PS/Ec 172, Homework 6 Due Tuesday, February 28^{TH}

Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.

(1) A repeated game. Consider the following base game G_0 :

	D	C	F
D	0, 0	1, 0	0, 1
C	0, 1	2, 2	-2, 3
F	1,0	3, -2	-2, -2

- (a) 30 points. Calculate the feasible and enforceable sets for this game.
- (b) 35 points. Find a subgame perfect Nash equilibrium for the G_0 -infinitely repeated game with limit of means utilities whose payoff profile is (2, 2).
- (2) Mind reading (with high probability). Ali and Fatima play a game. Ali picks a finite subset $F \subset \mathbb{N}$, and Fatima picks an $n \in \mathbb{N}$. Ali wins if $n \in F$, and Fatima wins otherwise.

Before choosing her n, Fatima picks any subset $S \subseteq \mathbb{N}$. For example, S could be the even numbers. All reveals to Fatima the intersection $S \cap F$; we assume he does so truthfully. Fatima can now choose her number n. It can depend on Ali's answer, but it cannot be in S. She wins if $n \notin F$, and otherwise Ali wins.

Formally, a pure strategy for Ali is a choice of F. A pure strategy for Fatima is a choice of S, plus a function from subsets of S to $\mathbb{N} \setminus S$; this is the function that specifies n given $S \cap F$.

- (a) 10 points. Show that for every pure strategy of Fatima there is a pure strategy of Ali that ensures that he wins.
- (b) 10 points. Show that for every pure strategy of Ali there is a pure strategy of Fatima that ensures that she wins.
- (c) 15 points. Show that Fatima has a mixed strategy (i.e., a randomly picked strategy) such that for every F, her probability of winning is at least 1 1/2017.
- (3) Bonus question: The incredible casino. A casino has a sequence of slot machines $(M_1, M_2, ...)$. Each machine requires the gambler to swipe her credit card, and has a single button. After swiping the card and pressing the button, machine M_n credits the gambler \$1 with probability $1 1/n^2$, and otherwise charges her n^2 dollars.
 - (a) 1 point. What is the gambler's expected revenue when using machine M_n ?

Omer Tamuz. Email: tamuz@caltech.edu.

(b) 1 point. Mark gambles once at each machine, in order: M_1, M_2, M_3 , etc. Explain why, with probability one, his revenue will tend to infinity. Hint: use the Borel-Cantelli lemma. You can read about it on Wikipedia: http://en.wikipedia.org/wiki/Borel-Cantelli_lemma.

 $\mathbf{2}$