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1. Random Walks on Z
d and Pólya’s Theorem

Let {Xn}n∈N be i.i.d. real random variables, each distributed uni-
formly on {−1,+1}. Let

Zn = X1 +X2 + · · ·+Xn.

The process {Zn}n∈N is called the simple random walk on Z. A classical
question is whether the random walk is recurrent: does it return to the
origin infinitely many times? Let R be the event that Zn = 0 infinitely
often.

Theorem 1.1 (Pólya). For the simple random walk on Z, P [R] = 1.

Some intuition behind this theorem is the following: the distribution
of Zn looks like a normal distribution with variance n. If we think of
this distribution as the uniform distribution on [−√

n,
√
n], we see that

P [Zn = 0] is about 1/
√
n. Hence the expected number of visits to the

origin is about
∑

n 1/
√
n = ∞.

Now, by the Markov property of this random walk, the number of
visits to the origin is distributed geometrically with parameter p, where
p is the probability to return to the origin. Since the expectation is
infinite then p = 1.
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The same question can be asked about the simple random walk on Z
2,

for which theXn’s have the uniform distribution on {(−1, 0), (1, 0), (0,−1), (0, 1)},
and in general for Zd.

Theorem 1.2 (Pólya). For the simple random walk on Z
d, P [R] = 1

if d ≤ 2 and P [R] = 0 if d ≥ 3.

The intuition given above for Z is also helpful for understanding the
general case.
The simple random walk on Z

3 will eventually leave the origin and
never come back. It follows that it will get further and further away:
P [limn |Zn| = ∞] = 1. One can wonder: will this random walk even-
tually “settle” on a single octant and never leave it? It turns out that
the answer is no:

P [Zn ≥ (0, 0, 0) for all n large enough] = 0.

While it is easy to see why this is true, we defer the proof to later,
when we will, in fact, prove a much stronger statement.

2. Random walks on groups

We now turn to formally define our probability space and measure,
for the general case of random walks on groups. Let G be a countable
discrete group, and let µ be a probability measure on G. We assume
that the support of µ generates G as a semi-group. We note that this
entire theory extends to the (very interesting) case that G is locally
compact and second countable, and some power of µ is absolutely con-
tinuous with respect to the Haar measure.
Equip GN with the product topology, and let Σ be the Borel sigma-

algebra. Let

ϕ : GN −→ GN

(h1, h2, h3, . . .) 7−→ (h1, h1h2, h1h2h3, . . .)
.

Our probability space is (GN,Σ,P), where P = ϕ∗(µ
N). When G = Z

and µ is the uniform distribution on {−1,+1} then P is precisely the
distribution of (Z1, Z2, Z3, . . .), the locations of the simple random walk
on Z. We thus refer to µ as the step distribution and to GN as the space
of random walk paths. We will still, when convenient, use the random
variables {Xn} and {Zn}, which are now formally given by

Zn(g1, g2, . . .) = gn.

and

Xn(g1, g2, . . .) = g−1
n−1gn

where g0 is understood to equal e, the identity of G.
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We let G act on GN by the diagonal action:

g(g1, g2, . . .) = (gg1, gg2, . . .).

This action can be extended in the usual way to an action on probability
measures on GN. In particular we will act on P by

(g∗P)[A] = P[g−1A],

for any A ∈ Σ. The measure g∗P can be thought of as the measure of
a random walk which starts from g rather than from the identity. It is
easy to see that g∗P = ϕg

∗(µ
N) where

ϕg : GN −→ GN

(h1, h2, h3, . . .) 7−→ (gh1, gh1h2, gh1h2h3, . . .)
.

Denote by e the identity of G. The set of recurrent paths is given by

R = {(g1, g2, g3, . . .) : gn = e i.o. }.
The random walk is said to be recurrent if P [R] = 1. Note that the
indicator function of R has the property that it is independent of any
prefix of the path: for any n ∈ N, (h1, . . . , hn) ∈ Gn and (g1, g2, . . .) ∈
GN it holds that

1{A}(g1, g2, . . . , gn, gn+1, . . .) = 1{A}(h1, h2, . . . , hn, gn+1, . . .).

This property of R makes it a tail event. Another definition of tail
events is the following. Let Tn ⊂ Σ be the sigma-algebra of sets measur-
able in the coordinates gn+1, gn+2, . . .; equivalently, Tn is the pre-image
of Σ under the map σn, where σ is the shift given by

σ : GN −→ GN

(g1, g2, g3, . . .) 7−→ (g2, g3, . . .)
.

The tail sigma-algebra is given by T = ∩nTn. A tail event is simply an
element of T . Note that T is G-invariant; if T ∈ T then gT ∈ T .
An example of a tail event, for G = Z

d, is the “settling on the octant”
event

P = {(g1, g2, . . .) : gn ≥ (0, 0, 0) for all n large enough}.
Another important sigma-algebra is the shift-invariant sigma-algebra

I. This is the sub-sigma-algebra of sets A such that (g1, g2, . . .) ∈ A if
and only if σ(g1, g2, . . .) ∈ A. We will not prove the following claim.

Theorem 2.1. The shift-invariant and tail sigma-algebras are equal,

P-mod 0. I.e., L∞(GN, T ,P) = L∞(GN, I,P).
Clearly, the shift-invariant sigma-algebra is G-invariant; if A ∈ Σ

is shift-invariant then gA is also shift-invariant. Another important
property of the shift-invariant sigma-algebra is the following.
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Proposition 2.2. For all g, k ∈ G, shift-invariant S and n ∈ N such

that g∗P [Zn = k] > 0 it holds that g∗P [S|Zn = k] = k∗P [S].

That is, the probability of a shift-invariant event S given that the
random walk was at k at time n is the same as the probability of this
event for a random walk starting from k. We will not prove this claim.

3. The tails of random walks on abelian groups:

statement

Recall that we wanted to prove that P [P ] = 0. Clearly, by the
symmetry of the symmetric random walk, it is impossible that P [P ] =
1. Hence it will suffice to show that P [P ] ∈ {0, 1}. We prove the
following theorem.

Theorem 3.1. Let G be an abelian group. Then for every tail event

T ∈ T it holds that P [T ] ∈ {0, 1}.
That is, all tail events are trivial.

4. Harmonic functions and the Furstenberg transform

To prove Theorem 3.1 we will need to study harmonic functions. We
say that f : G → R is µ-harmonic (or just harmonic) if for all g ∈ G

f(g) =
∑

k∈G

f(gk)µ(k).

That is, the average of the values of f around g is equal to the value
of f at g, and averages are taken using µ.
We first show how a tail event can be used to define a harmonic

function. Let T be a tail event. Define f : G → R by

f(g) = g∗P [T ] .

That is, f(g) is the probability that a random walk starting from g will
be in T .

Claim 4.1. f is harmonic.

Proof. We condition on X1, the first step of the random walk:

f(g) = g∗P [T ]

=
∑

k∈G

g∗P [T |X1 = k]µ(k)

=
∑

k∈G

g∗P [T |Z1 = gk]µ(k)
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by Theorem 2.1 we can assume w.l.o.g. that T is shift-invariant. It
therefore follows from Proposition 2.2 that

f(g) =
∑

k∈G

(gk)∗P [T ]µ(k)

=
∑

k∈G

f(gk)µ(k).

�

Note that these functions are bounded in [0, 1], by definition. More
generally, given a bounded real random variable Y that is tail measur-
able, the function

f(g) = E
[

g−1Y
]

=

∫

GN

Y (gg1, gg2, . . .)dP(g1, g2, . . .).

is bounded and harmonic, by the same argument.
We have thus mapped each bounded tail random variable to a bounded

harmonic function. We will now see how to go in the opposite direction.
Given a harmonic function f : G → R, define the random variables

{Mn}n∈N by

Mn = f(Zn).

It is easy to verify that Mn is a martingale with respect to the filtra-
tion {Fn}n∈N where Fn is the sigma-algebra of sets measurable in the
coordinates g1, . . . , gn:

E [Mn+1|Z1, . . . , Zn] = E [f(Zn+1)|Zn]

=
∑

k∈G

E [f(Zn+1)|Zn+1 = Znk]µ(k)

=
∑

k∈G

f(Znk)µ(k)

= f(Zn)

= Mn.

Here the first equality follows from the Markov property of the random
walk, the second from conditioning on Xn+1, the third from the defini-
tion of conditional expectation and the fourth from the harmonicity of
f .
If f is also bounded then Mn is a bounded martingale, and therefore

almost surely converges. Hence we can define

M = lim
n

Mn = lim
n

f(Zn),



6 OMER TAMUZ

and M is clearly T -measurable. Hence we have shown how every
bounded harmonic function gives rise to a bounded tail random vari-
able, and vice versa. Indeed, let

Φ : H∞(G, µ) −→ L∞(GN, T ,P)
f 7−→ limn f(Zn)

.

be a map from the bounded µ-harmonic function to the bounded tail
random variables. This transform is known as the Furstenberg trans-

form, and the next claim states that its inverse is one-to-one. We leave
to the reader to show that the inverse is onto.

Theorem 4.2. Let Y be a bounded tail random variable. Let f(g) =
E [g−1Y ] and let M = limn f(Zn). Then M and Y are P-a.s. equal.

Proof. We prove for the case that Y is the indicator of a tail event T .
The general proof is identical, but requires more cumbersome notation.

M = lim
n

f(Zn)

= lim
n

P
[

Z−1
n T

]

= lim
n

Zn∗P [T ]

= lim
n

P [T |Zn] .

Here the last equality uses the shift-invariance of T and Proposition 2.2.
By the Markov property of the random walk and the fact that T is a
tail event,

= lim
n

P [T |Z1, . . . , Zn] .

But T is a function of (Z1, Z2, . . .), and so this converges to the indicator
of T . �

In light of this transform, we can hope to study the tail sigma-algebra
by studying the bounded harmonic functions on G. In the case of
abelian groups this turns out to be a simple endeavor.

Theorem 4.3. Let G be abelian and let µ be any probability measure

on G. Then every bounded µ-harmonic function is constant.

Proof. Let H = H [0,1](G, µ) be the set of µ-harmonic functions with
range in [0, 1]. We note that harmonicity is invariant to multiplication
by a constant and addition, and so if we show that every h ∈ H is
constant then we have proved our theorem.
We state three properties of H that are easy to verify.

(1) H is invariant to the g action; for any f ∈ H and g ∈ G, the
function f g : G → R given by [f g](k) = f(g−1k) is also in H .
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(2) H is compact in the topology of pointwise convergence.
(3) H is convex.

As a convex compact space, H is the closed convex hull of its extremal
points; this is the Krein-Milman Theorem. Let f ∈ H be an extremal
point. Then, since f is harmonic,

f(g) =
∑

k∈G

f(gk)µ(k).

Since G is abelian then

=
∑

k∈G

f(kg)µ(k) =
∑

k∈G

fk−1

(g)µ(k).

By the first property of H each fk−1

is also in H , and thus we have
written f as a convex combination of functions in H . But f is extremal,
and so f = fk−1

for all k in the support of µ. But µ is generating, and
so f is invariant to the G-action, and hence constant. �

5. The tails of random walks on abelian groups: proof

We have thus shown that every bounded harmonic function on G is
trivial. It will now quickly follow that every tail event is trivial.

Proof of 3.1. Let T be a tail event and let f = Φ−1(1{T}). Since f is
constant (Theorem 4.3) thenM = limn f(Zn) is constant. ButM is the
indicator of T (Theorem 4.2) and so either P [T ] = 0 or P [T ] = 1. �

6. A non-trivial example

Let F2 be the free group generated by S = {a, b, a−1, b−1}, and let
µ be the uniform distribution over S. This random walk is the simple
random walk on the Cayley graph of F2, which is the four regular tree.
We will state without proof that this random walk is transient.
It follows that eventually the random walk will leave the identity

into one of the four branches and never return to the identity. Since
the graph is a tree, the random walk will always remain in that same
branch. By the symmetry of the random walk it follows that each of
the four branches has equal probability of being the branch into which
the random walk is absorbed, and so, if we define

A = {(g1, g2, . . .) : gn starts with a for all n large enough}
then P [A] = 1/4. Now A is clearly a tail event, and so we have found
a non-trivial tail event. Accordingly,

f(g) = g∗P [A]

is non-constant bounded harmonic function.
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7. The Furstenberg-Poisson boundary

Consider again the simple random walk on Z
2. Let F ⊂ Z

2 be a
finite connected component of the Cayley graph of Z2 that contains
the origin, and let ∂F be the elements of F that, in the Cayley graph,
have edges to the complement of F . We modify the random walk so
that, once it hits ∂F , it stops and stays in the same location in all
subsequent time periods. Denote by

Z∞ := lim
n

Zn ∈ ∂F

the (random) location at which the random walk hits the boundary ∂F
and stops. Note that Z∞ is a tail random variable.
Let f : F → R be harmonic on F \∂F . Then, by an argument almost

identical to the one used above,

Mn = f(Zn)

is a bounded martingale, with limit

M = lim
n

Mn = f(Z∞).

Now, by the martingale property,

Mn = E [M |Zn] = E [f(Z∞)|Zn] .

Hence, by the definition of Mn,

f(Zn) = E [f(Z∞)|Zn]

and in particular for any fixed g ∈ F ,

f(g) = E [f(Z∞)|Zn = g] .

In words, f(g) is the expectation of f at Z∞, for a random walk start-
ing at g. Since Z∞ takes values on ∂F , it follows that f is uniquely
determined by its values on the boundary ∂F .
The Furstenberg-Poisson boundary serves the role of ∂F , for the case

that F is the entire group G and f is a bounded harmonic function on
G.
To define the Furstenberg-Poisson boundary we will use the Mackey

Point Realization Theorem. We rephrase this theorem as follows.

Theorem 7.1 (Mackey). Let (Ω,Σ, η) be a standard probability space.

Let a locally compact, second countable group G act on Ω by measurable

transformations. Let Λ be a sub-sigma-algebra of Σ that is G-invariant,

and such that for any A ∈ Λ and g ∈ G, η(A) = 0 iff η(gA) = 0.
Then there exists a standard probability G-space (Ω′,Σ′, ν) and a Λ-
measurable, G-equivariant map π : Ω → Ω′ such that π∗η = ν and such

that the image of L∞(Ω′,Σ′, ν) under π−1 is L∞(Ω,Λ, η).
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Applying this theorem to the tail sigma-algebra T yields the Furstenberg-
Poisson boundary.

Theorem 7.2. Let G be a discrete group and let µ be a probability

measure on G. Then there exists a standard probability G space (Π, ν)
and a T -measurable G-map B : GN → Π such that B∗P = ν and such

that

B−1L∞(Π, ν) = L∞(GN, T ,P).

The space (Π, ν) is call the Furstenberg-Poisson boundary and B is
called the boundary map.
The prove this theorem we need simply apply Mackey’s Theorem;

the only complication is that we need to check that the G-action on T
preserves null sets (i.e., that for every T ∈ T and g ∈ G it holds that
P [T ] = 0 iff P [gT ] = 0). We leave this as an exercise to the reader; it
is a consequence of Proposition 2.2.
Using B we can define a random variable

Z∞ = B(Z1, Z2, . . .).

Since B is T -measurable, Z∞ is a tail random variable. It takes values
in Π, and we can think of it as the point in which the random walk
hits the boundary. Its distribution is ν, which we therefore call the
hitting (or harmonic) measure. Since B is G-equivariant we get that
B∗g∗P = g∗ν. Hence we can think of g∗ν as the hitting measure for a
random walk that starts at g.
Given f ∈ H∞(G, µ), recall that Φ(f) = limn f(Zn) is in L∞(GN, T ,P).

Since we can identify this space with L∞(B, ν) using B, we can define
the Furstenberg transform

Ψ : H∞(G, µ) −→ L∞(B, ν)
f 7−→ B ◦ Φ(f) .

The inverse transform Ψ−1 ∈ H∞(G, µ) is given by

[Ψ−1(Y )](g) = g∗ν(Y ),

for Y ∈ L∞(B, ν). Note that ν is G-quasi-invariant, since the G-action
on T preserves P-null sets. Note also that if ν is G-invariant then every
bounded harmonic function on G is constant. In this case we know that
the tail sigma-algebra is trivial, and so the sigma-algebra of B has to
be trivial. Hence B has to be (mod 0) a map to a single point, making
the boundary trivial. We state this formally:

Proposition 7.3. If ν is G-invariant then the Furstenberg-Poisson

boundary is trivial.
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Given that ν is not G-invariant, it might be interesting to measure
how non-invariant it is. To this end, recall that the Kullback-Leibler

divergence or relative entropy between two measures β and γ on a
measurable space (Ω,Σ), where β is absolutely continuous with respect
to γ, is

DKL(β||γ) =
∫

Ω

− log
dγ

dβ
(ω)dβ(ω).

The relative entropy is non-negative, and is zero only if the two mea-
sures are equal.
To measure how non-invariant ν is, we will calculate how much it is

deformed by G on average, where this average will be taken using µ:

hµ(B, ν) =
∑

g∈G

DKL(g∗ν||ν)µ(g)

=
∑

g∈G

∫

B

− log
dν

dg∗ν
(b)dg∗ν(b)µ(g).

This quantity is called the Furstenberg entropy of (B, ν), and, as we
will see below, plays an important role in the study of the Furstenberg-
Poisson boundary.

8. Lamplighters

Fix d ≥ 1, and let the set of “lamp configurations” Ld be the direct
sum ⊕z∈ZdZ/2Z. This is the set of finite subsets of Zd, equipped with
the operation of symmetric difference.
Z
d acts on Ld in the obvious way, and we can define the lamplighter

group Λd = Ld ⋉ Z
d. Ld is a normal subgroup of Λd, and we denote

by pr2 : Λd → Z
d the homomorphism which has Ld as its kernel. Let

pr1 : Λd → Ld be the projection on the first coordinate.
We think of elements of Ld as functions ℓ : Zd → Z/2Z with finite

support, and let s be the function that is zero everywhere but at the
origin. Then it is easy to check that s, together with the standard gen-
erating set of Zd, is a generating set for Λd. We denote this generating
set by Sd.
Let µd be the uniform distribution on Sd, and consider the µd random

walk on Λd. We can project this walk using pr2 to a simple (lazy)
random walk on Z

d. This random walk will be recurrent for d = 1, 2
and transient for d ≥ 3.
Let the set of random walk paths A0 be those paths in which the

lamp at the origin is eventually on:

A0 = {(ℓn, zn)n∈N : ℓn(0) = 1 for all n large enough}.
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This set is clearly a tail event. When the projected random walk is
recurrent then it has probability 0, since the lamp at the origin will
change states infinitely often with probability one. However, when the
random walk is transient, then the random walk will only visit the
origin a finite number of times, and with non-trivial probability the
lamp will be left on during the last visit.
We have thus proved the following claim.

Claim 8.1. The Furstenberg-Poisson boundary of (Λd, µd) is non-trivial
when d ≥ 3.

When the random walk is recurrent then the state of every lamp
eventually stabilizes. That is, if we embed ⊕z∈ZdZ/2Z into Πd =
∏

z∈Zd Z/2Z (equipped with the profinite topology), then for almost
every random walk path (ℓn, zn)n∈N we have that the limit limn ℓn ex-
ists. Let ϕ : ΛN

d → Πd be the map that assigns to each random walk
path (ℓn, zn)n∈N the limit limn ℓn.
Hence a natural candidate for the Poisson boundary is the space of

eventual lamp Πd, equipped with the measure νd = ϕ∗P.

Theorem 8.2 (Lyons and Peres, 2014). For d ≥ 3, the Poisson bound-

ary of (Λd, µd) can be identified with (Πd, νd).

This was earlier shown by Erschler, for d ≥ 5.
While these tail events are trivial for the cases d = 1, 2, it is not im-

mediately obvious that there do not exist other, non-trivial tail events.
However, it turns out that this is indeed the case.

Theorem 8.3 (Kaimanovich and Vershik). For d = 1, 2, the Poisson

boundary of (Λd, µd) is trivial.

Proof. View Ld as a subgroup of Λd; that is, we identify (f, 0) ∈ Λd

with f ∈ Ld. Since the projected random walk is recurrent, the µd

random walk visits Ld infinitely often. Let N1, N2, . . . be the times of
these visits, and let

Yk = pr1(ZNk
)

be the element of Ld that is visited at the kth return to Ld. It is easy
to see that the distribution of Y −1

n Yn+1 is independent of n, and so
(Y1, Y2, . . .) is a random walk on Ld. Denote by µ̄d the distribution of
Y −1
n Yn+1.
Fix f ∈ H∞(Λd, µd), and let f̄ be its restriction to Ld. Note that

f̄ ∈ H∞(Ld, µ̄d), since f̄(Yk) = f(ZNk
), Nk is a stopping time and so

f̄(Yk) is a martingale.
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Now, since Ld is abelian, it follows that f̄ is constant, say C. Hence

f(g) = E

[

lim
n

f(Zn)
∣

∣

∣
Zk = g

]

= E

[

lim
k

f̄(YNk
)
∣

∣

∣
Zk = g

]

= C

and so f is also constant. Thus H∞(Λd, µd) is trivial. �

In the proof above we have (almost) proved the following general
claim.

Theorem 8.4. Let H be a recurrent subgroup of the µ random walk

on G. Then there exists a probability measure µ̄ on H such that

H∞(G, µ) ∼= H∞(H, µ̄).

9. Furstenberg entropy and the Kaimanovich-Vershik

Theorem

We saw before that the boundary of abelian groups is always trivial.
We also saw that the boundary of the simple random walk on F2 is
not trivial. It is natural to ask for which pairs (G, µ) is the boundary
trivial? This turns out to be a deep and important question that is
not yet completely resolved. The most important tool at our disposal
is Furstenberg entropy and the Kaimanovich-Vershik Theorem.
We recall some basic information theoretical notions. Let X and

Y be countably supported random variables, denote px = P [X = x],
py = P [Y = y], and px|y = P [X = x|Y = y]. The Shannon entropy of
X is given by

H(X) =
∑

x

− log(px) · px.

An important property of entropy that we will use is the following: if
ϕ is a function of the support of X , then

H(ϕ(X)) ≤ H(X)

with equality if and only if ϕ is one-to-one.
The conditional entropy of X conditioned on Y is

H(X|Y ) =
∑

y

(

∑

x

− log(px|y) · px|y
)

py.

The mutual information between X and Y is

I(X ; Y ) = H(X)−H(X|Y ).

It is easy to see that I(X ; Y ) = I(Y ;X) and that I(X ; Y ) ≤ H(X),
with equality iff X = Y . Intuitively, I(X ; Y ) is a measure of how much
information Y contains regarding X and vice versa.
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An important property of mutual information is related to Markov
chains. Let (Y1, Y2, . . .) be a Markov chain. Then for any n ∈ N

I(Y1; Yn, Yn+1, . . .) = I(Y1; Yn).

Intuitively, the information on Y1 contained in (Yn, Yn+1, . . .) is the
same as that contained in just Yn.
An equivalent definition of mutual information is the following. Let

X and Y have respective distributions β and γ, and let βy be the
distribution of X conditioned on Y = y. Then it is easy to verify that

I(X ; Y ) =

∫

DKL(βy||β)dγ(y).

The advantage of this form is that it is also well defined when X is not
countably supported, and has all the properties we observed before.
In particular, it is straightforward to check that when Y is countably
supported but X is not then still I(X ; Y ) ≤ H(Y ).
Recall that Z∞ = B(Z1, Z2, . . .) is the “hitting point” of the random

walk on the Poisson boundary. A natural question is the following: how
much information does Z∞ contain on Z1, the first step of the random
walk? In particular if this is non-zero then Z∞ will be non-trivial.
Recall that g∗ν is the distribution of Z∞ for a random walk starting

at g. By reasoning similar to one used above, it is also the distribu-
tion of Z∞ conditioned on Z1 = g. Hence, by the relative entropy
characterization of mutual information,

I(Z∞;Z1) =
∑

g∈G

DKL(g∗ν||ν)P [Z1 = g]

=
∑

g∈G

∫

B

− log
dν

dg∗ν
(b)dg∗ν(b)µ(g)

= hµ(B, ν),

the Furstenberg entropy of the boundary (B, ν). Since relative entropy
is zero only for two equal measures, and since the support of µ generates
G, we have that hµ(B, ν) = 0 iff ν is G-invariant. Hence hµ(B, ν) = 0
iff the boundary is trivial.
Now, by a continuity argument,

I(Z1;Z∞) = lim
n

I(Z1;Zn, Zn+1, Zn+2, . . .).

Since {Zn} is a Markov process then

I(Z1;Z∞) = lim
n

I(Z1;Zn).
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We have thus reduced this calculation to calculating the mutual infor-
mation of two countably supported random variables. Now,

I(Z1;Zn) = H(Zn)−H(Zn|Z1) = H(Zn)−
∑

g∈G

H(gX2X3 · · ·Xn)µ(g).

Note that

H(gX2 · · ·Xn) = H(X2 · · ·Xn) = H(X1 · · ·Xn−1) = H(Zn−1),

and therefore we have shown that

I(Z1;Zn) = lim
m

H(Zn)−H(Zn−1).

Now, H(Zn) is a subadditive sequence:

H(Zn+m) = H(X1 · · ·Xn ·Xn+1 · · ·Xm)

≤ H(X1 · · ·Xn) +H(Xn+1 · · ·Xm)

= H(Zn) +H(Zm).

Hence, assuming these quantities are finite,

lim
m

H(Zn)−H(Zn−1) = lim
n

1

n
H(Zn).

We denote h(µ) = limn
1
n
H(Zn) and call it the random walk entropy or

Avez entropy. We have thus proved the following theorem.

Theorem 9.1 (Kaimanovich and Vershik). If

H(µ) =
∑

g

− log(µ(g)) · µ(g)

is finite then

hµ(B, ν) = h(µ).

In particular the Furstenberg-Poisson boundary is trivial iff the ran-
dom walk entropy vanishes.
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