \((F_1, F_2, \ldots)\) be a sequence of sets in \(\mathcal{F}\).

1. If \(\mu(F_n) = 0\) for all \(n\) then
 \[
 \mu(\cup_n F_n) = 0.
 \]

2. If \(\mu(F_n) = 1\) for all \(n\) then
 \[
 \mu(\cap_n F_n) = 1.
 \]

Let \((\mathbb{R}, \mathcal{B}, \mu)\) be a probability space. The cumulative distribution function (CDF) associated with \(\mu\) is
\[
F(x) = \mu((-\infty, x]).
\]

Claim 3.7. The following holds for any cumulative distribution function \(F\):

1. \(F\) is monotone non-decreasing.

2. \(\sup_x F(x) = 1\).

3. \(\inf_x F(x) = 0\).

4. \(F\) is right-continuous.

Proof. 1. For any \(x > y\) by the additivity of \(\mu\) we have that
\[
F(y) = \mu((-\infty, y]) = \mu((-\infty, x] \cup (x, y]) = \mu((-\infty, x]) + \mu((x, y]) = F(x) + \mu((x, y]) = F(x).
\]

2. Let \(E_n = (-\infty, n)\). Then \(E_n \subset E_{n+1}\) and \(\cup_n E_n = \mathbb{R}\). Hence by Theorem 3.5
\[
\lim_n F(n) = \lim_n \mu(E_n) = \mu(\mathbb{R}) = 1.
\]

Since \(F\) is monotone non-decreasing it follows that \(\sup_x F(x) = 1\).

3. The proof of this is similar to the proof that \(\sup_x F(x) = 1\).

4. Fix some \(x \in \mathbb{R}\). Let \(E_n = (-\infty, x + \varepsilon_n)\), for any decreasing sequence \(\varepsilon_n\) of positive numbers that converges to zero. Then \(E_{n+1} \subset E_n\) and \(\cap_n E_n = (-\infty, x]\), and so by Theorem 3.5
\[
\lim_n F(x + \varepsilon_n) = \lim_n \mu(E_n) = \lim_n \mu((-\infty, x]) = F(x).
\]
Claim 3.8. A probability measure μ on $(\mathbb{R}, \mathcal{B})$ is uniquely determined by its cumulative distribution function.

Proof. Let \mathcal{P} be the π-system from Example 2.1, and note that $\mathcal{B} = \sigma(\mathcal{P})$. Let $\mu_0: \mathcal{P} \to [0, 1]$ be given by

$$\mu_0((\neg \infty, x]) = F(x),$$

so that μ_0 is the restriction of μ to \mathcal{P}. Since μ is (trivially) countably additive, by the Hahn-Kolmogorov Theorem that there is at most one probability measure that extends μ_0 to \mathcal{B}. Thus μ is the unique measure with CDF F. \qed

One can in fact show that for any F that satisfies the properties of Claim 3.7 is the cumulative distribution function of some μ. The proof uses the Hahn-Kolmogorov Theorem.
4 Events and random variables

Given a measurable space \((\Omega, \mathcal{F})\), an event \(A\) is an element of \(\mathcal{F}\). We sometimes call events measurable sets.

A sub-sigma-algebra of \(\mathcal{F}\) is a subset of \(\mathcal{F}\) that is also a sigma-algebra.

Given another measurable space \((\Theta, \mathcal{G})\), a function \(f : \Omega \to \Theta\) is measurable if for all \(A \in \mathcal{G}\) it holds that \(f^{-1}(A) \in \mathcal{F}\).

Exercise 4.1. Prove that \(f\) is measurable iff the collection

\[
\sigma(f) = \{f^{-1}(A) : A \in \mathcal{G}\} = f^{-1}(\mathcal{G}).
\]

is a sub-sigma-algebra of \(\mathcal{F}\).

Hence (assuming \(f\) is onto, otherwise restrict to its image), \(f^{-1} : \mathcal{G} \to \sigma(f)\) is an isomorphism of sigma-algebras.

Fix a measurable space \((\Omega, \mathcal{F})\), and let \(f\) be a measurable function to some other measurable space. Given a sub-sigma-algebra \(\mathcal{G} \subseteq \mathcal{F}\), we say that \(f\) is \(\mathcal{G}\)-measurable if \(\sigma(f)\) is a sub-sigma-algebra of \(\mathcal{G}\).

We say that a sigma-algebra \(\mathcal{F}\) is separable if it generated by a countable subset. That is, if there exists some countable \(\mathcal{C} \subseteq \mathcal{F}\) such that \(\mathcal{F} = \sigma(\mathcal{C})\).

We say that \(\mathcal{F}\) separates points if for all \(\omega_1 \neq \omega_2\) there exists some \(A \in \mathcal{F}\) such that \(\omega_1 \in A\) and \(\omega_2 \notin A\).

Theorem 4.2. Let \((\Omega, \mathcal{F}), (\Theta_1, \mathcal{G}_1)\) and \((\Theta_2, \mathcal{G}_2)\) be measurable spaces with sigma-algebras that separate points. Let \(f : \Omega \to \Theta_1\) and \(g : \Omega \to \Theta_2\) be measurable functions. Then \(g\) is \(\sigma(f)\)-measurable iff there exists a measurable \(h : \Theta_1 \to \Theta_2\) such that \(g = h \circ f\).

Exercise 4.3. Prove for the case that \(g = h \circ f\).

Measurable functions to \((\mathbb{R}, \mathcal{B})\) will be of particular interest.

Claim 4.4. Let \((\Omega, \mathcal{F})\) be a measurable space, and let \(f : \Omega \to \mathbb{R}\). Then

1. If \(\mathcal{C} \subseteq \mathcal{B}\) satisfies \(\sigma(\mathcal{C}) = \mathcal{B}\), and if \(f^{-1}(A) \in \mathcal{F}\) for all \(A \in \mathcal{C}\) then \(f\) is measurable.

2. For each \(x \in \mathbb{R}\) let \(A_x \subseteq \Omega\) be given by \(A_x = \{\omega : f(\omega) \leq x\}\). If each \(A_x\) is in \(\mathcal{F}\) then \(f\) is measurable.

3. If \(\Omega\) is a topological space with Borel sigma-algebra \(\mathcal{F}\), and if \(f\) is continuous, then it is measurable.

4. If \(g\) is a measurable function from \((\mathbb{R}, \mathcal{B})\) to itself and \(f\) is measurable then \(g \circ f\) is measurable.

Claim 4.5. Let \((\Omega, \mathcal{F})\) be a measurable space, and let \(\{f_n\}\) be a sequence of measurable functions to \((\mathbb{R}, \mathcal{B})\) with \(0 \leq f_n \leq 1\) for all \(n\). Then the following are measurable:
1. \(\inf_n f_n \).
2. \(\liminf_n f_n \).
3. The set \(\{ \omega : \lim_n f_n(\omega) \text{ exists} \} \).

Claim 4.6. The measurable functions \((\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}) \) are a vector space over the reals:
1. If \(f \) is measurable then \(\lambda f \) is measurable, for all \(\lambda \in \mathbb{R} \).
2. If \(f_1 \) and \(f_2 \) are measurable, then \(f_1 + f_2 \) is measurable.

Given a probability space \((\Omega, \mathcal{F}, \mu) \) and a measurable space \((\Theta, \mathcal{G}) \), we say that two measurable functions \(f, g : \Omega \to \Theta \) are equivalent if \(\mu(\{\omega : f(\omega) = g(\omega)\}) = 1 \). A random variable is an equivalence class of measurable functions. We will often consider the case that \((\Theta, \mathcal{G}) = (\mathbb{R}, \mathcal{B})\), in which case we will call \(X \) a real random variable. In fact, we will do this so often that we will often refer to real random variables as just “random variables”.

A few notes:
1. Note we will often just think of random variables as measurable functions. We will say, for example, that a real random variable is non-negative, by which we will mean that there is a non-negative function in the equivalence class. We will also define random variables by just describing one element of the equivalence class.
2. It is easy to verify that sums, products, limits etc. of random variables are well defined, in the sense that (for example) the equivalence class of \(f + g \) is equal to the equivalence class of \(f' + g' \) whenever \(f \) and \(f' \) are equivalent and \(g \) and \(g' \) are equivalent.
3. We will want to verify that expressions of the form
 \[
 \mu(\{X \in A\}) = \mu(\{w : X(w) \in A\})
 \]
for a random variable \(X \) and measurable \(A \) are well defined, in the sense that they are independent of the choice of representative: \(X(\omega) \) can be taken to mean \(f(\omega) \), where \(f \) is any member of the equivalence class \(X \).

Example 4.7. Let \(\Omega = \{0, 1\}^\mathbb{N} \), and let \(\mathbb{P} \) be the Bernoulli measure defined in Example 3.2. Define the random variable \(X : \Omega \to \mathbb{R} \) by
\[
X(\omega) = \max\{n \in \mathbb{N} : \omega_k = 0 \text{ for all } k \leq n\}.
\]
Note that \(X \) is not well defined at a single point in \(\Omega \), the all zeros sequence. We accordingly extend \(\mathbb{R} \) to include \(\infty \) (and \(-\infty\)) and assign \(X(\omega) = \infty \) in this case.

Given a random variable \(X : \Omega \to \Theta \), we define the pushforward measure \(\nu = X_\ast \mu \) on \((\Theta, \mathcal{G})\) by
\[
\nu(A) = \mu(X^{-1}(A)).
\]
The measure \(\nu \) is also called the law of \(X \).

Exercise 4.8. Calculate the cumulative distribution function of the random variable defined in Example 4.7.
5 Independence and the Borel-Cantelli Lemmas

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $(\mathcal{F}_1, \mathcal{F}_2, \ldots)$ be sub-sigma-algebras. We say that these sigma-algebras are independent if for any (A_1, A_2, \ldots) with $A_n \in \mathcal{F}_n$ and any finite sequence n_k it holds that

$$\mathbb{P}[\cap_k A_{n_k}] = \prod_k \mathbb{P}[A_{n_k}]. \quad (5.1)$$

We say that the random variables (X_1, X_2, \ldots) are independent if $(\sigma(X_1), \sigma(X_2), \ldots)$ are independent.

We say that the events (A_1, A_2, \ldots) are independent if their indicators functions $(\mathbb{I}_{\{A_1\}}, \mathbb{I}_{\{A_2\}}, \ldots)$ are independent. Note that $\sigma(\mathbb{I}_{\{A_1\}}) = (\emptyset, A, A^c, \Omega)$.

Claim 5.1. Let the events (A_1, A_2, \ldots) be independent. Then

$$\mathbb{P}[\cap_n A_n] = \prod_n \mathbb{P}[A_n].$$

Proof. By independence we have that for any $m \in \mathbb{N}$

$$\mathbb{P}[\cap_{n=1}^m A_n] = \prod_{n=1}^m \mathbb{P}[A_n].$$

Denote $B_m = \cap_{n=1}^m A_n$. Then B_n is a decreasing sequence with $\cap_m B_m = \cap_n A_n$, and so by Theorem 3.5 we have that

$$\mathbb{P}[\cap_n A_n] = \mathbb{P}[\cap_m B_m] = \lim_m \mathbb{P}[B_m] = \lim_m \prod_{n=1}^m \mathbb{P}[A_n] = \prod_n \mathbb{P}[A_n].$$

It turns out that to prove independence it suffices to show (5.1) for generating π-systems.

Theorem 5.2. Let (X_1, X_2, \ldots) be a sequence of independent real random variables, each with the distribution $\mathbb{P}[X_n > x] = e^{-x}$ when $x > 0$ and $\mathbb{P}[X_n > x] = 1$ when $x \leq 0$. Let

$$L = \limsup_n \frac{X_n}{\log n}.$$

Then $\mathbb{P}[L = 1] = 1$.

To prove this Theorem we will need the Borel-Cantelli Lemmas.

Lemma 5.3 (Borel-Cantelli Lemmas). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let (A_1, A_2, \ldots) be a sequence of events.

1. If $\sum_n \mathbb{P}[A_n] < \infty$ then

$$\mathbb{P}[\omega \in \Omega : \omega \in A_n \text{ for infinitely many } n] = 0.$$
2. If $\sum_n P(A_n) = \infty$ and (A_1, A_2, \ldots) are independent then

$$P(\omega \in \Omega : \omega \in A_n \text{ for infinitely many } n) = 1.$$

To see why independence is needed for the second part, consider the case that all the events A_n are equal to some event A with $0 < P[A] < 1$.

Proof of Lemma 5.3. 1. Note that

$$\{\omega : \omega \in A_n \text{ for infinitely many } n\} = \bigcap_n \bigcup_{m \geq n} A_m.$$

Let $B_n = \bigcup_{m \geq n} A_m$, so that we want to show that $P[\bigcap_n B_n] = 0$. Note that B_n is a decreasing sequence (i.e., $B_{n+1} \subseteq B_n$) and therefore by Theorem 3.5 we have that

$$P[\bigcap_n B_n] = \lim_n P[B_n].$$

Since $B_n = \bigcup_{m \geq n} A_m$, we have that $P[B_n] \leq \sum_{m \geq n} P[A_m]$. But the latter converges to 0, and so we are done.

2. Note that

$$\{\omega : \omega \in A_n \text{ for infinitely many } n\}^c = \{\omega : \omega \in A_n \text{ for finitely many } n\}$$

$$= \{\omega : \omega \in A_n^c \text{ for all } n \text{ large enough}\}$$

$$= \bigcap_n \bigcup_{m \geq n} A_m^c.$$

We would hence like to show that $P[\bigcup_n \bigcap_{m \geq n} A_m^c] = 0$.

Let $C_n = \bigcap_{m \geq n} A_m^c$. Then by independence and Claim 5.1 we have that

$$P[C_n] = P[\bigcap_{m \geq n} A_m^c] = \prod_{m \geq n} (1 - P[A_m]).$$

Since $1 - x \leq e^{-x}$ this implies that

$$P[C_n] \leq \exp\left(- \sum_{m \geq n} P[A_m] \right) = 0.$$

Finally, by Corollary 3.6, $P[\bigcap_n C_n] = 0$.

\[\square\]

Proof of Theorem 5.2. Let A_n be the event that $X_n \geq \alpha \log n$. Then

$$P[A_n] = n^{-\alpha},$$

and the events (A_1, A_2, \ldots) are independent (exercise!). Also, note that

$$\sum_n P[A_n] \begin{cases} = \infty & \text{if } \alpha \leq 1, \\ < \infty & \text{if } \alpha > 1. \end{cases}$$
Thus, from the Borel-Cantelli Lemmas it follows that

\[P[X_n \geq a \log n \text{ for infinitely many } n] = \begin{cases} 1 & \text{if } a \leq 1, \\ 0 & \text{if } a > 1. \end{cases} \]

Now, note that the event \(\{L \geq a\} \) is identical to the event

\[\cap_{m>0} \{X_n \geq (a - 1/m) \log n \text{ for infinitely many } n\}, \]

and so \(P[L \geq 1] = 1 \), by Corollary 3.6. It also follows that \(P[L \geq 1 + 1/n] = 0 \) for any \(n > 0 \), and so we have that \(P[L > 1] = 0 \), again by Corollary 3.6. Hence \(P[L \leq 1] = 1 \), and so \(P[L = 1] = 1 \).

\[\square \]
6 The tail sigma-algebra

Consider a sequence of independent real random variables \((X_1, X_2, \ldots)\) such that there exists some \(M \geq 0\) such that \(\mathbb{P}(|X_n| \leq M) = 1\) for all \(n\). That is, the sequence is uniformly bounded.

Define the random variables

\[Y_n = \frac{1}{n} \sum_{k=1}^{n} X_n \quad \text{and} \quad L = \limsup_{n} Y_n. \]

Claim 6.1. \(\mathbb{P}(|L| \leq M) = 1\).

Proof. Clearly \(\mathbb{P}(|Y_n| \leq M) = 1\). Hence \(\mathbb{P}(|Y_n| \leq M\) for all \(n\) = 1, and thus \(\mathbb{P}(|L| \leq M) = 1\).

Define the event \(A = \{\lim_n Y_n \text{ exists}\}\).

Theorem 6.2. There exists some \(c \in [-M, M]\) such that \(\mathbb{P}(L = c) = 1\), and \(\mathbb{P}(A) \in \{0, 1\}\).

An interesting observation is that \(L\) is independent of \(X_1\). To see this, define

\[L' = \limsup_{n} \frac{1}{n} \sum_{k=2}^{n} X_k, \]

which is clearly independent of \(X_1\). But

\[L = \limsup_{n} \frac{1}{n} \sum_{k=1}^{n} X_k = \limsup_{n} \frac{X_1}{n} + \frac{1}{n} \sum_{k=2}^{n} X_k = L'. \]

In fact, by the same argument, \(L\) is independent of \((X_1, X_2, \ldots, X_n)\) for any \(n\). This makes \(L\) a tail random variable, as we now explain.

For each \(n \in \mathbb{N}\) define the sigma-algebra \(\mathcal{F}_n\) by

\[\sigma(X_n, X_{n+1}, \ldots), \]

which is the smallest sigma-algebra that contains \((\sigma(X_n), \sigma(X_{n+1}), \ldots)\). Define the tail sigma-algebra by

\[\mathcal{F} = \cap_n \mathcal{F}_n. \]

A random variable is a tail random variable if it is \(\mathcal{F}\)-measurable.

Claim 6.3. \(L\) is a tail random variable.

Proof. Using a construction similar to the \(L'\) construction above, it is easy to see that for every \(n\) there exists a function \(f_n\) such that \(L = f_n(X_n, X_{n+1}, \ldots)\). It follows that \(L\) is \(\mathcal{F}_n\)-measurable. Thus for every \(A \in \sigma(A)\) it holds that \(L^{-1}(A) \in \mathcal{F}_n\), for every \(n\). Thus \(A \in \cap_n \mathcal{F}_n = \mathcal{F}.\)
Let \((Z_1, Z_2, \ldots)\) be i.i.d random variables, each distributed uniformly over the set of symbols \(S = \{a, b, c\}\). Let \(S^*\) be the set of finite strings over \(S\), and define the random variable \(W_n\) taking values in \(S^*\) as follows:

- \(W_1 = Z_1\).
- If \(W_n\) is empty, or if the last symbol in \(W_n\) is different than \(Z_{n+1}\), then \(W_{n+1}\) is the concatenation \(W_n Z_{n+1}\).
- If the last symbol in \(W_n\) is \(Z_{n+1}\) then \(W_{n+1}\) is equal to \(W_n\), with this last symbol removed.

We will prove later in the course that with probability one it holds that \(\lim_{n} |W_n| = \infty\), and hence we can define the random variable \(T\) to be the eventual first symbol in all \(W_n\) high enough. It is immediate that \(T\) is measurable in the tail sigma-algebra of the sequence \((W_1, W_2, \ldots)\).

It is also easy to see that \(\mathbb{P}[T = a] = 1/3\), since by the symmetry of the definitions, \(\mathbb{P}[T = a] = \mathbb{P}[T = b] = \mathbb{P}[T = c]\), and these must sum to one. By the same argument, the probability that \(W_n\) starts with some string \(w\) for all \(n\) high enough is \(3^{-1}2^{-|w|}\).

Theorem 6.4 (Kolmogorov’s Zero-One Law). Let \(\mathcal{T}\) be the tail sigma-algebra of a sequence of independent random variables. Then \(\mathbb{P}[A] \in \{0, 1\}\) for any \(A \in \mathcal{T}\).

Before proving this theorem we will prove a lemma.

Lemma 6.5. Let the event \(A\) be independent of itself. Then \(\mathbb{P}[A] \in \{0, 1\}\).

Proof. \(\mathbb{P}[A] = \mathbb{P}[A \cap A] = \mathbb{P}[A] : \mathbb{P}[A].\) \(\square\)

Proof of Theorem 6.4. Let \(\mathcal{G}_n = \sigma(X_1, \ldots, X_{n-1}), \mathcal{T}_n = \sigma(X_n, X_{n+1}, \ldots)\) and \(\mathcal{T} = \cap_n \mathcal{T}_n\). We first claim that \(\mathcal{G}_n\) and \(\mathcal{T}_n\) are independent. To see this, define \(\mathcal{T}^m_n = \sigma(X_n, \ldots, X_{n+m})\), and note that \(\mathcal{T}^m_n\) and \(\mathcal{G}_n\) are independent, and so \(\mathbb{P}[A \cap B] = \mathbb{P}[A] \cdot \mathbb{P}[B]\) for any \(A \in \mathcal{G}_n\) and any \(B \in \mathcal{T}_n\). Now \(\mathcal{C}_n = \cup_m \mathcal{T}^m_n\) is not a sigma-algebra, but it is a \(\pi\)-system. Since \(\mathbb{P}[A \cap B] = \mathbb{P}[A] \cdot \mathbb{P}[B]\) for any \(A \in \mathcal{G}_n\) and any \(B \in \mathcal{C}_n\), it follows that \(\mathcal{G}_n\) and \(\sigma(\mathcal{C}_n) = \mathcal{T}_n\) are independent.

Since \(\mathcal{T} \subset \mathcal{T}_n\) then \(\mathcal{G}_n\) and \(\mathcal{T}\) are independent. Hence \(\mathcal{T}\) is independent of \(\sigma(\cup_n \mathcal{G}_n) = \sigma(\cup_n \sigma(X_n)) = \sigma(X_1, X_2, \ldots)\).

Since \(\mathcal{T} \subset \sigma(X_1, X_2, \ldots)\) it follows that \(\mathcal{T}\) is independent of \(\mathcal{T}\), and so \(\mathbb{P}[A] \in \{0, 1\}\) for any \(A \in \mathcal{T}\). \(\square\)

Proof of Theorem 6.2. Since \(A\) is a tail random variable then \(\mathbb{P}[A] \in \{0, 1\}\).

For any \(q \in \mathbb{Q}\) define the tail event \(A_q = \{L \geq q\}\). By Kolmogorov’s zero-one law, the probability of each of these is either 0 or 1, and so there is some \(c = \sup\{q : \mathbb{P}[A_q] = 1\} = \inf\{q : \mathbb{P}[A_q] = 0\}\).

Since \(\mathbb{Q}\) is countable, \(\mathbb{P}[L \geq c] = \mathbb{P}[L \leq c] = 1\), and so \(\mathbb{P}[L = c] = 1\). Finally, \(c \in [-M, M]\), since \(\mathbb{P}[L \in [-M, M]] = 1\). \(\square\)
7 Expectations

Let \((\Omega, \mathcal{F}, P)\) be a finite probability space, and let \(f : \Omega \to \mathbb{R}\) be any function. The expectation of \(f\) is given by

\[
E[f] = \sum_{\omega \in \Omega} f(\omega)P[\omega].
\]

Another way of writing this is the following:

\[
E[f] = \sum_{x \in \text{Im} f} xP[f^{-1}(x)].
\]

Note that this formulation does not reference points in \(\Omega\). Relatedly, it has the advantage that it naturally extends to any probability space, given that \(f\) has a finite (or countable) image. This is the basic idea that is behind our general definition of expectation.

Let \((\Omega, \mathcal{F}, P)\) be a probability space. We say that a measurable non-negative \(\tilde{f}\) is simple if it has a finite image,\(^2\) and define its expectation \(E[\tilde{f}]\) by

\[
E[\tilde{f}] = \sum_{x \in \text{Im} \tilde{f}} xP[\tilde{f}^{-1}(x)].
\]

Given a (non-simple) non-negative real function \(f\), we define its expectation by

\[
E[f] = \sup\{E[\tilde{f}] : \tilde{f} \text{ is simple and } \tilde{f} \leq f\}.
\]

Note that this supremum may be infinite.

It is straightforward to verify that for any non-negative functions \(f, g\) such that \(P[f = g] = 1\) it holds that \(E[f] = E[g]\). We can therefore define the expectation of a random variable \(X\) as the expectation of any \(f\) in the equivalence class. We will henceforth consider expectations of random variables.

It is likewise straightforward to verify that for any two non-negative random variables \(X, Y\):

- **Linearity of expectation:** For any \(\lambda > 0\) it holds that
 \[
 E[X + \lambda Y] = E[X] + \lambda E[Y].
 \]

- If \(X \geq Y\) then \(E[X] \geq E[Y]\).

Theorem 7.1 (Markov’s Inequality). *If \(X\) is a non-negative random variable with \(E[X] < \infty\) then for every \(\lambda > 0\)

\[
\mathbb{P}[X \geq \lambda] \leq \frac{E[X]}{\lambda}.
\]

\(^2\)Note that this definition is slightly different than the standard one.
Proof. Let \(A = \{ X \geq \lambda \} \), and let \(Y \) be given by
\[
Y(\omega) = \lambda \cdot \mathbb{1}_{A}(\omega) = \begin{cases}
\lambda & \text{if } \omega \in A, \\
0 & \text{otherwise}.
\end{cases}
\]
Then \(Y \leq X \), and so \(\mathbb{E}[Y] \leq \mathbb{E}[X] \). Since \(\mathbb{E}[Y] = \lambda \cdot \mathbb{P}[A] \), we get that
\[
\lambda \cdot \mathbb{P}[X \geq \lambda] \leq \mathbb{E}[X],
\]
and the claim follows by dividing both sides by \(\lambda \). \(\square \)

Consider the non-negative random variables \((X_1, X_2, \ldots) \) defined on the interval \((0,1]\) (equipped with the Borel sigma-algebra and Lebesgue measure) which are given by
\[
X_n(x) = \begin{cases}
\frac{n}{x} & \text{if } x \leq 1/n, \\
0 & \text{otherwise}.
\end{cases}
\]
Then
1. \(\mathbb{E}[X_n] = 1 \).
2. For every \(x \in (0,1] \) it holds that \(\lim_{n} X_n(x) = X(x) \), where \(X \) is the constant function \(X(x) = 0 \).
3. \(\lim_{n} \mathbb{E}[X_n] \neq \mathbb{E}[X] \).
Hence it is not necessarily true that if \(X_n \to X \) pointwise then \(\mathbb{E}[X_n] \to \mathbb{E}[X] \).

Theorem 7.2 (Monotone Convergence Theorem). Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space, and let \((X_1, X_2, \ldots)\) be a sequence of non-negative random variables such that \(X_n(\omega) \) is increasing for every \(\omega \in \Omega \). Let \(X(\omega) = \lim_{n} X_n(\omega) \in [0,\infty] \). Then
\[
\lim_{n} \mathbb{E}[X_n] = \mathbb{E}[X] \in [0,\infty].
\]

Theorem 7.3 (Dominated Convergence Theorem). Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space, and let \((X_1, X_2, \ldots)\) be a sequence of non-negative random variables. Let \(X, Y \) be a non-negative random variables with \(\mathbb{E}[Y] < \infty \), and such that \(\lim_{n} X_n(\omega) = X(\omega) \) for every \(\omega \in \Omega \), and \(X_n(\omega) \leq Y(\omega) \) for every \(\omega \in \Omega \) and \(n \in \mathbb{N} \). Then
\[
\lim_{n} \mathbb{E}[X_n] = \mathbb{E}[X].
\]

Given a random variable \(X \), we define the random variables \(X^+ \) and \(X^- \) by
\[
X^+(\omega) = \max\{X(\omega), 0\} \quad \text{and} \quad X^-(\omega) = \max\{-X(\omega), 0\},
\]
so that \(X^+ \) and \(X^- \) are both non-negative, and \(X = X^+ - X^- \). If \(\mathbb{E}[X^+] \) and \(\mathbb{E}[X^-] \) are both finite, we define
\[
\mathbb{E}[X] = \mathbb{E}[X^+] - \mathbb{E}[X^-],
\]
and say that \(X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P}) \), or just \(X \in \mathcal{L}^1 \). Note that \(X \in \mathcal{L}^1 \) iff \(\mathbb{E}[|X|] < \infty \) iff \(X \in \mathcal{L}^1 \).
For \(p \geq 1 \) we say that \(X \in \mathcal{L}^p \) if \(|X|^p \in \mathcal{L}^1 \).
Exercise 7.4. Show that \mathcal{L}^p is a vector space.

$X \mapsto \mathbb{E}[|X|^p]^{1/p}$ defines a norm on \mathcal{L}^p.

Theorem 7.5. If $r > p \geq 1$ and $X \in \mathcal{L}^r$ then $X \in \mathcal{L}^p$ and moreover

$$\mathbb{E}[|X|^p]^{1/p} \leq \mathbb{E}[|X|^r]^{1/r}.$$

In fact, if we equip \mathcal{L}^p with this norm, then it is a Banach space; that is, it is complete with respect to the metric induced by this norm.

Theorem 7.6. Let (X_1, X_2, \ldots) be a sequence of random variables in \mathcal{L}^p such that

$$\lim_{r \to \infty} \sup_{m,n \geq r} \mathbb{E}[|X_n - X_m|^p] = 0.$$

Then there exists an $X \in \mathcal{L}^p$ such that

$$\lim_n \mathbb{E}[|X_n - X|^p] = 0.$$

A particularly interesting case is $p = 2$. In this case we can define an inner product $(X,Y) := \mathbb{E}[X \cdot Y]$, which makes \mathcal{L}^2 a Hilbert space, with completeness given by Theorem 7.6.

Theorem 7.7. Let $X, Y \in \mathcal{L}^2$. Then $X \cdot Y \in \mathcal{L}^1$.

Proof. Note first that $|X|, |Y| \in \mathcal{L}^2$. Since \mathcal{L}^2 is a vector space then $\mathbb{E}[|X| + |Y|)^2] < \infty$, and so

$$\mathbb{E}[X^2 + 2|X| \cdot |Y| + Y^2] < \infty.$$

By the linearity of expectation

$$\mathbb{E}[|X| + |Y|)^2] = \mathbb{E}[X^2] + 2 \cdot \mathbb{E}[|X| \cdot |Y|] + \mathbb{E}[Y^2],$$

and so we have that $\mathbb{E}[|X| \cdot |Y|] < \infty$. Now,

$$\mathbb{E}[X \cdot Y] = \mathbb{E}[|X| \cdot |Y|],$$

and so $|X \cdot Y| \in \mathcal{L}^1$. Finally, since $|X \cdot Y| = (X \cdot Y)^+ + (X \cdot Y)^-$ it follows that $\mathbb{E}[(X \cdot Y)^+] < \infty$ and so $X \cdot Y \in \mathcal{L}^1$. \hfill \Box

It follows from Theorems 7.6 and 7.7 that \mathcal{L}^2 is a real Hilbert space, when equipped with the inner product $(X,Y) := \mathbb{E}[X \cdot Y]$. We can therefore immediately conclude that for any $X,Y \in \mathcal{L}^2$

1. $\mathbb{E}[X \cdot Y]^2 \leq \mathbb{E}[X^2] \cdot \mathbb{E}[Y^2]$, with equality iff for some $\lambda \in \mathbb{R}$ it a.s. holds that $X = \lambda \cdot Y$.

2. $\mathbb{E}[(X+Y)^2] = \mathbb{E}[X^2] + \mathbb{E}[Y^2]$ iff $\mathbb{E}[X \cdot Y] = 0$.

Given $X \in \mathcal{L}^2$, we define the random variable $\tilde{X} := X - \mathbb{E}[X]$, and denote $\text{Var}(X) = \mathbb{E}[\tilde{X} \cdot \tilde{X}]$ and $\text{Cov}(X,Y) = \mathbb{E}[\tilde{X} \cdot \tilde{Y}]$. We say that X and Y are uncorrelated if $\text{Cov}(X,Y) = 0$. Using these definitions the facts above become

1. $\text{Cov}(X,Y)^2 \leq \text{Var}(X) \cdot \text{Var}(Y)$, with equality iff for some $\lambda \in \mathbb{R}$ it a.s. holds that $X = \lambda \cdot Y$.

2. $\text{Var}(X+Y) = \text{Var}(X) + \text{Var}(Y)$ iff X and Y are uncorrelated.

22
A strong law of large numbers and the Chernoff bound

Theorem 8.1. Let $X, Y \in \mathcal{L}^1$ be independent. Then $X \cdot Y \in \mathcal{L}^1$ and

$$E[X \cdot Y] = E[X] \cdot E[Y].$$

To prove this, we first note that it holds for indicator functions by the definition of independence, then show that it holds for simple functions, and apply the monotone convergence theorem to show that it holds in general.

Theorem 8.2. Let (X_1, X_2, \ldots) be a sequence of independent random variables uniformly bounded in \mathcal{L}^4 (so that $E[X_n^4] < K$ for all n and some $K > 0$), and with $E[X_n] = 0$. Let

$$Y_n = \frac{1}{n} \sum_{k \leq n} X_n.$$

Then $\lim_n Y_n = 0$ a.s.

Proof. By independence

$$E[X_k \cdot X_\ell^3] = E[X_k \cdot X_\ell^2 \cdot X_m] = 0,$$

and so, by linearity we have that

$$E[Y_n^4] = E\left[\frac{1}{n} \sum_{k=1}^n X_k \right] = \frac{1}{n^4} \sum_{k \leq n} E[X_k^4] + \frac{6}{n^4} \sum_{k < \ell \leq n} E[X_k^2 \cdot X_\ell^2].$$

By Theorem 7.5 we have that $E[X_k^2]^2 < K$, and so

$$E[Y_n^4] \leq \frac{K}{n^3} + \frac{6K}{n^2} \leq \frac{7K}{n^2}.$$

It follows from Markov’s inequality that for any $\varepsilon > 0$

$$P\{Y_n^4 \geq \varepsilon^4\} \leq \frac{7K}{\varepsilon^4 n^2},$$

and so, by Borel-Cantelli, $\limsup_n |Y_n| \leq \varepsilon$ for any $\varepsilon > 0$ (almost surely, which we drop for the remainder of the proof). Intersecting these probability one events for $\varepsilon = 1/2, 1/3, 1/4, \ldots$ yields that $\limsup_n |Y_n| = 0$ and thus $\lim_n Y_n = 0$. \qed

With a little additional effort we can prove that if $E[X_n] = \mu$ then $\lim_n Y_n = \mu$. A natural question is: what is the probability that Y_n is significantly far from μ, for finite n? For example, for $\eta > \mu$, what is the probability that $Y_n \geq \eta$?

Theorem 8.3 (Chernoff Bound). Let (X_1, X_2, \ldots) be a sequence of i.i.d. random variables in \mathcal{L}^∞, and with $E[X_n] = \mu$. Then for every $\eta > \mu$ there is an $r > 0$ such that

$$P\{Y_n \geq \eta\} \leq e^{-r n}.$$
Proof. Denote \(p_n = \mathbb{P}[Y_n \geq \eta] \); we want to show that \(p_n \leq e^{-r \cdot n} \).

Note that the event \(\{Y_n \geq \eta\} \) is identical to the event \(\{e^{t \cdot n}Y_n \geq e^{t \cdot n} \cdot \eta\} \), for any \(t > 0 \). Since \(e^{t \cdot n}Y_n \) is a positive random variable, by the Markov inequality we have that

\[
p_n = \mathbb{P}[e^{t \cdot n}Y_n \geq e^{t \cdot n} \cdot \eta] \leq \frac{\mathbb{E}[e^{t \cdot n}Y_n]}{e^{t \cdot n} \cdot \eta}.
\]

Now,

\[
\mathbb{E}[e^{t \cdot n}Y_n] = \mathbb{E}\left[\prod_{k \leq n} e^{t \cdot X_k}\right] = \prod_{k \leq n} \mathbb{E}[e^{t \cdot X_k}],
\]

where the penultimate equality uses independence. Let \(X \) be a random variable with the same distribution as each \(X_k \). Then we have shown that

\[
\mathbb{E}[e^{t \cdot n}Y_n] = \mathbb{E}[e^{t \cdot X}]^n.
\]

We now define the moment generating function of \(X \) by \(M(t) := \mathbb{E}[e^{t \cdot X}] \). The name comes from the fact that

\[
M(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \mathbb{E}[X^n]. \tag{8.1}
\]

Note that this means that \(M'(0) = \mathbb{E}[X] \). Using \(M \) we can write

\[
\mathbb{E}[e^{t \cdot X}] = M(t)^n,
\]

and so

\[
p_n \leq \exp\left(-t \cdot \eta - \log M_x(t) \cdot n\right)
\]

If we define the cumulant generating function of \(X \) by \(K(t) := \log M(t) \), then

\[
p_n \leq \exp\left(-t \cdot \eta - K(t) \cdot n\right).
\]

Since \(K'(0) = M'(0)/M(0) = \mathbb{E}[X] \), and since \(K \) is smooth (as it turns out), it follows that for \(t > 0 \) small enough,

\[
t \cdot \eta - K(t) = t \cdot \eta - t \cdot \mu - O(t^2) > 0.
\]

Hence, if we define

\[
r = \sup_{t} \{t \cdot \eta - K(t)\}
\]

we get that \(r > 0 \) and

\[
p_n \leq e^{-r \cdot n}.
\]

\[\square\]
Note that we did not really need X_k to be in \mathcal{L}^∞, but only that it is in \mathcal{L}^1 and that its moment (or cumulant) generating function is defined and smooth around zero.

Claim 8.4. Let $X \in \mathcal{L}^1$ have a cumulant generating function K that is well defined and finite for some $t > 0$. Then

$$P[X \geq a] \leq e^{-t/a + K(t)}.$$

Proof. By Markov’s inequality

$$P[X \geq a] = P[e^{tX} \geq e^{ta}] \leq \frac{E[e^{tX}]}{e^{ta}} = e^{-t/a + K(t)}.$$

It turns out that the Chernoff bound is asymptotically tight. We show this in §18.
9 The weak law of large numbers

Theorem 9.1. Let \((X_1, X_2, \ldots)\) be a sequence of independent real random variables in \(L^2\), let \(\mathbb{E}[X_n] = \mu\), \(\text{Var}(X_n) \leq \sigma^2\), and let \(Y_n = \sum_{k \leq n} X_n\). Then for every \(\varepsilon > 0\) and \(n \in \mathbb{N}\)
\[
\mathbb{P}\left[|Y_n - \mu| \geq \varepsilon \right] \leq \frac{\sigma^2}{n\varepsilon},
\]
and in particular
\[
\lim_{n} \mathbb{P}\left[|Y_n - \mu| \geq \varepsilon \right] = 0.
\]

In this case we say that \(Y_n\) converges in probability to \(\mu\). More generally, we say that a sequence of real random variables \(Y_n\) converges in probability to a real random variable \(Y\) if
\[
\lim_{n} \mathbb{P}\left[|Y_n - Y| \geq \varepsilon \right] = 0.
\]

Exercise 9.2. Does convergence in probability imply pointwise convergence? Does pointwise convergence imply convergence in probability?

To prove this Theorem we will need Chebyshev's inequality, which is just Markov's inequality in disguise.

Lemma 9.3 (Chebyshev's Inequality). For every \(X \in L^2\) and for every \(\lambda > 0\) it holds that
\[
\mathbb{P}\left[|X - \mathbb{E}[X]| \geq \lambda \right] \leq \frac{\text{Var}(X)}{\lambda^2}.
\]

Proof of Theorem 9.1. Note that \(\mathbb{E}[Y_n] = \mu\), and that, by independence,
\[
\text{Var}(Y_n) = \text{Var}\left(\frac{1}{n} \sum_{k \leq n} X_k\right) = \frac{1}{n^2} \text{Var}\left(\sum_{k \leq n} X_k\right) = \frac{1}{n^2} \sum_{k \leq n} \text{Var}(X_k) \leq \frac{\sigma^2}{n}.
\]
Hence Chebyshev's inequality yields that for every \(\lambda > 0\) we have that
\[
\mathbb{P}\left[|Y_n - \mu| \geq \varepsilon \right] \leq \frac{\sigma^2}{n\varepsilon}.
\]

\[\square\]

We can relax the assumption \(X \in L^2\) to \(X \in L^1\) and still prove the weak law of large numbers. In fact, even the strong law holds in this setting (for i.i.d. random variables), but we will leave the proof of that for after we prove the Ergodic Theorem.

Theorem 9.4. Let \((X_1, X_2, \ldots)\) be a sequence of i.i.d. real random variables in \(L^1\), let \(\mathbb{E}[X_n] = \mu\), and let \(Y_n = \sum_{k \leq n} X_n\). Then for every \(\varepsilon > 0\)
\[
\lim_{n} \mathbb{P}\left[|Y_n - \mu| \geq \varepsilon \right] = 0.
\]
We show a proof adapted from [4].

Proof. We assume \(\mu = 0 \); the reduction is straightforward.

Let \(X = X_1 \). For \(N \in \mathbb{N} \), and a r.v. \(X \) denote

\[
X^{\leq N} = X \cdot 1_{\{|X| \leq N\}} \quad \text{and} \quad X^{> N} = X \cdot 1_{\{|X| > N\}},
\]

so that \(X = X^{\leq N} + X^{> N} \). By the Dominated Convergence Theorem

\[
\mathbb{E} \left[|X^{> N}| \right] \to 0 \quad \text{and} \quad \mathbb{E} \left[X^{\leq N} \right] \to \mathbb{E}[X] = 0,
\]

(9.1)
since both are dominated by \(|X|\).

Fix \(\varepsilon, \delta > 0 \). To prove the claim (under our assumption that \(\mu = 0 \)) we show that \(\mathbb{P} \left[|Y_n| \geq \varepsilon \right] < \delta \) for all \(n \) large enough. For any \(N \in \mathbb{N} \) we can write \(Y_n \) as

\[
Y_n = \frac{1}{n} \sum_{k \leq n} X_{k}^{\leq N} + X_{k}^{> N} = Y_{n}^{\leq} + Y_{n}^{>},
\]

where

\[
Y_{n}^{\leq} := \frac{1}{n} \sum_{k \leq n} X_{k}^{\leq N} \quad \text{and} \quad Y_{n}^{>} = \frac{1}{n} \sum_{k \leq n} X_{k}^{> N}.
\]

Note that \(Y_{n}^{\leq} \) is not the same as \(Y_{n}^{\leq N} \); we will not need the latter. Likewise, \(Y_{n}^{>} \) is not the same as \(Y_{n}^{> N} \).

Choose \(N \) large enough so that \(\mathbb{E} \left[|X^{> N}| \right] < \varepsilon \cdot \delta/4 \); this is possible by (9.1). Now,

\[
\mathbb{E} \left[|Y_{n}^{>}| \right] = \mathbb{E} \left[\left| \frac{1}{n} \sum_{k \leq n} X_{k}^{> N} \right| \right] \leq \mathbb{E} \left[\left| \frac{1}{n} \sum_{k \leq n} X_{k}^{> N} \right| \right] = \mathbb{E} \left[\left| X_{n}^{> N} \right| \right] < \varepsilon \cdot \delta/4.
\]

Therefore, by Markov’s inequality, we have that

\[
\mathbb{P} \left[|Y_{n}^{>}| \geq \varepsilon/2 \right] < \delta/2.
\]

Since \(X_{k}^{\leq N} \) is bounded it is in \(\mathcal{L}^2 \). Therefore, by independence,

\[
\text{Var} \left(Y_{n}^{\leq} \right) = \frac{\text{Var} \left(X_{k}^{\leq N} \right)}{n} = \frac{N^2}{n}.
\]

By linearity of expectations \(\mathbb{E} \left[Y_{n}^{\leq} \right] = \mathbb{E} \left[X_{n}^{\leq N} \right] \), and thus tends to zero, by (9.1). It thus from Chebyshev’s inequality that for \(n \) large enough \(\mathbb{P} \left[|Y_{n}^{\leq}| \geq \varepsilon/2 \right] < \delta/2 \). Since \(\mathbb{P} \left[|Y_{n}^{\leq}| \geq \varepsilon \right] \leq \mathbb{P} \left[|Y_{n}^{\leq}| \geq \varepsilon/2 \right] \) and \(|Y_{n}^{\leq}| \geq \varepsilon/2 \), the claim follows by the union bound. \(\Box \)
10 Conditional expectations

10.1 Why things are not as simple as they seem

Consider a point chosen uniformly from the surface of the (idealized, spherical) earth, so
that the probability of falling on a set is proportional to its area.

Say we condition on the point falling on the equator. What is the conditional distribu-
tion? It obviously has to be uniform: by symmetry, there cannot be a reason that it is more
likely to be in one time zone than another.

Say now that we condition on the point falling on a particular meridian \(m \). By the same
reasoning, the conditional distribution is uniform, and so, for example, the probability that
we are within 2 meters of the north pole is the same as the probability that we are within
1 meter from the equator. Integrating over \(m \) we get that regardless of the meridian, the
probability of being 2 meters from the north pole is the same as the probability of being
1 meter from the equator. But the area within 2 meters of the north pole is about \(4\pi m^2 \),
whereas the area within 1 meter of the equator is about 80000\(m^2 \).

10.2 Conditional expectations in finite spaces

Consider a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) with \(|\Omega| < \infty\), \(\mathcal{F} = 2^\Omega \), and \(\mathbb{P}[\omega] > 0 \) for all \(\omega \in \Omega \). Let \(\Omega = \{1, \ldots, n\}^2 \), let \(Z \) be the random variable given by \(Z(\omega_1, \omega_2) = \omega_1 \), and let \(\mathcal{G} = \sigma(Z) \) be the sigma-algebra generated by the sets \(A_k = \{k\} \times \{0, \ldots, n\} \). Let \(X \) be a real random variable. Then the usual definition is the \(\mathbb{E}[X|Z] \) is the
random variable \(\Omega \to \mathbb{R} \) given by

\[
\mathbb{E}[X|Z](\omega) = \frac{\sum_{\omega' \in \{Z^{-1}(\omega)\} X(\omega') \mathbb{P}[\omega']}{\sum_{\omega' \in \{Z^{-1}(\omega)\} \mathbb{P}[\omega']}},
\]

This notation can be confusing - \(\mathbb{E}[X|Z] \) is a random variable and not a number! But given
\(A \in \mathcal{F} \) with \(\mathbb{P}[A] > 0 \), we denote by \(\mathbb{E}[X|A] \) the number

\[
\mathbb{E}[X|A] = \frac{1}{\mathbb{P}[A]} \mathbb{E}[X \cdot 1_{\{A\}}].
\]

As \(\mathcal{G} = \sigma(Y) \), it will often be less confusing to write instead \(\mathbb{E}[X|\mathcal{G}] \), which denotes the
same random variable.

Exercise 10.1. Let \(Y = \mathbb{E}[X|\mathcal{G}] \).

1. \(Y = \arg\min_{W \in L^2(\Omega, \mathcal{G}, \mathbb{P})} \mathbb{E}[(X - W)^2] \).
2. \(Y \) is \(\mathcal{G} \)-measurable.
3. If \(A \in \mathcal{G} \) with \(\mathbb{P}[A] > 0 \) then \(\mathbb{E}[X \cdot 1_{\{A\}}] = \mathbb{E}[Y \cdot 1_{\{A\}}] \).

28
10.3 Conditional expectations in L^2

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Given a sub-sigma-algebra $\mathcal{G} \subseteq \mathcal{F}$, we know by Theorem 7.6 that the subspace $L^2(\Omega, \mathcal{G}, \mathbb{P}) \subseteq L^2(\Omega, \mathcal{F}, \mathbb{P})$ is closed. We can therefore define the projection operator

$$P_{\mathcal{G}} : L^2(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow L^2(\Omega, \mathcal{G}, \mathbb{P})$$

by

$$P_{\mathcal{G}}(X) = \arg\min_{Y \in L^2(\Omega, \mathcal{G}, \mathbb{P})} \mathbb{E}[(X - Y)^2].$$

Some immediate observations:

1. $P_{\mathcal{G}}(X)$ is \mathcal{G}-measurable.
2. If $Y \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ then $\mathbb{E}[(X - P_{\mathcal{G}}(X)) \cdot Y] = 0$, or $\mathbb{E}[X \cdot Y] = \mathbb{E}[P_{\mathcal{G}}(X) \cdot Y]$. Thus given $A \in \mathcal{G}$ with $\mathbb{P}[A] > 0$ we have that $\mathbb{E}[X \cdot 1_A] = \mathbb{E}[P_{\mathcal{G}}(X) \cdot 1_A]$.

10.4 Conditional expectations in L^1

Theorem 10.2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a r.v. $X \in L^1$ and a sub-sigma-algebra $\mathcal{G} \subseteq \mathcal{F}$. Then there exists a unique random variable Y with the following properties:

1. $Y \in L^1(\Omega, \mathcal{G}, \mathbb{P})$.
2. For every $A \in \mathcal{G}$ it holds that $\mathbb{E}[Y \cdot 1_A] = \mathbb{E}[X \cdot 1_A]$.

We denote $\mathbb{E}[X|\mathcal{G}] := Y$. For $A \in \mathcal{F}$ with $\mathbb{P}[A] > 0$ we denote $\mathbb{E}[X|A] = \mathbb{E}[X \cdot 1_A]/\mathbb{P}[A]$.

Proof. We first prove uniqueness. Let Y and Z both satisfy the two conditions in the theorem, and assume by contradiction that $\mathbb{P}[Y > Z] > 0$. Then there is some $\varepsilon > 0$ such that $\mathbb{P}[Y - \varepsilon > Z] > 0$. Let $A = \{Y - \varepsilon > Z\}$, and note that $A \in \mathcal{G}$. Then

$$\mathbb{E}[Y \cdot 1_A] = \mathbb{E}[(Y - \varepsilon) \cdot 1_A] + \varepsilon \mathbb{P}[A]$$

$$> \mathbb{E}[Z \cdot 1_A] + \varepsilon \cdot \mathbb{P}[A]$$

$$> \mathbb{E}[Z \cdot 1_A].$$

But since $A \in \mathcal{G}$ we have that both $\mathbb{P}[Y \cdot 1_A]$ and $\mathbb{P}[Z \cdot 1_A]$ are equal to $\mathbb{E}[X \cdot 1_A]$ - contradiction.

We prove the remainder under the assumption that $X \geq 0$; the reduction is straightforward. Let $X_n = X \cdot 1_{\{X \leq n\}}$. Then X_n is bounded, and in particular is in L^2. Let $Y_n = P_{\mathcal{G}}(X_n)$. We claim that Y is non-negative. To see this, assume by contradiction that $\mathbb{P}[Y_n < -\varepsilon] > 0$ for some $\varepsilon > 0$, and let $A = \{Y_n < -\varepsilon\}$. Then $\mathbb{E}[Y_n \cdot 1_A] < -\varepsilon \cdot \mathbb{P}[A] < 0$, but $\mathbb{E}[Y_n \cdot 1_A] = \mathbb{E}[X \cdot 1_A] \geq 0$.

29
Now, Y_n is a monotone increasing sequence. To see this, note that X_n is monotone increasing, and that $P_\mathcal{G}$ is a linear operator, and so $Y_{n+1} - Y_n = P_\mathcal{G}(X_{n+1} - X_n)$ is non-negative, by the same proof as above.

Since Y_n is monotone increasing then so is $Y_n \cdot \mathbb{1}_{\{A\}}$, for any $A \in \mathcal{G}$. Therefore, if we define $Y = \lim_n Y_n$, then $\mathbb{E}[Y_n \cdot \mathbb{1}_{\{A\}}] \to \mathbb{E}[Y \cdot \mathbb{1}_{\{A\}}]$. But $\mathbb{E}[Y_n \cdot \mathbb{1}_{\{A\}}] = \mathbb{E}[X_n \cdot A]$, and, since $X_n \cdot \mathbb{1}_{\{A\}}$ is also monotone increasing with $X \cdot \mathbb{1}_{\{A\}} = \lim_n X_n \cdot \mathbb{1}_{\{A\}}$, we have that $\mathbb{E}[Y \cdot \mathbb{1}_{\{A\}}] = \lim_n \mathbb{E}[Y_n \cdot A] = \lim_n \mathbb{E}[X_n \cdot \mathbb{1}_{\{A\}}] = \mathbb{E}[X \cdot \mathbb{1}_{\{A\}}]$.

Finally, each Y_n is \mathcal{G}-measurable by construction, and therefore so is Y. \square

10.5 Some properties of conditional expectation

Exercise 10.3.

1. If X is \mathcal{G}-measurable (i.e., $\sigma(X) \subseteq \mathcal{G}$) then $\mathbb{E}[X|\mathcal{G}] = X$.

2. The Law of Total Expectation. If $\mathcal{G}_2 \subseteq \mathcal{G}_1$ then $\mathbb{E}[\mathbb{E}[X|\mathcal{G}_1]|\mathcal{G}_2] = \mathbb{E}[X|\mathcal{G}_2]$. In particular $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$.

3. If $Z \in L^\infty(\Omega, \mathcal{G}, \mathbb{P})$ then $\mathbb{E}[Z \cdot X|\mathcal{G}] = Z \cdot \mathbb{E}[X|\mathcal{G}]$.

30
11 The Galton-Watson process

Consider an asexual organism (in the original work these were Victorian men) whose number of offsprings X_1 is chosen at random from some distribution on $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$. Each of its descendants i (assuming it has any) has X_i offsprings, with the random variables (X_1, X_2, \ldots) distributed independently and identically. An interesting question is: what is the probability that the organism’s progeny will live forever, and what is the probability that there will be a last one to its name?

Formally, consider generations $\{1, 2, \ldots\}$, and to each generation n associate an infinite sequence of random variables $(X_{n,1}, X_{n,2}, \ldots)$, with all the random variables $(X_{n,i})$ independent and identically distributed on \mathbb{N}_0. We will, to simplify some expressions, define $X \equiv X_{1,1}$. We assume that $0 \leq \mathbb{E}[X] \leq 1$, and denote $\mu \equiv \mathbb{E}[X]$. We also assume that $\mathbb{P}[X = 0] > 0$.

To each generation n we define the number of organisms Z_n, which is also a random variable. It is defined recursively by $Z_1 = 1$ and $Z_{n+1} = \sum_{i=1}^{Z_n} X_{n,i}$. Clearly $Z_n = 0$ implies $Z_{n+1} = 0$. We are interested in the event that $Z_n = 0$ for some n, or that, equivalently, $Z_n = 0$ for all n large enough. This is again equivalent to the event $\sum_n Z_n < \infty$, since each Z_n is an integer. We denote this event by E (for extinction), and denote $E_n = \{Z_n = 0\}$, so that the sequence E_n is increasing and $E = \cup_n E_n$. Therefore, by Theorem 3.5,

$$\mathbb{P}[E] = \lim_{n \to \infty} \mathbb{P}[Z_n = 0].$$

We first calculate the expectation of Z_{n+1}. Since Z_n is independent of $(X_{n,1}, X_{n,2}, \ldots)$, it holds that

$$\mathbb{E}[Z_{n+1}] = \mathbb{E} \left[\sum_{i=1}^{Z_n} X_{n,i} \right] = \mathbb{E} \left[\mathbb{E} \left[\sum_{i=1}^{Z_n} X_{n,i} \mid Z_n \right] \right] = \mathbb{E}[Z_n] \cdot \mathbb{E}[X],$$

and so

$$\mathbb{E}[Z_{n+1}] = \mu^n.$$

Claim 11.1. If $\mu < 1$ then $\mathbb{P}[E] = 1$.

3 Neither of the name Galton and Watson have died out (as of 2018), although Galton is rather rare: https://forebears.io/surnames/galton.
Proof 1. By Markov’s inequality, $P[Z_n \geq 1] \leq \mu^n$. Thus by the Borel-Cantelli Lemma w.p. 1 there will be some n with $Z_n < 1$, and thus $Z_n = 0$.

Proof 2. Note that $\mathbb{E}[\sum_n Z_n] = \sum_n \mathbb{E}[Z_n] < \infty$, and so $P[\sum_n Z_n = \infty] = 0$.

It is also true that $P[E] = 1$ when $\mu = 1$. Note that in this case

$$
\mathbb{E}[Z_{n+1}|Z_1, Z_2, \ldots, Z_n] = \mathbb{E}[Z_{n+1}|Z_n] = Z_n \cdot \mathbb{E}[X] = Z_n.
$$

The first equality makes Z_n a Markov chain. The second makes it a Martingale; we will discuss both concepts formally. By the Martingale Convergence Theorem we have that Z_n converges almost surely to some r.v. Z_∞. But clearly Z_n cannot converge to anything but 0, and so $P[E] = 1$.

Note that the event E is equal to the union of the event that $X_{1,1} = 0$ with the event that $X_{1,1} > 0$ but each of the sub-tree of the Z_2 offsprings goes extinct. Since the process on each subtree is identical, and since the probability that all of such k offspring trees goes extinct is $P[E]^k$, we have that $P[E]$ must satisfy

$$
P[E] = \sum_{k \in \mathbb{N}_0} P[X = k]P[E]^k. \tag{11.1}
$$

We accordingly define $f : [0,1] \to [0,1]$, the generating function of X, by

$$
f(t) = \sum_{k \in \mathbb{N}_0} P[X = k] \cdot t^k = \mathbb{E}[t^X],
$$

where we take $0^0 = 1$. Then (11.1) is equivalent to observing that $P[E]$ is a fixed point of f. Note that 1 is always a fixed point, but in general there might be more.

Some observations:

1. $f(0) = P[X = 0]$ and $f(1) = 1$.

2. $f'(t) = \sum_{k \in \mathbb{N}} P[X = k] \cdot k \cdot t^{k-1} = \mathbb{E}[X \cdot t^{X-1}]$. Hence $f'(1) = \mathbb{E}[X] = \mu$. Note also that $f'(t) \geq 0$.

3. Likewise, the kth derivative of f is non-negative. Thus f is convex.

Let $f_n(t) = \mathbb{E}[t^{Z_n}]$ be the generating function of Z_n. Then

$$
f_{n+1}(t) = \mathbb{E}
\left[
 t^{Z_{n+1}}
\right]
\begin{align*}
&= \mathbb{E}
\left[
 t^{Z_{n+1}}|Z_n
\right] \\
&= \mathbb{E}
\left[
 t^{\sum_{k=1}^{Z_n} X_n,k}|Z_n
\right] \\
&= \mathbb{E}
\left[
 t^{X_n}|Z_n
\right] \\
&= \mathbb{E}
\left[
 f(t)^{Z_n}
\right] \\
&= f_n(f(t)),
\end{align*}
$$

32
where we again used the fact that Z_n is independent of $(X_{n,1}, X_{n,2}, \ldots)$. Since $f_1(t) = t$, f_{n+1} is the n-fold composition of f with itself:

$$f_{n+1} = f \circ f \circ \cdots \circ f.$$

Now $\mathbb{P}[Z_n = 0] = f_n(0)$. Since f is analytic,

$$\mathbb{P}[E] = \lim_n \mathbb{P}[E_n] = \lim_n f_n(0)$$

will be the fixed point of f that one converges to by applying f repeatedly to 0. Furthermore, $f'(0) = \mathbb{P}[X = 0] > 0$, $f(1) = 1$, and f is increasing and convex. Thus f will have a unique fixed point. Finally, since $f'(1) = \mu$, this fixed point will be 1 iff $\mu \leq 1$.

33
12 Markov chains

Let the state space S be a countable or finite set. A sequence of S-valued random variables (X_0, X_1, X_2, \ldots) is said to be a Markov chain if for all $x \in S$ and $n > 0$

$$P[X_n = x | X_0, X_1, \ldots, X_{n-1}] = P[X_n = x | X_{n-1}].$$

A Markov chain is said to be time homogeneous if $P[X_n = x | X_{n-1}]$ does not depend on n. In this case it will be useful to study the associated stochastic S-indexed matrix $P(x, y) = P[X_{n+1} = y | X_n = x]$. It is easy to see that $P[X_{n+m} = y | X_n = x] = P^m(x, y)$, where P^m denotes the usual matrix exponentiation. We call P the transition matrix of the Markov chain.

In the context of a transition matrix P, we will denote by P^x the measure of the Markov chain for which $P[X_0 = x] = 1$.

The next claim is needed to formally apply the Markov property.

Claim 12.1. Let (X_0, X_1, \ldots) be a time homogeneous Markov chain. Fix some measurable $f : S^\mathbb{N} \to \mathbb{R}$ and denote

$$Y_n = f(X_n, X_{n+1}, \ldots).$$

Then for any $n, m \in \mathbb{N}$ and $x \in S$ such that $P[X_n = x] > 0$ and $P[X_m = x] > 0$ it holds that

$$E[Y_{n+1} | X_n = x] = E[Y_{m+1} | X_m = x].$$

Example: let $S = \mathbb{Z}$, let $X_0 = 0$, and let $P(x, y) = \frac{1}{2} \mathbb{1}_{|x-y|=1}$. This is called the simple random walk on \mathbb{Z}. More generally (in some direction), one can consider a graph $G = (S, E)$ with finite positive out-degrees $d(x) = |E \cap \{x\} \times S|$ and let

$$P(x, y) = \frac{\mathbb{1}_{(x,y) \in E}}{d(x)}.$$

The lazy random walk on \mathbb{Z} has transition probabilities $P(x, y) = \frac{1}{3} \mathbb{1}_{|x-y|\leq1}$.

We say that a (time homogeneous) Markov chain is irreducible if for all $x, y \in S$ there exists some m so that $P^m(x, y) > 0$. We say that an irreducible chain is aperiodic if for some (equivalently, every) $x \in S$ it holds that $P^m(x, x) > 0$ for all m large enough.

Exercise 12.2. Show that if an irreducible chain is not aperiodic then for every $x \in S$ there is a $k \in \mathbb{N}$ so that $P^m(x, x) = 0$ for all m not divisible by k.

Exercise 12.3. 1. Show that the simple random walk on \mathbb{Z} is irreducible but not aperiodic.

2. Show that the lazy random walk on \mathbb{Z} is irreducible and aperiodic.

3. Show that the simple random walk on a directed graph is irreducible iff the graph is strongly connected.
4. Show that the simple random walk on a connected, undirected graph is aperiodic iff the graph is not bipartite.

We define the hitting time to \(x \in S \) by

\[
T_x = \min\{n > 0 : X_n = x\}.
\]

This is a random variable taking values in \(\mathbb{N} \cup \{\infty\} \). An irreducible Markov chain is said to be **recurrent** if \(P[T_x < \infty] = 1 \) whenever \(P[X_0 = x] > 0 \). A non-recurrent random walks is called **transient**.

Theorem 12.4. Fix an irreducible Markov chain with \(P[X_0 = x] > 0 \) for all \(x \in S \). Then the following are equivalent.

1. The Markov chain is recurrent.
2. For some (all) \(x \in S \) it holds that

\[
P[X_n = x \ i.o.] = 1.
\]

3. For some (all) \(x \in S \) it holds that \(\sum_m P^m(x,x) = \infty \).

Proof. Choose any \(x \in S \). Since \(P[T_x < \infty] = 1 \), and since \(P[X_0 = y] > 0 \) for any \(y \in S \), we have that \(P[T_x < \infty | X_0 = y] = 1 \), or that

\[
P[X_n = x \ for \ some \ n > 0 | X_0 = y] = 1.
\]

By irreducibility we have that \(P[X_m = y] > 0 \) for any \(m \), and so by the Markov property it follows that

\[
P[X_n = x \ for \ some \ n > m | X_m = y] = 1.
\]

Summing over \(y \) yields that

\[
P[X_n = x \ for \ some \ n > m] = 1,
\]

and so

\[
P[X_n = x \ i.o.] = 1.
\]

We have thus shown that (1) implies (2).

Note that \(P^m(x,x) = P[X_m = x | X_0 = x] \). Now, (2) implies that

\[
P[X_n = x \ i.o. | X_0 = x] = 1
\]

and so, by Borel-Cantelli, (2) implies (3).
Finally, to show that (3) implies (1), assume that the Markov chain is transient. Then $P[T_x < \infty] < 1$, and so $P[T_x < \infty|X_0 = x] < 1$. Denote the latter by p. Hence, by the Markov property,

$$p = P[X_n = x \text{ for some } n > m|X_m = x].$$

Therefore, conditioned on $X_0 = x$, the probability that x is visited k more times is $p^k(1 - p)$. In particular the expected number of visits is finite, and since this expectation is equal to $\sum_m P^m(x,x)$, the proof is complete. \hfill \square

Exercise 12.5. Prove that every irreducible Markov chain over a finite state space is recurrent.

Exercise 12.6. Let P be the transition matrix of a Markov chain over S, and for $\varepsilon > 0$ let $P_\varepsilon = (1 - \varepsilon)P + \varepsilon I$, where I is the identity matrix. Thus P_ε is the ε-lazified version of P. Consider two Markov chains over S: both with $X_0 = x$, and one with transition matrix P and the other with transition matrix P_ε. Prove that either both are recurrent or both are transitive.

Corollary 12.7. The simple random walk on \mathbb{Z} is recurrent.

Proof. Note that $P[X_{2n+1} = 0] = 0$ and that

$$P[X_{2n} = 0] = 2^{-n} \binom{2n}{n}.$$

By Stirling

$$\binom{2n}{n} \geq \frac{2^{2n-1}}{\sqrt{n}},$$

and so

$$P[X_{2n} = 0] \geq \frac{1}{2\sqrt{n}}.$$

Hence

$$\sum_m P^m(0,0) \geq \frac{1}{2\sqrt{m}} = \infty,$$

and the claim follows by Theorem 12.4. \hfill \square

Consider now a random walk with a drift on \mathbb{Z}. For example, let $P(x,y) = p$ if $y = x + 1$ and $P(x,y) = 1 - p$ if $y = x - 1$. In this case, assuming $X_0 = 0$, $X_n = \sum_{k\leq n} Y_n$ where the Y_n are i.i.d. r.v. with $P[Y_n = 1] = p$ and $P[Y_n = -1] = 1 - p$. It follows from the strong law of large numbers that a.s. $\lim_n X_n/n = 2p - 1 > 0$, and so in particular $\lim_n X_n = \infty$, and the random walk is transient. The same argument holds whenever the transition probabilities correspond to an L^1 random variable with non-zero expectation, by the same argument (although we have yet to prove an L^1 SLLN).
Exercise 12.8. Prove that the simple random walk on \mathbb{Z}^2 (given by $P(x, y) = \frac{1}{4} \mathbb{1}_{|x-y| = 1}$) is recurrent, but that the simple random walk on \mathbb{Z}^d (given by $P(x, y) = \frac{1}{d} \mathbb{1}_{|x-y| = 1}$) is transient for all $d \geq 3$.
13 Martingales

A filtration $\Phi = (\mathcal{F}_1, \mathcal{F}_2, \ldots)$ is a sequence of increasing sigma-algebras $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \cdots$. A natural (and in some sense only) example is the case that $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$ for some sequence of random variables (Y_1, Y_2, \ldots).

A process (X_1, X_2, \ldots) is said to be adapted to Φ if each X_n is \mathcal{F}_n-measurable. A sequence of real random variables (X_1, X_2, \ldots) that is adapted to Φ and is in L^1 is called a martingale with respect to Φ if for all $n \geq 1$

$$E[X_{n+1} | \mathcal{F}_n] = X_n.$$

It is called a supermartingale if

$$E[X_{n+1} | \mathcal{F}_n] \leq X_n.$$

Note that if (X_1, X_2, \ldots) is a martingale then $E[X_n] = E[X_1]$ and by subtracting the constant $E[X_1]$ from all X_n’s we get that (X_0, X_1, \ldots) is a martingale with $X_0 = 0$. A similar statement holds for supermartingales.

As a first example, let W_n be i.i.d. r.v. with $P[W_n = +1] = P[W_n = -1] = 1/2$, let $X_n = \sum_{k \leq n} W_n$, and let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Then X_n is the amount of money made in n fair bets (or the locations of a simple random walk on \mathbb{Z}) and is a martingale with respect to $(\mathcal{F}_1, \mathcal{F}_2, \ldots)$. If we set $P[W_n = +1] = 1/2 - \epsilon$ and $P[W_n = -1] = 1/2 + \epsilon$ for some $\epsilon > 0$ then X_n is a supermartingale.

As a second example we introduce Pólya’s urn. Consider an urn in which there are initially a single black ball and a single white ball. In each time period we reach in, pull out a ball, and then put back two balls of the same color. Formally, let (Y_1, Y_2, \ldots) be i.i.d. random variables distributed uniformly over $[0, 1]$, and let the number of black balls at time n be B_n, given by $B_1 = 1$ and

$$B_{n+1} = B_n + \mathbb{1}_{\{Y_n < B_n/(n+1)\}}.$$

Denote by $R_n = B_n/(n + 1)$ the fraction of black balls. Then

$$E[R_{n+1} | B_1, \ldots, B_n] = E[R_{n+1} | B_n],$$

since the process (B_1, B_2, \ldots) is a Markov chain. Furthermore

$$E[R_{n+1} | B_n] = \frac{1}{n+2} E[B_{n+1} | B_n] = \frac{1}{n+2} \left(B_n + \frac{B_n}{n+1} \right) = \frac{B_n}{n+1} = R_n,$$

and so R_n is a martingale with respect to $\mathcal{F}_n = \sigma(B_1, \ldots, B_n)$.
As a third example let \(X \in \mathcal{L}^2 \) (e.g., \(X \) is a standard Gaussian), let \(Y_1, Y_2, \ldots \) be i.i.d. in \(\mathcal{L}^2 \), and let \(Z_n = X + Y_n \). This can be thought of as a model of independent measurements \((Z_n) \) with noise \((Y_n) \) of a physical quantity \((X) \). Under this interpretation,
\[
\tilde{X}_n = \mathbb{E}[X|Y_1, \ldots, Y_n]
\]
is a natural estimator of \(X \). By the law of total expectations
\[
\mathbb{E} [\tilde{X}_{n+1}|Y_1, \ldots, Y_n] = \tilde{X}_n,
\]
and thus \(\tilde{X}_n \) is also a martingale.

Theorem 13.1 (Martingale Convergence in \(\mathcal{L}^2 \)). Let \(\Phi = (\mathcal{F}_1, \mathcal{F}_2, \ldots) \) be a filtration, and let \((X_1, X_2, \ldots)\) be a martingale w.r.t. \(\Phi \). Furthermore, assume that there exists a \(K \) such that
\[
\mathbb{E} [X_n^2] < K \text{ for all } n.
\]
Then there exists a random variable \(X \in \mathcal{L}^2 \) such that \(\mathbb{E} [(X - X_n)^2] \to 0 \).

Proof. Set \(X_0 = 0 \), and for \(n \geq 1 \) let \(Y_n = X_n - X_{n-1} \). Since \(X_{n-1} = \mathbb{E}[X_n|\mathcal{F}_{n-1}] \), we have that \(Y_n \) is orthogonal to any \(\mathcal{F}_{n-1} \)-measurable r.v., and in particular is orthogonal to \(Y_m \) for any \(m < n \). Now,
\[
\sum_{k \leq n} Y_n = X_n
\]
and so by the orthogonality of the \(Y_n \)'s it follows that
\[
\sum_{k \leq n} \mathbb{E} [Y_k^2] = \mathbb{E} [X_n^2] < K.
\]
Thus
\[
\sum_k \mathbb{E} [Y_k^2] < K,
\]
and we have that \(X_n \) is a Cauchy sequence in \(\mathcal{L}^2 \). Therefore, since \(\mathcal{L}^2 \) is complete (Theorem 7.6) there exists some \(X \in \mathcal{L}^2 \) such that \(\mathbb{E} [(X - X_n)^2] \to 0 \).

The next theorem shows that, in fact, convergence is pointwise, and an \(\mathcal{L}^1 \) assumption suffices.

Theorem 13.2 (Martingale Pointwise Convergence). Let \(\Phi = (\mathcal{F}_1, \mathcal{F}_2, \ldots) \) be a filtration, and let \((X_1, X_2, \ldots)\) be a supermartingale w.r.t. \(\Phi \). Furthermore, assume that there exists a \(K \) such that
\[
\mathbb{E} [|X_n|] < K \text{ for all } n.
\]
Then there exists a random variable \(X \in \mathcal{L}^1 \) such that almost surely \(\lim_n X_n = X \).

Before proving this theorem we will need the following lemmas.

Lemma 13.3. Let \((X_0, X_1, X_2, \ldots)\) be a supermartingale w.r.t. \(\Phi = (\mathcal{F}_1, \mathcal{F}_2, \ldots) \) with \(X_0 = 0 \), let \(B_n \) be \(\{0, 1\} \)-values random variables adapted to \(\Phi \), and let \(Y_n = \sum_{k \leq n} B_{k-1} (X_k - X_{k-1}) \). Then \(Y_n \) is a supermartingale and \(\mathbb{E}[Y_n] \leq 0 \).
The idea behind this lemma is the following: imagine that you are gambling at a casino with non-positive expected wins from every gamble. Say that you have some system for deciding when to gamble and when to stay out (i.e., the B_n's). Then you do not expect to win more than you would have if you stayed in the game every time.

Proof.

$$
\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = \mathbb{E} \left[\sum_{k \leq n+1} B_{k-1} \cdot (X_k - X_{k-1}) \middle| \mathcal{F}_n \right] \\
= \mathbb{E}[Y_n + B_n \cdot (X_{n+1} - X_n) | \mathcal{F}_n] \\
= Y_n + B_n \mathbb{E}[X_{n+1} - X_n | \mathcal{F}_n] \\
= Y_n + B_n (\mathbb{E}[X_{n+1}|\mathcal{F}_n] - X_n) \\
\leq Y_n.
$$

Thus Y_n is a supermartingale, and by induction $\mathbb{E}[Y_n] \leq 0$. \hfill \qed

Lemma 13.4. Let (X_0, X_1, X_2, \ldots) be a supermartingale w.r.t. $\Phi = (\mathcal{F}_1, \mathcal{F}_2, \ldots)$ with $X_0 = 0$. Fix some $a < b$, and let B_n be defined as follows: $B_0 = 0$, and B_{n+1} is the indicator of the union of the events

1. $B_n = 1$ and $X_n \leq b$.
2. $B_n = 0$ and $X_n < a$.

Let $U_{n}^{a,b}$ be the number of $k \leq n$ such that $B_k = 0$ and $B_{k-1} = 1$. Then

$$
\mathbb{E}[U_{n}^{a,b}] \leq \frac{\mathbb{E}[(X_n - a)^{-}]}{b - a}.
$$

Proof. By picture, it is clear that for

$$
Y_n = \sum_{k \leq n} B_{k-1} \cdot (X_k - X_{k-1})
$$

it holds that

$$
Y_n \geq (b - a)U_{n}^{a,b} - (X_n - a)^{-}.
$$

By Lemma 13.3 we have that $\mathbb{E}[Y_n] \leq 0$, and so the claim follows by taking expectations. \hfill \qed

Proof of Theorem 13.2. For a given $a < b$, let $U_{n}^{a,b} = \lim_n U_{n}^{a,b}$. The limit exists since this is a monotone increasing sequence, and it also follows that

$$
\mathbb{E}[U_{\infty}^{a,b}] = \lim_n \mathbb{E}[U_{n}^{a,b}] \leq \lim_n \frac{\mathbb{E}[(X_n - a)^{-}]}{b - a} \leq \frac{|a| + K}{b - a} < \infty.
$$

Thus $\mathbb{P}[U_{\infty}^{a,b} < \infty] = 1$, and it follows that with probability zero it occurs that $\limsup_n X_n \geq b$ and $\liminf_n X_n \leq a$. Applying this to a countable dense set of pairs (a, b) we get that with probability zero $\limsup_n X_n > \liminf_n X_n$, and so $\limsup_n X_n = \liminf_n X_n$ almost surely. \hfill \qed

Exercise 13.5. Let R_n be the fraction of black balls in Pólya’s urn. Show that $\lim_n R_n$ is distributed uniformly on $(0, 1)$. Hint: calculate the distribution of R_n.

40
14 Stopping times

Let $\Phi = (\mathcal{F}_1, \mathcal{F}_2, \ldots)$ be a filtration, and let (X_0, X_1, X_2, \ldots) be a supermartingale w.r.t. Φ. Denote $\mathcal{F}_\infty = \sigma(\cup_n \mathcal{F}_n)$.

A random variable T taking values in $\mathbb{N} \cup \{\infty\}$ is called a *stopping time* if for all $n \leq \infty$ it holds that the event $\{T \leq n\}$ is \mathcal{F}_n-measurable.

Example: (X_1, X_2, \ldots) is a Markov chain over the state space S, and T_x is the hitting time to $x \in S$ given by

$$T_x = \min\{n > 0 : X_n = x\}.$$

Example: (X_1, X_2, \ldots) is the simple random walk on \mathbb{Z}, and T is the first $n \geq 3$ such that $X_n < X_{n-1} < X_{n-2}$.

Given a stopping time T, we define the *stopped process* $(X^T_1, X^T_2, \ldots) = (X_1, X_2, \ldots, X_{T-1}, X_T, X_T, \ldots)$.

That is, $X^T_n = X_n$ if $n \leq T$, and $X^T_n = X_T$ if $n \geq T$. Equivalently, $X^T_n = X_{\min(T,n)}$. Intuitively, the stopped process corresponds to the process of a gambler's bank account, when the gambler decides stopping at time T.

Theorem 14.1. If (X_0, X_1, X_2, \ldots) is a (super)martingale (with $X_0 = 0$) then $(X^T_0, X^T_1, X^T_2, \ldots)$ is a (super)martingale.

Proof. We prove for the case of supermartingales; the proof for martingales is identical.

Let $B_n = \mathbb{1}_{\{T \geq n\}}$ and $Y_n = \sum_{k \leq n} B_{k-1} \cdot (X_k - X_{k-1})$. Then by Lemma 13.3 we have that Y_n is a supermartingale. But $Y_n = X^T_n$. \qed

So the gambler’s bank account is still a martingale, no matter what the stopping time is, and in particular $\mathbb{E}[X^T_n] \leq 0$ (with equality for martingales). However, consider a simple random walk on \mathbb{Z}, with stopping time T_1. That is, the gambler stops once she has earned a dollar. Then clearly $\mathbb{E}[X^T_{T_1}] = 1$. The following theorem gives conditions for when $\mathbb{E}[X^T_T] = 0$.

Theorem 14.2 (Doob’s Optional Stopping Time Theorem). Let (X_0, X_1, \ldots) be a supermartingale with $X_0 = 0$, and let T be a stopping time. Assume that $\mathbb{P}[T = \infty] = 0$, and that one of following holds:

1. $\exists N$ s.t. $\mathbb{P}[T \leq N] = 1$.
2. $\exists K$ s.t. $\mathbb{P}[|X_n| \leq K$ for all $n] = 1$.
3. $\mathbb{E}[T] < \infty$ and $\exists K$ s.t. $\mathbb{P}[|X_{n+1} - X_n| \leq K$ for all $n] = 1$.
4. X_n is non-negative.

Then $\mathbb{E}[X^T_T] \leq 0$, with equality if (X_0, X_1, \ldots) is a martingale.
To prove this theorem we will need the following important lemma.

Lemma 14.3 (Fatou’s Lemma). *Let \((Z_1, Z_2, \ldots)\) be a sequence of non-negative real random variables. Then*

\[
\mathbb{E} \left[\liminf_n Z_n \right] \leq \liminf_n \mathbb{E}[Z_n].
\]

Recall from the Galton-Watson example that indeed this may be a strict inequality.

Exercise 14.4. **Prove Fatou’s Lemma.** *Hint: use the Monotone Convergence Theorem.*

Proof. We prove that \(\mathbb{E}[X_T] \leq 0\); the equality in case of the martingales follows easily.

Note that \(\mathbb{E}[X_n^T] \leq 0\), by Theorem 14.1. Also \(\lim_n X_n^T = X_T\), since \(\mathbb{P}[T < \infty] = 1\) under all conditions.

1. \(X_T = X_N^T\).
2. By the Bounded Convergence Theorem \(\mathbb{E}[X_T] = \lim_n \mathbb{E}[X_n^T] \leq 0\).
3.
\[
|X_n^T| = \left| \sum_{k=1}^{\min\{T, n\}} X_k - X_{k-1} \right| \leq K \cdot T.
\]

Hence by the Dominated Convergence Theorem \(\mathbb{E}[X_T] = \mathbb{E}[X_n^T]\).

4. By Fatou’s Lemma,
\[
\mathbb{E}[X_T] \leq \liminf_n \mathbb{E}[X_n^T] \leq 0.
\]

Corollary 14.5. *Let \(T_1\) be the hitting time to 1 of the simple random walk on \(\mathbb{Z}\). Then \(\mathbb{E}[T_1] = \infty\).*
15 Harmonic and superharmonic functions

Let \((X_0, X_1, \ldots)\) be a Markov chain over the state space \(S\) with transition matrix \(P\). We say that a function \(f : S \rightarrow \mathbb{R}\) is \(P\)-harmonic if \(Pf = f\). Here \(Pf : S \rightarrow \mathbb{R}\) is

\[
[Pf](x) = \sum_{y \in S} P(x, y)f(y).
\]

We say that \(f\) is \(P\)-superharmonic if \([Pf](x) \leq f(x)\) for all \(x \in S\).

Claim 15.1. Assume that \(P\) is irreducible, so that for all \(x\) there exists an \(n\) such that \(\mathbb{P}[X_n = x] > 0\). Let \(Z_n = f(X_n)\). Then \(Z_n\) is a (super)martingale iff \(f\) is (super)harmonic.

Proof. We prove for the (super) case:

\[
\mathbb{E}[f(X_{n+1})|X_0, \ldots, X_n] = \mathbb{E}[f(X_{n+1})|X_n] = \sum_{y \in S} P(X_n, y)f(y) \leq f(X_n)
\]

iff \(f\) is superharmonic. \(\square\)

Theorem 15.2. Let \(P\) be irreducible. Then the following are equivalent.

1. Every Markov chain with transition matrix \(P\) is recurrent.
2. Some Markov chain with transition matrix \(P\) is recurrent.
3. Every non-negative \(P\)-superharmonic function is constant.

Proof. The equivalence of (1) and (2) follows easily from Theorem 12.4.

To see that (1) implies (3), let \(T_y\) be the hitting time to \(y\), and note that \(\mathbb{P}_x[T_y < \infty] = 1\), by recurrence. Let \(f\) be a non-negative superharmonic function, and let \(Z_n = f(X_n)\). Then we can apply the Optional Stopping Time Theorem to \(Z_n^{T_y}\) to get that

\[
\mathbb{E}_x[Z_{T_y}] \leq \mathbb{E}_x[Z_0].
\]

The l.h.s. is equal to \(f(y)\) and the r.h.s. is equal to \(f(x)\), and so \(f\) is constant.

Assume (3), and note that

\[
\mathbb{P}_x[T_y < \infty] = \mathbb{P}_x[X_1 = y, T_y < \infty] + \mathbb{P}_x[X_1 \neq y, T_y < \infty] = \mathbb{P}_x[X_1 = y] + \sum_{z \neq y} \mathbb{P}_x[X_1 = z, T_y < \infty] = \mathbb{P}_x[X_1 = y] + \sum_{z \neq y} \mathbb{P}_x[T_y < \infty | X_1 = z] \cdot \mathbb{P}_x[X_1 = z] = P(x, y) + \sum_{z \neq y} P(x, z) \cdot \mathbb{P}_z[T_y < \infty] \geq \sum_z P(x, z) \cdot \mathbb{P}_z[T_y < \infty].
\]

Hence \(f(x) = \mathbb{P}_x[T_y < \infty]\) is superharmonic, and thus constant by assumption. Say \(p = \mathbb{P}_x[T_y < \infty]\). By irreducibility \(p > 0\). Hence, by the Markov property, for every \(N\) the expected number of visits at times \(n > N\) is at least \(p\), and so the expected number of visits is infinite. Thus the random walk is recurrent. \(\square\)
The following claim is a direct consequence of Claim 15.1 and the Martingale Convergence Theorem.

Claim 15.3. Let \(f : S \to \mathbb{R} \) be bounded and superharmonic. Then \(Z_n = f(X_n) \) is a bounded supermartingale and therefore converges almost surely to \(Z := \lim_n Z_n \).

Recall that \(\mathcal{T}_n = \sigma(X_n, X_{n+1}, \ldots) \) and that
\[
\mathcal{T} = \cap_n \mathcal{T}_n
\]
is the tail sigma-algebra. We think of our probability space as being \((\Omega, \mathcal{F}, \mathbb{P})\) with \(\Omega = S^\mathbb{N} \) and \(\mathcal{F} \) the Borel sigma-algebra of the product of the discrete topologies. Then \(A \in \mathcal{T}_n \) iff \(A \) is of the form \(S^n \times B \) for some measurable \(B \in \mathcal{F} \). Equivalently, \(A \in \mathcal{T}_n \) iff for every \((x_0, x_1, \ldots) \in A\), and \((y_0, \ldots, y_{n-1}) \in S^n\) it holds that
\[
(y_0, \ldots, y_{n-1}, x_n, x_{n+1}, \ldots) \in A.
\]

Another important sigma-algebra is the *shift-invariant sigma-algebra* \(\mathcal{I} \). To define it, let \(\phi : S^\mathbb{N} \to S^\mathbb{N} \) be the shift map given by \(\phi(x_0, x_1, x_2, \ldots) = (x_1, x_2, \ldots) \). Then \(\mathcal{I} \) is the \(\phi \)-invariant subsets of \(S^\mathbb{N} \). That is,
\[
\mathcal{I} = \{ A \subset S^\mathbb{N} : \phi^{-1}(A) = A \}.
\]

Exercise 15.4. Show that \(\mathcal{I} \subset \mathcal{T} \), but that the two are not equal.

Exercise 15.5. Find an irreducible Markov chain on the state space \(\mathbb{N} \) that has a random variable that is \(\mathcal{T} \)-measurable but not \(\mathcal{I} \)-measurable.

Claim 15.6. Let \(Z = \lim_n f(X_n) \) for some bounded harmonic \(f \). Then \(Z \) is \(\mathcal{I} \)-measurable.

The proof is a (perhaps tedious) application of the definition.

Since \(Z \) is bounded we have that \(Z \in \mathcal{L}^\infty(\mathcal{I}) \).

Theorem 15.7. For every \(Z \in \mathcal{L}^\infty(\mathcal{I}) \) there is a bounded harmonic function \(f \) such that \(Z = \lim_n f(X_n) \).

Proof. For \(x \in S \) choose any \(n \) such that \(\mathbb{P}[X_n = x] > 0 \), and let \(f(x) = \mathbb{E}[Z|X_n = x] \). This is well defined (i.e., independent of the choice of \(n \)) because \(Z \) is \(\mathcal{I} \)-measurable. It is straightforward to check that \(f \) is bounded.

If \(\mathbb{P}[X_n = x] > 0 \) then \(\mathbb{P}[X_{n+1} = y] > 0 \) for all \(y \) such that \(P(x, y) > 0 \), and so
\[
[Pf](x) = \sum_y P(x, y)f(y)
\]
\[
= \sum_y \mathbb{P}[X_{n+1} = y|X_n = x] \cdot \mathbb{E}[Z|X_{n+1} = y]
\]
\[
= \sum_y \mathbb{P}[X_{n+1} = y|X_n = x] \cdot \mathbb{E}[Z|X_{n+1} = y, X_n = x]
\]
\[
= \mathbb{E}[Z|X_n = x]
\]
\[
= f(x),
\]
where the equality before last follows from the Markov property. Thus f is harmonic.

To see that $Z = \lim_n f(X_n)$, note that, by the martingale convergence theorem,

$$Z = \lim_n \mathbb{E}[Z|X_1,\ldots,X_n].$$

By the Markov property

$$\mathbb{E}[Z|X_1,\ldots,X_n] = \mathbb{E}[Z|X_n] = f(X_n),$$

and so $Z = \lim_n f(X_n)$.

To summarize, denote by $h^\infty(S,P) \subset \ell^\infty(S)$ the bounded P-harmonic functions. If $f \in h^\infty(S,P)$, then $Z = \lim_n f(X_n)$ is in $L^\infty(\mathcal{F})$. Conversely, if $Z \in L^\infty(\mathcal{F})$ then $f = \mathbb{E}[Z|X_n = x]$ is in $h^\infty(S,P)$.

It turns out that the map $\Phi: L^\infty(\mathcal{F}) \rightarrow h^\infty(S,P)$ given by $\Phi: Z \mapsto f$ is a linear isometry.
16 The Choquet-Deny Theorem

As motivation, consider the simple random walk \((X_1, X_2, \ldots)\) on \(\mathbb{Z}^3\). Let \(P_n = X_n/|X_n|\) be the projection of \(X_n\) to the unit sphere (and assume \(P_n \neq 0 \) whenever \(X_n = 0\)). Since this random walk is transient, it is easy to deduce that \(\lim_n |X_n| = \infty\). It follows that \(\lim_n |P_{n+1} - P_n| = 0\); that is, the projection moves more and more slowly. A natural question is: does \(P_n\) converge?

Theorem 16.1 (Choquet-Deny Theorem). Let \((Y_1, Y_2, \ldots)\) be i.i.d. random variables taking values in some countable abelian group \(G\). Let \(X_n = \sum_{k \leq n} Y_n\). Then \((X_1, X_2, \ldots)\) is a time homogeneous Markov chain over the state space \(G\). If \((X_1, X_2, \ldots)\) is also irreducible then every \(W \in \mathcal{L}^\infty(\mathcal{F})\) is constant.

For the proof of this theorem we will need an important classical result from convex analysis.

Theorem 16.2 (Krein-Milman Theorem). Let \(X\) be a Hausdorff locally convex topological space. A point \(x \in C\) is extreme if whenever \(x\) is equal to the non-trivial convex combination \(\alpha y + (1 - \alpha)z\) then \(y = z\).

Let \(C\) be compact convex subset of \(X\). Then every \(x \in C\) can be written as the limit of convex combinations of extreme points in \(C\).

Proof of Theorem 16.1. Denote by \(P\) the transition matrix of \((X_1, X_2, \ldots)\), and let \(\mu(g) = \mathbb{P}[Y_n = g]\). Then \(P(g, k) = \mu(k - g)\). Thus, if \(f\) is \(P\)-harmonic then

\[
f(g) = \sum_{k \in G} f(k)P(g, k) = \sum_{k \in G} f(k)\mu(k - g) = \sum_{k \in G} f(g + k)\mu(k).
\]

Let \(H = h^{[0,1]}(G, P)\) be the set of all \(P\)-harmonic functions with range in \([0, 1]\). We note that harmonicity is invariant to multiplication by a constant and addition, and so if we show that every \(f \in h^{[0,1]}(G, P)\) is constant then we have shown that every \(f \in H\) is constant. It then follows that every \(W \in \mathcal{L}^\infty(\mathcal{F})\) is constant, by the fact that \(\Phi\) is an isometry.

We state three properties of \(H\) that are easy to verify.

1. \(H\) is invariant to the \(G\) action: for any \(f \in H\) and \(g \in G\), the function \(f^g : G \to \mathbb{R}\) given by \([f^g](k) = f(k - g)\) is also in \(H\).

2. \(H\) is compact in the topology of pointwise convergence.

3. \(H\) is convex.

As a convex compact space, \(H\) is the closed convex hull of its extreme points; this is the Krein-Milman Theorem. Thus \(H\) has extreme points. Let \(f \in H\) be an extreme point. Then, since \(f\) is harmonic,

\[
f(g) = \sum_{k \in G} f(g + k)\mu(k) = \sum_{k \in G} f^{-k}(g)\mu(k).
\]
By the first property of H each f^{-k} is also in H, and thus we have written f as a convex combination of functions in H. But f is extreme, and so $f = f^{-k}$ for all k in the support of μ. But since the Markov chain is irreducible, the support of μ generates G. Hence f is invariant to the G-action, and therefore constant.

An immediate corollary of the Choquet-Deny Theorem is that every event in \mathcal{F} has probability either 0 or 1. As an application, consider the question on the simple random walk on \mathbb{Z}^3. We would like to show that P_n does not converge pointwise. Note that the event that P_n converges is a shift-invariant event, and therefore has measure in $\{0,1\}$. Assume by contradiction that it has measure 1, and let $P = \lim_n P_n$. For each Borel subset B of the sphere, the event that $P \in B$ is shift-invariant, and therefore has measure in $\{0,1\}$. For each $k \in \mathbb{N}$, disjointly partition the sphere into Borel sets with radius at most $1/k$. Then $\mathbb{P}[P \in B] = 1$ for exactly one of these sets, which we call B_k. Let the intersection of all these B_k’s be the singleton containing the point in the sphere b. Then we have shown that P is equal to b, almost surely. Note that so far we have not used the fact that the random walk is simple.

Finally, because the random walk is simple, then by the symmetry of the problem, it must hold that such a point b is invariant to reflection about the $x-y$, $y-z$ and $x-z$ planes, which is impossible.

Exercise 16.3. Derive Kolmogorov’s zero-one law from Theorem 16.1.
17 Characteristic functions and the Central Limit Theorem

Let X be a real random variable. The characteristic function $\phi_X : \mathbb{R} \to \mathbb{C}$ of X is given by

$$\phi_X(t) = \mathbb{E}[e^{itX}] = \mathbb{E}[\cos(tX)] + i \cdot \mathbb{E}[\sin(tX)].$$

This expectation exists for any real random variable X and any real t, since the sine and cosine functions are bounded.

Note that $\phi_{aX+b}(t) = \mathbb{E}[e^{it(aX+b)}] = \mathbb{E}[e^{itaX} \cdot e^{itb}] = \phi_{aX} \cdot e^{itb}$.

Exercise 17.1. ϕ_X is continuous, and is differentiable n times if $X \in \mathcal{L}^n$. In this case $\phi_X^{(n)}(0) = i^n \cdot \mathbb{E}[X^n]$.

If X and Y are independent, then

$$\phi_{X+Y}(t) = \mathbb{E}[e^{it(X+Y)}] = \mathbb{E}[e^{itX}] \cdot \mathbb{E}[e^{itY}] = \phi_X(t) \cdot \phi_Y(t).$$

A real random variable X is said to have a probability distribution function (or p.d.f.) $f_X : \mathbb{R} \to \mathbb{R}$ if for any measurable $h : \mathbb{R} \to \mathbb{R}$ it holds that

$$\mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x)f_X(x) \, dx,$$

whenever the l.h.s. exists. In this case

$$\phi_X(t) = \int_{-\infty}^{\infty} e^{itx} f_X(x) \, dx,$$

So that ϕ_X is the Fourier transform of f_X.

Let X be a real random variable. Recall that the Cumulative Distribution Function (or c.d.f.) $F : \mathbb{R} \to [0,1]$ is given by $F(x) = \mathbb{P}[X \leq x]$. We saw in Claim 3.8 that F uniquely determines the distribution of X.

Theorem 17.2 (Lévy’s Inversion Formula). Let X be a real random variable. For every $b > a$ such that $\mathbb{P}[X = a] = \mathbb{P}[X = b] = 0$ it holds that

$$F(b) - F(a) = \lim_{T \to \infty} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) \, dt.$$
Since there are at most countably many \(c \in \mathbb{R} \) such that \(\mathbb{P}[X = c] > 0 \), \(F \) is determined by \(\varphi_X \).

Let \(X \) be a standard Gaussian (or normal) random variable. This is a real random variable with p.d.f. \(f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \). It is easy to calculate that
\[
\varphi_X(t) = e^{-\frac{1}{2}t^2}.
\]
Thus if \(X_1 \) and \(X_2 \) are independent standard Gaussian then
\[
\varphi_{(X_1+X_2)/\sqrt{2}}(t) = e^{-\frac{1}{2}t^2},
\]
and more generally the same holds for \((X_1 + \cdots + X_n)/\sqrt{n} \).

If \((X_1, X_2, \ldots) \) are (not necessarily Gaussian) i.i.d. and \(Y_n = \sum_{k \leq n} X_k \) then
\[
\varphi_{Y_n}(t) = \varphi_X(t)^n.
\]
If we define
\[
Z_n = \frac{1}{\sqrt{n}} Y_n = \frac{1}{\sqrt{n}} \sum_{k \leq n} X_k
\]
then
\[
\varphi_{Z_n}(t) = \varphi_X(t/\sqrt{n})^n.
\]
Now, let \(\mathbb{E}[X] = 0 \) and \(\mathbb{E}[X^2] = 1 \). Since \(X \in \mathcal{L}^2 \) then \(\varphi_X \) is twice differentiable and
\[
\varphi_X(0) = 1 \quad \varphi'(0) = 0 \quad \varphi''(0) = 1.
\]
It is an exercise to show that it follows that
\[
\varphi_X(t) = 1 - \frac{1}{2} t^2 + o(t^2),
\]
where here we mean by \(o(t^2) \) that as \(t \to 0 \) it holds that
\[
|\varphi_X(t) - 1 - \frac{1}{2} t^2| \cdot t^2 \to 0.
\]
Thus we have that
\[
\varphi_{Z_n}(t) = \varphi_X(t/\sqrt{n})^n = (1 - \frac{1}{2} t^2/n + o(t^2/n^2))^n,
\]
and thus
\[
\lim_{n} \varphi_{Z_n}(t) = e^{-\frac{1}{2}t^2}.
\]
As we know, \(e^{-\frac{1}{2}t^2} \) is the characteristic function of a standard Gaussian. Thus we have proved that if \(G \) is a standard Gaussian then for any \(t \in \mathbb{R} \) it holds that
\[
\mathbb{E}[e^{itZ_n}] \to \mathbb{E}[e^{itG}].
\]
This is almost the central limit theorem.
18 Large deviations

Let \((X_1, X_2, \ldots)\) be i.i.d. real random variables. Denote \(X = X_1\) and let \(\mu = \mathbb{E}[X]\). Let

\[Y_n = \frac{1}{n} \sum_{k=1}^{n} X_k. \]

By the law of large numbers we expect that \(Y_n\) should be close to \(\mu\) for large \(n\). What is the probability that it is larger than some \(\eta > \mu\)? We already proved the Chernoff lower bound. We here prove an asymptotically matching upper bound.

Recall that the moment generating function of \(X\) is

\[M(t) = \mathbb{E} \left[e^{tX} \right], \]

and that its cumulant generating function is

\[K(t) = \log M(t) = \log \mathbb{E} \left[e^{tX} \right]. \]

Of course, these may be infinite for some \(t\). Let \(I\), the domain of both, be the set on which they are finite, and note that \(0 \in I\).

Claim 18.1. \(I\) is an interval, and \(K\) is convex on \(I\).

For the proof of this claim we will need Hölder’s inequality. For \(p \in [1, \infty)\) and a real r.v. \(X\) denote

\[|X|_p = \mathbb{E} \left[|X|^p \right]^{1/p}. \]

Lemma 18.2 (Hölder’s inequality). For any \(p, q \in [1, \infty]\) with \(1/p + 1/q = 1\) and r.v.s \(X, Y\) it holds that

\[|X \cdot Y|_1 \leq |X|_p \cdot |Y|_q. \]

Exercise 18.3. Prove Hölder’s inequality. Hint: use Young’s inequality, which states that for every real \(x, y \geq 0\) and \(p, q > 1\) with \(1/p + 1/q = 1\) it holds that

\[xy \leq \frac{x^p}{p} + \frac{y^q}{q}. \]

Proof of Claim 18.1. Assume \(a, b \in I\). Then for any \(r \in (0, 1)\)

\[K(ra + (1-r)b) = \log \mathbb{E} \left[e^{(ra+(1-r)b)X} \right] = \log \mathbb{E} \left[(e^{aX})^r (e^{bX})^{1-r} \right]. \]
By Hölder’s inequality
\[
K(ra + (1 - r)b) \leq \log \mathbb{E}\left[\left(e^{aX}\right)^r\right]^{1/r} + \log \mathbb{E}\left[\left(e^{bX}\right)^{1-r}\right]^{1/(1-r)}
\]
\[
= \log \mathbb{E}\left[e^{aX}\right] + \log \mathbb{E}\left[e^{bX}\right]^{1-r}
\]
\[
= r \log \mathbb{E}\left[e^{aX}\right] + (1-r) \log \mathbb{E}\left[e^{bX}\right]
\]
\[
= rK(a) + (1-r)K(b).
\]

Since \(K\) is non-negative it follows that it is finite on \(ra + (1 - r)b\), and thus \(I\) is an interval on which it is convex.

Applying the Dominated Convergence Theorem inductively can be used to show that \(M\) and \(K\) are smooth (i.e., infinitely differentiable) on the interior of \(I\).

Let the Legendre transform of \(K\) be given by
\[
K^*(\eta) = \sup_{t > 0} (t\eta - K(t)).
\]

It turns out that the fact that \(K\) is smooth and convex implies that \(K^*\) is also smooth and convex. Therefore, if the supremum in this definition is obtained at some \(t\), then \(K'(t) = \eta\). Conversely, if \(K'(t) = \eta\) for some \(t\), then this \(t\) is unique and \(K^*(\eta) = t\eta - K(t)\).

Theorem 18.4 (Chernoff bound).
\[
\mathbb{P}[Y_n \geq \eta] \leq e^{-K^*(\eta)n}.
\]

Proof. For any \(t \geq 0\)
\[
\mathbb{P}[Y_n \geq \eta] \leq \mathbb{P}[tY_n \geq t\eta]
\]
\[
= \mathbb{P}[e^{t\sum_{k=1}^{n} X_k} \geq e^{t\eta n}]
\]
\[
\leq \mathbb{E}\left[e^{\sum_{k=1}^{n} tX_k}\right]^{-t\eta n}
\]
\[
= e^{-(t\eta - K(t))n}.
\]

Optimizing over \(t\) yields the claim.

Theorem 18.5. If \(\eta = K'(t)\) for some \(t\) in the interior of \(I\) then
\[
\mathbb{P}[Y_n \geq \eta] = e^{-K^*(\eta)n + o(n)}.
\]

Proof. One side is given by the Chernoff bound. It thus remains to prove the upper bound. Let \(Z_n = \sum_{k=1}^{n} X_k\). We want to prove that
\[
\mathbb{P}[Z_n \geq \eta n] = e^{-K^*(\eta)n + o(n)}.
\]
Denote the law of X by ν, and for a $t \in I$ (to be determined late) define $\tilde{\nu}$ by

$$\frac{d\tilde{\nu}}{d\nu}(x) = \frac{e^{tx}}{E[e^{tX}]} = e^{tx-K(t)}.$$

Let $(\tilde{X}_1, \tilde{X}_2, \ldots)$ be i.i.d. with law $\tilde{\nu}$, and let $\tilde{Z}_n = \sum_{k=1}^n \tilde{X}_k$. The law of \tilde{Z}_n is $\tilde{\nu}^{(n)}$, the n-fold convolution of $\tilde{\nu}$. We claim that

$$\frac{d\tilde{\nu}^{(n)}}{d\nu}(x) = \frac{e^{tx}}{E[e^{tX}]}^n = e^{tx-nK(t)}.$$

This is left as an exercise. Note also that

$$E[\tilde{X}] = \frac{E[Xe^{tX}]}{E[e^{tX}]} = K'(t).$$

Now, for any $\bar{\eta} > \eta$,

$$P[Z_n \geq \eta n] \geq P[\bar{\eta} n \geq Z_n \geq \eta n]$$

$$= \int_{\eta n}^{\bar{\eta} n} 1 d\nu(n)(x)$$

$$= e^{nK(t)} \int_{\eta n}^{\bar{\eta} n} e^{-tx} d\nu(n)(x)$$

$$\geq e^{-(t\bar{\eta}-K(t))n} \int_{\eta n}^{\bar{\eta} n} d\nu(n)(x)$$

$$= e^{-(t\bar{\eta}-K(t))n} P[\bar{\eta} n \geq Z_n \geq \eta n]$$

Since $E[\tilde{X}] = K'(t)$, it follows that if we choose t so that $\bar{\eta} > K'(t) > \eta$ — which we can, by the claim hypothesis and the smoothness of K — then, by the law of large numbers,

$$P[\bar{\eta} n \geq Z_n \geq \eta n] \to 1,$$

and so

$$\lim_{n \to \infty} \frac{1}{n} \log P[Z_n \geq \eta n] \geq -(t\bar{\eta} - K(t)).$$

Since this holds for any $\bar{\eta} > \eta$ and $\bar{\eta} > K'(t) > \eta$, it also holds for $\bar{\eta} = \eta$ and t such that $K'(t) = \eta$. So

$$\lim_{n \to \infty} \frac{1}{n} \log P[Z_n \geq \eta n] \geq -(t\eta - K(t))$$

or

$$P[Z_n \geq \eta n] \geq e^{-(t\eta-K(t))n+o(n)}.$$

Finally, since K is convex and smooth, and since $K'(t) = \eta$, then t is the maximizer of $z\eta - K(z)$, and thus $t\eta - K(t) = K^*(\eta)$ and

$$P[Z_n \geq \eta n] \geq e^{-K^*(\eta)n+o(n)}.$$

\qed
19 The Radon-Nikodym derivative

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Given a non-negative r.v. X with $\mathbb{E}[X] = 1$, we can define a the measure $Q = X \cdot \mathbb{P}$ by

$$Q[A] = \mathbb{E}[\mathbb{1}_A \cdot X] = \int_{\Omega} \mathbb{1}_{\{A\}}(\omega) \cdot X(\omega) \, d\mathbb{P}(\omega).$$

It is easy to show that X is the unique r.v. such that $Q = X \cdot P$.

In this case we call X the Radon-Nikodym derivative of Q with respect to \mathbb{P}, and denote

$$\frac{dQ}{d\mathbb{P}}(\omega) = X(\omega).$$

Note that

$$\mathbb{P}[A] = 0 \implies Q[A] = 0,$$ \hspace{1cm} (19.1)

so that not every measure Q can be written as $X \cdot P$ for some X. When Q and \mathbb{P} satisfy (19.1) then we say that Q is absolutely continuous relative to \mathbb{P}.

Example 19.1.

- The uniform distribution on $[0,1]$ is absolutely continuous relative to the uniform distribution on $[0,2]$.
- If $\mathbb{P}[A] > 0$ then $\mathbb{P}[\cdot \mid A]$ is absolutely continuous relative to \mathbb{P}.
- The point mass $\delta_{1/2}$ is not absolutely continuous relative to the uniform distribution on $[0,1]$.
- The i.i.d. q measure on $\{0,1\}^\infty$ is not absolutely continuous relative to the i.i.d. p measure on $\{0,1\}^\infty$, unless $p = q$.

Lemma 19.2. If Q is absolutely continuous relative to \mathbb{P}, then for each $\varepsilon > 0$ there exists a $\delta > 0$ such that, for every measurable A, $\mathbb{P}[A] < \delta$ implies $Q[A] < \varepsilon$.

Proof. Assume the contrary, so that there is some ε and a sequence of events (A_1, A_2, \ldots) with $\mathbb{P}[A_n] < 2^{-n}$ and $Q[A_n] \geq \varepsilon$. Let $A = \bigcap_{n=1}^{\infty} \bigcup_{m>n} A_m$ be the event that infinitely many of these events occur. Then by Borel-Cantelli $\mathbb{P}[A] = 0$. On the other hand $Q[A] \geq \varepsilon$, in contradiction to absolute continuity.

Recall that \mathcal{F} is separable if it generated by a countable subset $\{F_1, F_2, \ldots\}$. We can assume w.l.o.g. that this subset is a π-system.

Theorem 19.3 (Radon-Nikodym Theorem). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with \mathcal{F} separable, and let Q be absolutely continuous relative to \mathbb{P}. Then there exists a r.v. X such that $Q = X \cdot \mathbb{P}$. \hspace{1cm} (19.3)
Proof. Let $\mathcal{F}_n = \sigma(F_1, \ldots, F_n)$. Then \mathcal{F}_n is a finite sigma-algebra, and as such is the set of all possible unions of $\{B^n_1, \ldots, B^n_k\}$, a finite partition of Ω. Define the \mathcal{F}_n-measurable r.v. X_n as follows. For a given $\omega \in \Omega$ there is a unique $B^n \in \{B^n_1, \ldots, B^n_k\}$ such that $\omega \in B^n$. Set

$$X_n(\omega) = \frac{Q[B^n]}{P[B^n]},$$

where we take $0/0 = 0$. It is easy to verify that $E[X_n] = 1$, and that for every $B \in \mathcal{F}_n$ it holds that

$$Q[B] = E[1_B \cdot X_n],$$

so that on \mathcal{F}_n it holds that X_n is the Radon-Nikodym derivative dQ/dP.

Now, since $(\mathcal{F}_1, \mathcal{F}_2, \ldots)$ is a filtration, each element in B^n is the disjoint union of (at most) two sets B^{n+1}_i and B^{n+1}_j. Hence

$$E[X_{n+1} \mid \mathcal{F}_n](\omega) = \frac{X_{n+1}(B^{n+1}_i) \cdot P[B^{n+1}_i] + X_{n+1}(B^{n+1}_j) \cdot P[B^{n+1}_j]}{P[B^{n+1}_i] + P[B^{n+1}_j]}$$

$$= \frac{Q[B^{n+1}_i] \cdot P[B^{n+1}_i] + Q[B^{n+1}_j] \cdot P[B^{n+1}_j]}{P[B^{n+1}_i] + P[B^{n+1}_j]}$$

$$= \frac{Q[B^n]}{P[B^n]}$$

$$= \frac{Q[B^n]}{P[B^n]}$$

$$= X_n(\omega),$$

and thus (X_1, X_2, \ldots) is a martingale w.r.t. the filtration $(\mathcal{F}_1, \mathcal{F}_2, \ldots)$. Since it is non-negative then it converges almost surely to some r.v. X.

We now claim that (X_1, X_2, \ldots) are uniformly integrable, in the sense that for every ε there exists a K such that for all n it holds that

$$E[X_n \cdot 1_{\{X_n > K\}}] < \varepsilon.$$

To see this, recall that $E[X_n] = 1$, note that X_n is non-negative, and apply Markov’s inequality to arrive at

$$P[X_n > K] < \frac{1}{K}.$$

Now, by Lemma 19.2, if we choose K large enough then this implies that $Q[X_n > K] < \varepsilon$. But the event $\{X_n > K\}$ is in \mathcal{F}_n, since X_n is \mathcal{F}_n-measurable. Hence

$$E[X_n \cdot 1_{\{X_n > K\}}] = Q[X_n > K] < \varepsilon.$$
This proves that \((X_1, X_2, \ldots)\) are uniformly integrable. An important result (which is not hard but which we will not prove) is that if \(X_n \to X\) almost surely, then uniform integrability implies that this convergence is also in \(L^1\), in the sense that \(\mathbb{E}[|X_n - X|] \to 0\). It follows that for any \(F_i \in \{F_1, F_2, \ldots\}\)

\[
\lim_n \mathbb{E}[\mathbb{1}_{(F_i)} \cdot (X_n - X)] \leq \lim_n \mathbb{E}[\mathbb{1}_{(F_i)} \cdot |X_n - X|] = 0,
\]

and thus

\[
\mathbb{E}[\mathbb{1}_{(F_i)} \cdot X] = \lim_n \mathbb{E}[\mathbb{1}_{(F_i)} \cdot X_n] = Q[F_i].
\]

Thus the measure \(X \cdot \mathbb{P}\) agrees with \(Q\) on the generating algebra \(\{F_1, F_2, \ldots\}\), and thus \(Q = X \cdot \mathbb{P}\). \qed
20 Stationary distributions and processes

Given a transition matrix P on some state space S, and given a Markov chain (X_1, X_2, \ldots) over this P, the law of X_2 is given by

$$
P [X_2 = t] = \sum_s P [X_1 = s, X_2 = t]$$

$$= \sum_s P [X_1 = s] P [X_2 = t | X_1 = s]$$

$$= \sum_s P [X_1 = s] P (s, t).$$

Thus, if we think of the distributions of X_1 and X_2 as vectors $v_1, v_2 \in \ell^1(S)$, then we have that $v_2 = v_1 P$.

A non-negative left eigenvector of P is called a stationary distribution of P. It corresponds to a distribution of X_1 that induces the same distribution on X_2. By the Perron-Frobenius Theorem, if S is finite then P has a stationary distribution. Furthermore, if P is also irreducible then this distribution is unique.

Exercise 20.1. The uniform distribution on $\mathbb{Z}/n\mathbb{Z}$ is the unique stationary distribution of the μ random walk (recall that μ is generating).

Let (Y_1, Y_2, \ldots) be a general process. We say that this process is stationary (or shift-invariant) if its law is the same as the law of (Y_2, Y_3, \ldots). Equivalently, for every n, the law of $(Y_{k+1}, \ldots, Y_{k+n})$ is independent of k.

Exercise 20.2. Show that the two definitions are indeed equivalent.

Claim 20.3. If (Y_1, Y_2, \ldots) is a Markov chain, and if the distribution of Y_1 is stationary, then (Y_1, Y_2, \ldots) is a stationary process.

Returning to our scenery reconstruction problem, we can use what we learned above to deduce that (Z_1, Z_2, \ldots) is a stationary process. It easily follows that

$$(F_1, F_2, \ldots) = (f(Z_1), f(Z_2), \ldots)$$

is also a stationary process.
21 Stationary processes and measure preserving transformations

We say that a stationary process \((Y_1, Y_2, \ldots)\) is \textit{ergodic} if its shift-invariant sigma-algebra is trivial. That is, if for every shift-invariant event \(A\) it holds that \(\mathbb{P}[A] \in \{0, 1\} \).

Some examples:

- An i.i.d. process is obviously stationary. By Kolmogorov’s zero-one law its tail sigma-algebra is trivial, and so its shift-invariant sigma-algebra is also trivial. Thus it is ergodic.

- Let \((Y_1, Y_2, \ldots)\) be binary random variables such that
 \[
 \mathbb{P}[(Y_1, Y_2, \ldots) = (1, 1, \ldots)] = 1/2
 \]
 and
 \[
 \mathbb{P}[(Y_1, Y_2, \ldots) = (0, 0, \ldots)] = 1/2.
 \]
 This process is stationary but not ergodic; the event \(\lim_n Y_n = 1\) is shift-invariant and has probability 1/2.

- Let \((Y_1, Y_2, \ldots)\) be binary random variables such that
 \[
 \mathbb{P}[(Y_1, Y_2, \ldots) = (1, 0, 1, 0, \ldots)] = 1/2
 \]
 and
 \[
 \mathbb{P}[(Y_1, Y_2, \ldots) = (0, 1, 0, 1, \ldots)] = 1/2.
 \]
 This process is stationary and ergodic.

- Let \(P\) be chosen uniformly over \([0, 1]\), and let \((Y_1, Y_2, \ldots)\) be binary random variables, which conditioned on \(P\) are i.i.d. Bernoulli with parameter \(P\). This process is stationary but not ergodic. For example, the event that
 \[
 \lim_n \frac{1}{n} \sum_{k \leq n} Y_k \leq 1/2
 \]
 is a shift-invariant event that has probability 1/2.

- Let \((Y_1, Y_2, \ldots)\) be a Markov chain, with the distribution of \(Y_1\) equal to some stationary distribution. Then this process is stationary. It is ergodic iff the distribution of \(Y_1\) is not a non-trivial convex combination of two different stationary distributions.

- Let \(Y_1\) be distributed uniformly on \([0, 1]\). Fix some \(0 < \alpha < 1\), and let \(Y_{n+1} = Y_n + \alpha \mod 1\). This is a stationary process, and it is ergodic iff \(\alpha\) is irrational. We will show this later.
A generalization of the last example is the following. Let \((\Omega, \mathcal{F}, \nu)\) be a probability space, and let \(T: \Omega \to \Omega\) be a measurable transformation that preserves \(\nu\). That is, \(\nu(A) = \nu(T^{-1}(A))\) for all \(A \in \mathcal{F}\). We say that \(A \in \mathcal{F}\) is \(T\)-invariant if \(T^{-1}(A) = A\), and note that the collection of \(T\)-invariant sets is a sub-sigma-algebra. Let \(Y_1\) have law \(\nu\), and let each \(Y_{n+1} = T(Y_n)\). Then \((Y_1, Y_2, \ldots)\) is a stationary process.

Claim 21.1. \((Y_1, Y_2, \ldots)\) is ergodic if for every \(T\)-invariant \(A \in \mathcal{F}\) it holds that \(\nu(A) \in \{0, 1\}\).

Proof. The map \(\pi: \Omega \to \Omega^{\mathbb{N}}\) given by \(\pi(\omega) = (\omega, T(\omega), T^2(\omega), \ldots)\) is a bijection that pushes the measure \(\nu\) to the law \(\mathbb{P}\) of \((Y_1, Y_2, \ldots)\), and thus these two probability spaces are isomorphic. Furthermore, if we denote the shift by \(\sigma: \Omega^{\mathbb{N}} \to \Omega^{\mathbb{N}},\) then \(\pi\) is equivariant, in the sense that \(\pi \circ T = \sigma \circ \pi\). It follows that the \(T\)-invariant sigma-algebra is mapped to the shift-invariant sigma-algebra, and thus one is trivial iff the other is trivial. \(\square\)

Of course, if we have a process \((Y_1, Y_2, \ldots)\) taking values in \(\Omega^\mathbb{N}\), then stationarity is precisely invariance w.r.t. the shift transformation \(T: \Omega \to \Omega\) given by \(T(x_1, x_2, x_3, \ldots) = (x_2, x_3, \ldots)\). Thus stationary processes and measure preserving transformations are two manifestations of the same object. We say that \(T\) is ergodic if the \(T\)-invariant sigma-algebra is trivial. That is, if for every measurable \(A\) such that \(T^{-1}(A) = A\) it holds that \(A\) has measure in \(\{0, 1\}\).

Claim 21.2. Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space, with \(T: \Omega \to \Omega\) an ergodic measure preserving transformation.

If \(Z: \Omega \to \mathbb{R}\) is a \(T\)-invariant random variable (i.e., \(Z(\omega) = Z(T(\omega))\) for almost every \(\omega \in \Omega\)) then there is some \(z \in \mathbb{R}\) such that \(\mathbb{P}[Z = z] = 1\).

Exercise 21.3. Prove this claim. Hint: If \(Z\) is \(T\)-invariant then for any \(a < b \in \mathbb{R}\), the event \(Z \in [a, b]\) is \(T\)-invariant, and thus has measure either 0 or 1.

Consider the map \(R_\alpha: S^1 \to S^1\) given by \(R_\alpha(e^{2\pi i z}) = e^{2\pi i (z + \alpha)}\). This is a measure preserving transformation of \(S^1\), equipped with the uniform measure.

Proposition 21.4. \(R_\alpha\) is ergodic iff \(\alpha\) is irrational.

Proof. If \(\alpha = k/m\) is rational, then the set \(\{e^{2\pi i z} : z \in \bigcup_{n=0}^{m-1} [n/m, n/m + 1/2m]\}\) is \(R_\alpha\)-invariant and has measure 1/2. Hence \(R_\alpha\) is not ergodic.

If \(\alpha\) is irrational, let \(f: S^1 \to [0, 1]\) be the indicator of an \(R_\alpha\)-invariant set. We can use the Fourier transform to write \(f\) as

\[
f(z) = \sum_{k \in \mathbb{Z}} c_k e^{2\pi iz} = \sum_{k \in \mathbb{Z}} d_k e^{2\pi i k z},
\]

for some coefficients \((c_k)\). Then \([R_\alpha f](z)\) is

\[
[R_\alpha f](z) = \sum_{k \in \mathbb{Z}} c_k e^{2\pi i k(z - \alpha)} = \sum_{k \in \mathbb{Z}} d_k e^{2\pi i k z},
\]

where \(d_k = c_k e^{-2\pi i k \alpha}\). Since \(A\) is \(R_\alpha\)-invariant then \(R_\alpha f = f\), and so \(c_k = d_k\). Since \(\alpha\) is irrational, \(e^{-2\pi i k \alpha} \neq 1\) unless \(k = 0\), and so we have that \(c_k = 0\) unless \(k = 0\). Thus \(f\) is constant, and so it must be the indicator of a set of measure either 0 or 1. \(\square\)
22 The Ergodic Theorem

Theorem 22.1 (The Pointwise Ergodic Theorem). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, with $T: \Omega \to \Omega$ a measure preserving transformation. If T is ergodic then for every $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ it holds that for \mathbb{P}-almost every $\omega \in \Omega$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} X(T^k(\omega)) = \mathbb{E}[X].$$

In the language of stationary processes, one can say that if (Y_1, Y_2, \ldots) is a stationary process with trivial shift-invariant sigma-algebra, and if $f(Y_1, Y_2, \ldots) \in L^1$, then almost surely

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(Y_k, Y_{k+1}, \ldots) = \mathbb{E}[f(Y_1, Y_2, \ldots)].$$

This Theorem was originally proved by Birkhoff [1]. We give a proof due to Katznelson and Weiss [2].

Proof. We assume without loss of generality that X is non-negative; otherwise apply the proof separately to X^+ and X^-. Define $X^*: \Omega \to \Omega$ by

$$X^*(\omega) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} X(T^k(\omega))$$

whenever this limit exists. We want to show that it exists w.p. 1, and that $\mathbb{P}[X^* = \mathbb{E}[X]] = 1$. Define $\overline{X}: \Omega \to \mathbb{R}$ by

$$\overline{X}(\omega) = \limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} X(T^k(\omega)),$$

and likewise

$$\underline{X}(\omega) = \liminf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} X(T^k(\omega)).$$

Note that both are T-invariant, and so there are some \overline{x} and \underline{x} such that

$$\mathbb{P}\left[\overline{X} = \overline{x}, \underline{X} = \underline{x} \right] = 1.$$

Proving that

$$\underline{x} \leq \mathbb{E}[X] \leq \overline{x}$$

will thus finish the proof.

Fix some $\varepsilon > 0$. Let $N(\omega)$ be the first positive integer such that

$$\frac{1}{N(\omega)} \sum_{k=0}^{N(\omega)-1} X(T^k(\omega)) + \varepsilon \geq \overline{x}$$

(22.2)
Since $N(\omega)$ is a.s. finite, there is some $K \in \mathbb{N}$ such that the set $A = \{\omega : N(\omega) > K\}$ has measure less than ε/\overline{x}. Define

$$
\tilde{X}(\omega) = \begin{cases}
X(\omega) & \omega \not\in A \\
\max\{X(\omega), \overline{x}\} & \omega \in A,
\end{cases}
$$

and also

$$
\tilde{N}(\omega) = \begin{cases}
N(\omega) & \omega \not\in A \\
1 & \omega \in A.
\end{cases}
$$

Note that in analogy to (22.2) we have that

$$
\frac{1}{\tilde{N}(\omega)} \sum_{k=0}^{\tilde{N}(\omega)-1} \tilde{X}(T^k(\omega)) + \varepsilon \geq \overline{x},
$$

or, rearranging, that

$$
\sum_{k=0}^{\tilde{N}(\omega)-1} \tilde{X}(T^k(\omega)) \geq \tilde{N}(\omega)(\overline{x} - \varepsilon). \tag{22.3}
$$

Now X and \tilde{X} only differ on A, and when they do differ then it is at most by \overline{x}, since X is non-negative. Hence

$$
\mathbb{E}[\tilde{X}] = \mathbb{E}[X + (\tilde{X} - X)] \\
= \mathbb{E}[X] + \mathbb{E}[\tilde{X} - X] \\
= \mathbb{E}[X] + \mathbb{E}[\tilde{X} - X] \\
= \mathbb{E}[X] + \mathbb{E}[\tilde{X} - X] \\
\leq \mathbb{E}[X] + \mathbb{E}[\tilde{X} - X] \\
\leq \mathbb{E}[X] + \overline{x} \cdot \varepsilon/\overline{x} \\
= \mathbb{E}[X] + \varepsilon. \tag{22.4}
$$

Now, let $L = K\overline{x}/\varepsilon$. For each $\omega \in \Omega$, let $\omega_0 = \omega$ and let

$$
\omega_{j+1} = T^{\tilde{N}(\omega_j)}(\omega_j).
$$

It follows that

$$
\omega_j = T^{\tilde{N}(\omega_0) + \tilde{N}(\omega_1) + \cdots + \tilde{N}(\omega_{j-1})}(\omega).
$$

Let $J(\omega)$ be the maximal j such that

$$
\tilde{N}(\omega_0) + \tilde{N}(\omega_1) + \cdots + \tilde{N}(\omega_j) < L,
$$

and let

$$
\tilde{N}_L(\omega) = \tilde{N}(\omega_0) + \tilde{N}(\omega_1) + \cdots + \tilde{N}(\omega_{J(\omega)}).
$$
Note that $\tilde{N}_L(\omega) > L - K$. Then we can write

$$
\sum_{k=0}^{L-1} \tilde{X}(T^k(\omega)) = \tilde{N}(\omega_0) \tilde{X}(T^0(\omega_0)) + \cdots + \tilde{N}(\omega_{J(\omega)}) \tilde{X}(T^{J(\omega)}(\omega)) + \sum_{k=N_L(\omega)}^{L-1} \tilde{X}(T^k(\omega))
$$

Applying (22.3) to each term but the last yields

$$
\sum_{k=0}^{L-1} \tilde{X}(T^k(\omega)) \geq \tilde{N}_L(\omega)(\bar{x} - \varepsilon) + \sum_{k=N_L(\omega)}^{L-1} \tilde{X}(T^k(\omega))
$$

and using the fact that X is non-negative means

$$
\sum_{k=0}^{L-1} \tilde{X}(T^k(\omega)) \geq \tilde{N}_L(\omega)(\bar{x} - \varepsilon).
$$

Since $\tilde{N}_L(\omega) > L - K$ we can apply this estimate too, and, rearranging, arrive at

$$
\frac{1}{L} \sum_{k=0}^{L-1} \tilde{X}(T^k(\omega)) \geq \bar{x} - \frac{K}{L} \bar{x} - \varepsilon
$$

which by the choice of L we can write as

$$
\frac{1}{L} \sum_{k=0}^{L-1} \tilde{X}(T^k(\omega)) \geq \bar{x} - 2\varepsilon.
$$

Now, by T-invariance the expectation of the l.h.s. is just equal to the expectation of \tilde{X}. Hence

$$
\mathbb{E}[\tilde{X}] \geq \bar{x} - 2\varepsilon.
$$

Putting this together with (22.4) yields

$$
\bar{x} \leq \mathbb{E}[\tilde{X}] + 2\varepsilon \leq \mathbb{E}[X] + 3\varepsilon,
$$

and taking ε to zero yields $\bar{x} \leq \mathbb{E}[X]$. This completes the first half of the proof of (22.1); the second follows by a similar argument.

Exercise 22.2. Use the Ergodic Theorem to prove the strong law of large numbers.
The weak topology and the simplex of invariant measures

Let X be a compact metrizable topological space. By the Riesz Representation Theorem we can identify $\mathcal{P}(X)$, the set of probability measures on X, with the positive bounded linear functionals on $C(X)$ that assign 1 to the constant function 1. The space X^* of bounded linear functionals on $C(X)$ comes equipped with the compact, metrizable weak* topology, under which $\varphi_n \to \varphi$ if $\varphi_n(f) \to \varphi(f)$ for all $f \in C(X)$. The restriction of this topology to the (closed) set of probability measures yields what probabilists call the weak topology on the probability measures on X.

In the important case that $X = \{0, 1\}^\mathbb{N}$ we have that $\nu_n \to \nu$ weakly if for every clopen A it holds that $\nu_n(A) \to \nu(A)$. In the case $X = \mathbb{R} \cup \{-\infty, \infty\}$ we have that $\nu_n \to \nu$ if $\limsup_n \nu_n(A) \leq \nu(A)$ for all closed A, or if $\liminf_n \nu_n(A) \geq \nu(A)$ for all open A.

Let $X = \{0, 1\}^2$, and denote by $\mathcal{I}(X)$ the set of stationary (or shift-invariant) probability measures on X.

Claim 23.1. $\mathcal{I}(X)$ is a closed subset of $\mathcal{P}(X)$.

Proof. Denote the shift by $\sigma : X \to X$. Assume that ν_n is a sequence in $\mathcal{I}(X)$ that converges to some $\nu \in \mathcal{P}(X)$. We prove the claim by showing that ν is stationary.

Let A be a clopen subset of X. Then

$$\nu(A) = \lim_n \nu_n(A) = \lim_n \nu_n(\sigma(A)) = \nu(\sigma(A)),$$

where the last equality follows from the fact that A being clopen implies that $\sigma(A)$ is clopen. Thus ν is invariant on a generating sub-algebra of the sigma-algebra, and by a standard argument it is invariant. \hfill \Box

Clearly, $\mathcal{I}(X)$ is a convex set. The next proposition shows (a more general claim which implies) that its extreme points $\mathcal{I}_e(X)$ are the ergodic measures.

Proposition 23.2. A T-invariant measure ν on (Ω, \mathcal{F}) is ergodic iff it is extreme.

Proof. Assume that ν is not ergodic. Then there is some T-invariant $A \in \mathcal{F}$ such that $p := \nu(A) \in (0, 1)$. Let ν_1 be given by $\nu_1(B) = \nu(B \mid A) = \frac{1}{p} \nu(B \cap A)$, and let $\nu_2(B) = \nu(B \mid A^c)$. Then

$$\nu_1(T^{-1}B) = \frac{1}{p} \nu((T^{-1}(B)) \cap A)$$

$$= \frac{1}{p} \nu((T^{-1}(B)) \cap T^{-1}(A)))$$

$$= \frac{1}{p} \nu((T^{-1}(B \cap A)))$$

$$= \frac{1}{p} \nu(B \cap A)$$

$$= \nu_1(B).$$
And thus \(\nu_1 \) is \(T \)-invariant. The same argument applies to \(\nu_2 \), since \(A^c \) is also \(T \)-invariant. Finally, \(\nu = p\nu_1 + (1 - p)\nu_2 \).

For the other direction, assume \(\nu = p\nu_1 + (1 - p)\nu_2 \) for some \(p \in (0, 1) \). Clearly, \(\nu_1 \) is absolutely continuous relative to \(\nu \), and so we write \(\nu_1 = X \cdot \nu \) for some \(X \in \mathcal{L}^1(\nu) \).

We now claim that \(X \) is \(T \)-invariant; we prove this for the case that \(T \) is invertible (although it is true in general). In this case, for any \(A \in \mathcal{F} \)

\[
\nu_1(A) = \nu_1(T(A)) = \int_{\Omega} 1_A(T^{-1}(\omega)) \cdot X(\omega) \, d\nu(\omega)
= \int_{\Omega} 1_A(T^{-1}(\omega)) \cdot X(\omega) \, d\nu(T^{-1}(\omega))
= \int_{\Omega} 1_A(\omega) \cdot X(T(\omega)) \, d\nu(\omega),
\]

and so \(X \circ T \) is also a Radon-Nikodym derivative \(d\nu_1/d\nu \). But by the uniqueness of this derivative \(X \) and \(X \circ T \) agree almost everywhere. It is a now nice exercise to show that there exists some \(X' \) that is equal to \(X \) almost everywhere and is \(T \)-invariant. It then follows by Claim 21.2, and by the fact that \(\mathbb{E}[X] = 1 \), that \(\mathbb{P}[X = 1] = 1 \), and thus \(\nu = \nu_1 \).

This Theorem has an interesting consequence.

Exercise 23.3. Assume \(\nu, \mu \) are both \(T \)-invariant ergodic measures on \((\Omega, \mathcal{F})\). Show that there exist two disjoint set \(A, B \in \mathcal{F} \) such that \(\nu(A) = 0 \) and \(\mu(A) = 1 \), while \(\nu(B) = 1 \) and \(\mu(B) = 0 \).

Thus \(\nu \) and \(\mu \) “live in different places.”

In fact, it is possible to show that there is a map \(\beta : \mathcal{I}_e(X) \to \mathcal{F} \) with the properties that

1. \(\mu(\beta_\mu) = 1 \) for all \(\mu \in \mathcal{I}_e(X) \).
2. For all \(\mu \neq \nu \in \mathcal{I}_e(X) \) it holds that \(\beta_\mu \cap \beta_\nu = \emptyset \).

Using this, it is possible to show that \(\mathcal{I}(X) \) is in fact a simplex: a compact convex set in which there is a unique way to write each element as a convex integral of the extreme points.

Proposition 23.4. The ergodic measures \(\mathcal{I}_e(X) \) are dense in \(\mathcal{I}(X) \).

Thus the simplex \(\mathcal{I}(X) \) has the interesting property that its extreme points are dense. It turns out that there is only one such simplex (up to affine homeomorphisms), which is called the Poulsen simplex.

Proof. It suffices to show that for \(\nu, \mu \in \mathcal{I}_e(X) \) and \(\theta = \frac{1}{2} \nu + \frac{1}{2} \mu \) it is possible to find \(\theta_n \in \mathcal{I}_e(X) \) s.t. \(\lim_n \theta_n = \theta \).

To this end, fix \(n \) and define \(\theta_n \) as follows. Let the law of the r.v.s \((X_k)_{k \in \mathbb{Z}} \) be \(\mu \), and the law of \((Y_k)_{k \in \mathbb{Z}} \) be \(\nu \). For \(m \in \mathbb{Z} \), let \((X_0^m, \ldots, X_{n-1}^m) \) be independent of all previously defined random variables, and with law equal to that of \((X_0, \ldots, X_{n-1}) \). Define \((Y_0^m, \ldots, Y_{n-1}^m) \) analogously.
Define \((W_k)_{k \in \mathbb{Z}}\) by
\[
W_k = \begin{cases}
X_{k \mod n}^{\lfloor k/n \rfloor} & \text{if } \lfloor k/n \rfloor \text{ is even} \\
Y_{k \mod n}^{\lfloor k/n \rfloor} & \text{if } \lfloor k/n \rfloor \text{ is odd.}
\end{cases}
\]

Finally, choose \(N\) uniformly at random from \(\{0, 1, \ldots, 2n - 1\}\), and define \((Z_k)_{k \in \mathbb{Z}}\) by
\[
Z_k = W_{k+N}.
\]

Let \(\theta_n\) be the law of \((Z_k)\).

It is straightforward (if tedious) to verify that \((Z_k)\) is stationary. We leave it as an exercise to show that it is ergodic. Thus to finish the proof we have to show that \(\lim_n \theta_n = \theta\).

Fix \(M \in \mathbb{N}\), and consider the event that \(N \in \{1, \ldots, M\}\). As \(n\) tends to infinity, the probability of this event tends to zero. Thus, if we condition on \(N\), with probability that tends to 1/2 we have that the law of \((Z_1, \ldots, Z_M)\) is equal to the law of \((X_1, \ldots, X_M)\), and likewise for \((Y_1, \ldots, Y_M)\). This completes the proof. \(\square\)
24 Percolation

Let \mathcal{V} be a countable set, and let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a locally finite, simple symmetric graph. That is, \mathcal{E} is a symmetric relation on \mathcal{V} with $\mathcal{E} \cap \{v\} \times \mathcal{V}$ finite for each $v \in \mathcal{V}$. We also assume that \mathcal{G} is connected, so that the transitive closure of \mathcal{E} is $\mathcal{V} \times \mathcal{V}$.

The i.i.d. p percolation measure on $\{0, 1\}^{\mathcal{E}}$ is simply the product Bernoulli measure, in which we choose each edge independently with probability p. We will denote this measure by $\mathbb{P}_{p}[\cdot]$, and will denote by E the random edge set with this law. $G = (\mathcal{V}, E)$ will be the corresponding random graph.

Note that G will in general not be connected. For each $v \in \mathcal{V}$ we denote by $K(v)$ the (random) connected component that v belongs to in G. We denote by $\{v \leftrightarrow \infty\}$ the event that $K(v)$ is infinite. We denote by K_∞ the event that there is some v for which $K(v)$ is infinite.

Claim 24.1. The probability of K_∞ is either 0 or 1. In the former case, for every $v \in \mathcal{V}$, $\mathbb{P}_{p}[v \leftrightarrow \infty] = 0$, while in the latter $\mathbb{P}_{p}[v \leftrightarrow \infty] > 0$.

Proof. Enumerate $\mathcal{E} = (e_1, e_2, \ldots)$, and let $A_n = \{e_i \in E\}$. Then (A_1, A_2, \ldots) is an i.i.d. sequence. Clearly K_∞ is $\sigma(A_1, A_2, \ldots)$-measurable, and also clearly it is a tail event. Hence the first part of the claim follows by Kolmogorov’s 0-1 law.

Since the event K_∞ contains $\{v \leftrightarrow \infty\}$, it is immediate that $\mathbb{P}_{p}[K_\infty] = 0$ implies $\mathbb{P}_{p}[v \leftrightarrow \infty] = 0$. Assume now that $\mathbb{P}_{p}[K_\infty] = 1$. Then there is some $w \in \mathcal{V}$ such that, with positive probability, $\mathbb{P}_{p}[w \leftrightarrow \infty]$. Let $P = (e_1, e_2, \ldots, e_n)$ be a path between v and w.

Consider the random variable \tilde{E} taking values in $\{0, 1\}^{\mathcal{E}}$ defined as follows: for every edge $e \notin P$, we set $e \in \tilde{E}$ iff $e \in E$. And we set $e \in \tilde{E}$ for all $e \in P$. We (you) prove in the exercise below that the law of \tilde{E} is absolutely continuous relative to the law of E.

Denote $\tilde{G} = (\mathcal{V}, \tilde{E})$, and denote by $\tilde{K}(v)$ the connected component of v in \tilde{G}. Now, $\tilde{K}(v) = \tilde{K}(w)$, since v and w are connected in \tilde{G}. Also, $\tilde{K}(w)$ contains $K(w)$, since \tilde{E} contains E. Hence the event $\{|\tilde{K}(w)| = \infty\}$ occurs with positive probability, and so the same holds for $\tilde{K}(v) = \tilde{K}(w)$. Finally, by absolute continuity, the same holds for $K(v)$, and so $\mathbb{P}_{p}[v \leftrightarrow \infty] > 0$.

Exercise 24.2. Prove that the law of \tilde{E} is absolutely continuous relative to the law of E.

Claim 24.3. If $q > p$ then $\mathbb{P}_{q}[K_\infty] \geq \mathbb{P}_{p}[K_\infty]$.

To prove this claim we prove a stronger theorem, and in the process introduce the technique of coupling. Let $\Omega = \{0, 1\}^{\mathbb{N}}$, with \mathcal{F} the Borel sigma-algebra. We consider the natural partial order on Ω given by $\omega \geq \omega'$ if $\omega_n \geq \omega'_n$ for all $n \in \mathbb{N}$. We say that $A \in \mathcal{F}$ is increasing if for all $\omega \geq \omega'$ it holds that $\omega' \in A$ implies $\omega \in A$. Let $\mathbb{P}_{p}[\cdot]$ denote the i.i.d. p measure on Ω.

Theorem 24.4. If A is increasing then $q > p$ implies $\mathbb{P}_{q}[A] \geq \mathbb{P}_{p}[A]$.

Proof. Let (X_1, X_2, \ldots) be i.i.d. random variables, each distributed uniformly on $[0, 1]$. For each n let $Q_n = \mathbb{I}_{\{X_n \leq q\}}$ and $P_n = \mathbb{I}_{\{X_n \leq p\}}$. Note that $\mathbb{P}[Q_n = 1] = q$ and $\mathbb{P}[P_n = 1] = p$, and...
that \((Q_1, Q_2, \ldots)\) is i.i.d., as is \((P_1, P_2, \ldots)\). Hence the law of \((Q_1, Q_2, \ldots)\) (resp., \((P_1, P_2, \ldots)\)) is \(\mathbb{P}_q[\cdot]\) (resp., \(\mathbb{P}_p[\cdot]\)). Note also that

\[(Q_1, Q_2, \ldots) \succeq (P_1, P_2, \ldots),\]

since \(q > p\). Hence for any increasing event \(A \subset \{0, 1\}^\mathbb{N}\) it holds that \((P_1, P_2, \ldots) \in A\) implies \((Q_1, Q_2, \ldots) \in A\), and thus \(\mathbb{P}_q[A] \leq \mathbb{P}_p[A]\).

The construction in this proof is an example of coupling. Formally, a coupling of two probability spaces \((\Omega, \mathcal{F}, \mathbb{P})\) and \((\Omega', \mathcal{F}', \mathbb{P}')\), is a probability space \((\Omega \times \Omega', \sigma(\mathcal{F} \times \mathcal{F}'), \mathbb{Q})\) such that the projections on the two coordinates pushes \(\mathbb{Q}\) forward to \(\mathbb{P}\) and \(\mathbb{P}'\).

Since \(\mathbb{P}_p[K_\infty] \in \{0, 1\}\), since \(\mathbb{P}_p[K_\infty]\) is weakly increasing in \(p\), we are interested in the critical percolation probability

\[p_c = \sup\{p : \mathbb{P}_p[K_\infty] = 0\}.\]

An interesting (and often hard) question is whether \(\mathbb{P}_{p_c}[K_\infty]\) is zero or one.

Let \(\mathcal{G}\) be the infinite \(k\)-ary tree with root \(o\). In this case we can calculate \(p_c\), by noting that the event \(\{o \rightarrow \infty\}\) can be thought of as the event that the Galton-Watson tree with children distribution \(B(k, p)\) is infinite. We know that this happens with positive probability iff \(p > 1/k\). Hence in this case \(p_c = 1/k\), and \(\mathbb{P}_{p_c}[K_\infty] = 0\).
25 The mass transport principle

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a locally finite, countable graph. A graph automorphism is a bijection $f : \mathcal{V} \to \mathcal{V}$ such that $(v,w) \in \mathcal{E}$ iff $(f(v), f(w)) \in \mathcal{E}$. The automorphisms of a graph form the group $\text{Aut}(\mathcal{G})$ under composition. We say that \mathcal{G} is transitive if its automorphism group acts on it transitively. That is, if for all $v, w \in \mathcal{V}$ there is a graph automorphism f s.t. $f(v) = w$. Intuitively, this means that the geometry of the graph “looks the same” from the point of view of every vertex.

An important example is when Γ is finitely generated by a symmetric finite subset S, and $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $\mathcal{V} = \Gamma$ is the corresponding Cayley graph. In this case it is easy to see that the Γ action on itself is an action by graph automorphisms, which is furthermore already transitive. We will restrict our discussion to this setting, even though it all extends to unimodular transitive graphs; these are graphs with a unimodular automorphism group.

A map $f : \Gamma \times \Gamma \to [0,1)$ is a mass-transport if it is invariant under the diagonal Γ-action:

$$
f(h,k) = f(gh, gk)
$$

for all $g, h, k \in \Gamma$. It is useful to think about f as indicating how much “mass” is passed from h to k, where the amount passed can depend on identities of h and k, but in a way that (in some sense) only depends on the geometry of the graph and not on their names.

Theorem 25.1 (Mass Transport Principle for Groups). For every mass transport $f : \Gamma \times \Gamma \to [0,\infty)$ and $g \in \Gamma$ it holds that

$$
\sum_{k \in \Gamma} f(g,k) = \sum_{k \in \Gamma} f(k,g).
$$

That is, the total mass flowing out of g is equal to the total mass flowing in.

Proof. By invariance

$$
\sum_{k \in \Gamma} f(g,k) = \sum_{k \in \Gamma} f(k^{-1}g, e).
$$

Changing variables to $h = k^{-1}g$ yields

$$
= \sum_{h \in \Gamma} f(h,e).
$$

Applying invariance again yields

$$
\sum_{h \in \Gamma} f(gh, g)
$$

and again changing variables to $k = gh$ yields the desired result.

67
As an application, consider the following random subgraph E of the standard Cayley graph of \mathbb{Z}^2. For each $z, w_1, w_2 \in \mathbb{Z}^2$ such that $w_1 = z + (0, 1)$ and $w_2 = z + (1, 0)$, we independently set $(z, w_1) \in E$, $(z, w_2) \notin E$ w.p. 1/2, and $(z, w_1) \notin E$, $(z, w_2) \in E$ w.p. 1/2.

For distinct $z, w \in \mathbb{Z}^2$, we say that w is a descendant of z (and z is an ancestor of w) in E if there is a path between w and z, and if $w \leq z$ in both coordinates.

Note that, by construction,

1. E has no cycles, and each node is adjacent to at least one edge, and so E is a spanning forest.
2. Each w has infinitely many ancestors.
3. If $w \leq z$ then the number of descendants of w is independent of the number of descendants of z.

Proposition 25.2. The number of descendants of each $w \in \mathbb{Z}$ is almost surely finite, with infinite expectation.

Proof. Let $f(w, z)$ equal the probability that z is an ancestor of w, and note that by the invariance of the definitions f is a mass transport.

The sum $\sum_z f(w, z)$ is the expected number of ancestors of w, which is infinite, since w a.s. has infinitely many ancestors. It follows by the mass transport principle that $\sum_z f(z, w)$, the expected number of descendants of w, is likewise infinite.
It is easy to see that the expected number of direct descendants of any \(w \) is 1. By the independence property mentioned above, the process \((N_1, N_2, \ldots)\) - where \(N_k \) is the number of descendants at distance \(k \) from \(w \) - is a non-negative martingale. It thus converges, and moreover must converge to an integer, and so converges to 0.

Note that we can define the same process on \(\mathbb{Z}^d \), where now each vertex has \(d \) potential ancestors, with the proof applying as is. We can further generalize to groups that have a set \(S \) such that \(S \cup S^{-1} \) generates \(\Gamma \) and the graph induced by \(S \) has no cycles.

Exercise 25.3. On \(\mathbb{Z}^d \), prove that \(E \) is a spanning tree iff \(d \leq 3 \).
26 Majority dynamics

Let $\mathcal{G} = (V, E)$ be a locally finite, countable (or finite) graph, and denote by $N(v)$ the neighbors of $v \in V$. We would like $|N(v)|$ to be odd, and so we either add or remove v to $N(v)$ to achieve this.

Let (V_1, V_2, \ldots) be random subsets of V, with the property that if $v, w \in V_n$ then $(v, w) \notin E$; that is, each V_n is an independent set.

Let $\Theta = \{-1, +1\}^V$, and consider the following sequence of random variables (X_1, X_2, \ldots), each taking values in Θ. First, let X_1 be chosen i.i.d. 1/2. Given X_n, we define X_{n+1} as follows. For $v \notin V_n$ let $X_{n+1}(v) = X_n(v)$. For $v \in V_n$ let

$$X_{n+1}(v) = \text{sgn} \sum_{w \in N(v)} X_n(w).$$

Note that since $|N(v)|$ is odd then the sum is never 0, and there is no ambiguity with taking the signum. This process is called majority dynamics, or zero temperature Glauber dynamics.

Proposition 26.1. If \mathcal{G} is finite then X_n converges (hence stabilizes) almost surely.

Proof. Let

$$H_n = \sum_{(v, w) \in E} X_n(v) \cdot X_n(w),$$

so that H_n is the number of edges in the graph along which there is agreement, minus the number of edges along which there is disagreement.

Note that in majority dynamics, whenever a node changes its label and none of its neighbors do, the total number of disagreements in the graph strictly decreases, and thus H_n decreases. Since V_n is an independent set, changes at a node are always done while keeping its neighbors constant, and thus H_n decreases by at least 2 with each change in X_n. Since H_n is bounded from below by $-|E|$, X_n must stabilize. \qed

In fact, this proof can be generalized to the case that \mathcal{G} is infinite, but with bounded degrees and subexponential growth. This is no longer true on general graphs:

Exercise 26.2. Prove that on the 3-regular tree X_n does not in general stabilize.

It is also not true if the V_n are not independent sets.

Let \mathcal{G} be a Cayley graph of a finitely generated group Γ, and choose (V_1, V_2, \ldots) from a distribution that is invariant to the Γ-action. For example, to choose V_n one can choose an independent uniform number for each node, and include in V_n only those nodes whose numbers are higher than all of their neighbors’.

Theorem 26.3. In this setting X_n converges pointwise almost surely.
Proof. Let

$$h_n = \sum_{g \in N(e)} \mathbb{E}[X_n(e) \cdot X_n(g)]$$

Now,

$$h_{n+1} - h_n = \sum_{g \in N(e)} \mathbb{E}[X_{n+1}(e) \cdot X_{n+1}(g)] - \sum_{g \in N(e)} \mathbb{E}[X_n(e) \cdot X_n(g)]$$

$$= \sum_{g \in N(e)} \mathbb{E}[X_{n+1}(e) \cdot X_{n+1}(g) - X_n(e) \cdot X_n(g)]$$

If \(e \not\in V_n \) and also \(g \not\in V_n \), then the term in the expectation is zero. Hence

$$= \sum_{g \in N(e)} \mathbb{E}[X_{n+1}(e) \cdot X_{n+1}(g) - X_n(e) \cdot X_n(g) \cdot \mathbb{1}_{\{e \in V_n\}}]$$

$$+ \mathbb{E}[X_{n+1}(e) \cdot X_{n+1}(g) - X_n(e) \cdot X_n(g) \cdot \mathbb{1}_{\{g \in V_n\}}],$$

since the two conditioned events \(\{e \in V_n\} \) and \(\{g \in V_n\} \) are mutually exclusive. Furthermore, this implies

$$= \sum_{g \in N(e)} \mathbb{E}[X_{n+1}(e) \cdot X_n(g) - X_n(e) \cdot X_n(g) \cdot \mathbb{1}_{\{e \in V_n\}}]$$

$$+ \mathbb{E}[X_n(e) \cdot X_{n+1}(g) - X_n(e) \cdot X_n(g) \cdot \mathbb{1}_{\{g \in V_n\}}],$$

which by the mass transport principle

$$= 2 \sum_{g \in N(e)} \mathbb{E}[X_{n+1}(e) \cdot X_n(g) - X_n(e) \cdot X_n(g) \cdot \mathbb{1}_{\{e \in V_n\}}].$$

Rearranging yields

$$= 2 \mathbb{E}\left[(X_{n+1}(e) - X_n(e)) \cdot \sum_{g \in N(e)} X_n(g) \cdot \mathbb{1}_{\{e \in V_n\}}\right],$$

and since, conditioned on \(e \in V_n \), \(X_{n+1}(e) = \text{sgn} \sum_{g \in N(e)} X_n(g) \), then

$$= 2 \mathbb{E}\left[2 \cdot \mathbb{1}_{\{X_{n+1}(e) \neq X_n(e)\}} \cdot \left| \sum_{g \in N(e)} X_n(g) \right| \cdot \mathbb{1}_{\{e \in V_n\}}\right],$$

Now, by definition \(\mathbb{1}_{\{X_{n+1}(e) \neq X_n(e)\}} \cdot \mathbb{1}_{\{e \in V_n\}} = \mathbb{1}_{\{X_{n+1}(e) \neq X_n(e)\}} \). Also, since \(|N(e)| \) is odd, \(\left| \sum_{g \in N(e)} X_n(g) \right| \geq 1 \), and so

$$\geq 4 \mathbb{P}[X_{n+1}(e) \neq X_n(e)].$$

Hence \(h_n \) is non-decreasing. Since it is bounded by \(|N(e)| \) it converges to some \(h_\infty < \infty \). Furthermore

$$h_\infty - h_1 \geq 4 \sum_{n=1}^{\infty} \mathbb{P}[X_{n+1}(e) \neq X_n(e)],$$

and so the expected number of \(n \) such that \(X_{n+1}(e) \neq X_n(e) \) is finite, and in particular \(X_n(e) \) stabilizes w.p. 1. By invariance this holds for every \(X_n(g) \), and we have proved our claim. □
27 Scenery Reconstruction: I

Fix \(n \), and let \((X = X_1, X_2, \ldots)\) be i.i.d. random variables on the abelian group \(\mathbb{Z}/n\mathbb{Z} \). Denote by \(\mu(k) = \mathbb{P}[X = k] \) their law. Let \(X_0 \) be uniformly distributed on \(\mathbb{Z}/n\mathbb{Z} \), and let \(Z_n = \sum_{k=0}^{n} X_n \) be the corresponding random walk. We assume throughout that the support of \(\mu \) generates \(\mathbb{Z}/n\mathbb{Z} \).

Some important examples to keep in mind:

- \(\mu(1) = 1 \).
- \(\mu(1) = 1 - \varepsilon, \mu(2) = \varepsilon. \)

Fix some \(f \in \{0, 1\}^n \), and let \(F_n = f(Z_n) \). The law of \((F_1, F_2, \ldots)\) depends on \(f \); we think of these distributions as a family indexed by \(f \). We denote by \(\mathbb{P}_f[\cdot] \) the distribution when we fix a particular \(f \). Note that \(\mathbb{P}_f[\cdot] \) does not change if we shift \(f \).

Exercise 27.1. Prove this.

Denote by \([f]\) the equivalence class of \(f \) under shifts. That is, \(f' \in [f] \) if there is some \(k \in \mathbb{Z}/n\mathbb{Z} \) such that for every \(m \in \mathbb{Z}/n\mathbb{Z} \) it holds that \(f'(k + m) = f(m) \).

The question of scenery reconstruction is the following: is it possible to determine \([f]\) given \((F_1, F_2, \ldots)\)? In particular we say that we can reconstruct \(f \) if there is some measurable

\[
\hat{f} : \{0, 1\}^n \to \{0, 1\}^n
\]

such that for every \(f \in \{0, 1\}^n \) it holds that

\[
\mathbb{P}_f[\hat{f}(F_1, F_2, \ldots) \in [f]] = 1. \tag{27.1}
\]

Equivalently, if

\[
\mathbb{P}[\hat{f}(f(Z_1), f(Z_2), \ldots) \in [f]] = 1.
\]

In statistics, \(\hat{f} \) is called an *estimator* of \(f \), and the existence of such an \(\hat{f} \) is called *identifiability* (of \(f \)). This clearly depends on \(\mu \), and so we say that \(\mu \) is reconstructive if this holds.

One can reformulate (27.1) in finitary terms. It is equivalent to the existence of a sequence \((\hat{f}_1, \hat{f}_2, \ldots)\) with \(\hat{f}_k \) being \(\sigma(F_1, \ldots, F_k) \)-measurable and with

\[
\lim_k \mathbb{P}_f[\hat{f}_k(F_1, \ldots, F_k) \in [f]] = 1
\]

for all \(f \in \{0, 1\}^n \).

A very interesting question is how quickly does this converge to one (when it does), for \(\mu \) chosen uniformly over \(n \); for example for \(\mu(1) = 0.99, \mu(2) = 0.01. \)
Question 27.2. Let $N(n, \varepsilon)$ be the smallest k such that there is an $\hat{f}_k : \{0,1\}^k \to \{0,1\}^n$ with
\[\Pr_f [\hat{f}_k(F_1, \ldots, F_k) \in \{f\}] \geq 1 - \varepsilon \]
for all f. For fixed ε (say 1/3), how does $N(n, \varepsilon)$ grow with n?

This is not known; it is not even known if $N(\cdot, \varepsilon)$ is exponential or polynomial. The question of whether a given μ is reconstructive is much better understood.

Theorem 27.3. Let n be a prime > 5, and let $\mu \in \mathbb{Q}^n$. Then μ is reconstructive iff $\varphi_\mu(k) \neq \varphi_\mu(m)$ for all $k \neq m$. Here φ_μ is given by
\[\varphi_\mu(k) = \varphi_X(k) = \mathbb{E} \left[e^{\frac{2\pi i}{n} k \cdot X} \right] = \sum_{\ell \in \mathbb{Z}/n\mathbb{Z}} e^{\frac{2\pi i}{n} k \cdot \ell} \mu(k). \]
where $k \cdot X$ is multiplication mod n.

The first direction (the case that $\varphi_\mu(k) \neq \varphi_\mu(m)$ for all $k \neq m$) does not require the extra assumptions on n and μ. This is due to Matzinger and Lember [3].

To prove this theorem we will need to study a few new concepts.
Scenery reconstruction: II

Fix $n \in \mathbb{N}$, $f \in \{0,1\}^n$ and μ a generating probability measure on $\mathbb{Z}/n\mathbb{Z}$, and recall our process in which X_0 is uniform on $\mathbb{Z}/n\mathbb{Z}$, (X_1,X_2,\ldots) are i.i.d. with law μ, $Z_n = X_0 + X_1 + \cdots + X_n$ and $F_n = f(Z_n)$. Recall also that we are interested in guessing (correctly, almost surely) what $[f]$ is (the equivalence class of functions that are shifts of f) from a single random instance of (F_1,F_2,\ldots).

Define the $a : \mathbb{Z}/n\mathbb{Z} \to \mathbb{R}$, autocorrelation of f by

$$a(k) = \frac{1}{n} \sum_{m=0}^{n} f(m) \cdot f(m+k),$$

and note that a is the same for any $f' \in [f]$. Imagine that we are willing to settle on reconstructing a rather than $[f]$. We will show that if the values of the characteristic function φ_μ are unique then we can reconstruct the $a(k)$'s.

To this end, we define $A : \mathbb{N} \to \mathbb{R}$, the autocorrelation of F by

$$\alpha_k = \mathbb{E}[F_T \cdot F_{T+k}]$$

for some $T \in \mathbb{N}$; by stationarity, the choice of T is immaterial. We will show that if we know the α_k's the we can infer the a_k's. But this will not help us, unless there some measurable $\hat{\alpha}_k : \{0,1\}^\mathbb{N} \to \mathbb{R}$ such that

$$\mathbb{P}_f[\hat{\alpha}_k(F_1,F_2,\ldots) = a_k] = 1.$$}

A natural candidate for $\hat{\alpha}_k$ is the empirical average; we take lim sup rather than lim to make sure $\hat{\alpha}_k$ is well defined:

$$\hat{\alpha}_k = \limsup_m \frac{1}{m} \sum_{T=1}^{m} F_T \cdot F_{T+k}.$$

A statement such as “$\hat{\alpha}_k = a_k$ almost surely” sounds a lot like the strong law of large numbers. We will show later that this is indeed true, and that it follows from the Ergodic Theorem, which is a generalization of the SLLN.

Let $\mu * \mu$ be the convolution of μ with itself, which is given by

$$[\mu * \mu](k) = \sum_m \mu(k-m) \cdot \mu(m).$$

This is a probability distribution which is exactly the law of $X_1 + X_2$. Define analogously the k-fold convolution $\mu^{(k)}$, which is the law of $X_1 + \cdots + X_k$.

Claim 28.1. For every $k \in \mathbb{N}$ it holds that

$$a_k = \sum_m \mu^{(k)}(m) \cdot a_m.$$
Proof. We set $T = 0$, condition on X_0 and Z_k and thus

$$
\alpha_k = \mathbb{E}[f(Z_0) \cdot f(Z_k)]
= \sum_{m, \ell} \mathbb{E}[f(X_0) \cdot f(Z_k) | X_0 = \ell, Z_k = \ell + m] \cdot \mathbb{P}[X_0 = \ell, Z_k = \ell + m]
= \sum_{m, \ell} f(\ell) \cdot f(\ell + m) \cdot \frac{1}{n} \cdot \mu^{(k)}(m)
= \sum_{m} a_m \cdot \mu^{(k)}(m).
$$

It follows that if we denote by α the column vector $(\alpha_0, \ldots, \alpha_{n-1})$, by a the column vector (a_0, \ldots, a_{n-1}), and by M the $n \times n$ matrix $M_{k,m} = \mu^{(k)}(m)$ then $\alpha = Ma$. Assuming (as we will show later) that we can determine α, it follows that we can determine a if M is invertible.

Claim 28.2. M is invertible iff the values of the characteristic function φ_μ are unique.

Proof. We apply the Fourier transform to each row of M. Since the Fourier transform is an orthogonal linear transformation, the resulting matrix \hat{M} is invertible iff M is invertible.

Now, over $\mathbb{Z}/n\mathbb{Z}$ the Fourier transform is identical to the characteristic function. Since the kth row of M is the law of $X_1 + \cdots + X_k$, the kth row of \hat{M} is given by

$$
\varphi_{X_1 + \cdots + X_k}(m) = \mathbb{E}\left[e^{2\pi i \frac{m}{n} (X_1 + \cdots + X_k)}\right] = \varphi_X(m)^k.
$$

Thus \hat{M} is a Vandermonde matrix, and is invertible iff φ_X has unique values.

Recall that we are interested in reconstructing $[f]$ rather than a. To this end we need to define the two-fold autocorrelation

$$
a_{k,\ell} = \frac{1}{n} \sum_{m=0}^{n} f(m) \cdot f(m + k) \cdot f(m + k + \ell),
$$

and its analogue

$$
\alpha_{k,\ell} = \mathbb{E}[F_T \cdot F_{T+k} \cdot F_{T+k+\ell}].
$$

It is then easy to show that there is also a linear relation between these two objects, with the corresponding matrix being $M \otimes M$, the tensor product of M with itself. This is invertible iff M is invertible, and so we get the same result. However, this still does not suffice, and we need to add still more indices and calculate n-fold autocorrelations. The appropriate matrices are again invertible iff M is, and moreover $[f]$ is uniquely determined by the n-fold autocorrelation.
References

