Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.

Note: some of the claims that you are asked to prove are false. For these claims please provide a counterexample.

(1) Let X be a subset of \mathbb{R}^n. Recall that $D \subseteq X$ is dense in X if for every $x \in X$ and every $\varepsilon > 0$ there is a $d \in D$ such that $\|x - d\| < \varepsilon$. Prove that every subset of \mathbb{R}^n has a countable dense subset.

(2) Consider a consumer with a closed consumption set $X \subseteq \mathbb{R}^L$ and a closed preference \succ on X. Recall that given $p \in \mathbb{R}^L$ and $w \in \mathbb{R}$, we denote

$$X^*(p, w) = \{x^* \in X : p \cdot x^* \leq w \text{ and } p \cdot x \leq w \text{ implies } x^* \succeq x\}.$$

Recall also that \succ is said to be locally non-satiated (LNS) if for every $\varepsilon > 0$ and $x \in X$ there is a y such that $\|x - y\| \leq \varepsilon$ and $y \succ x$.

Finally, recall that \succ is said to be convex if $x' \succeq x$ and $x'' \succeq x$ implies $z \succeq x$ for all $a \in [0, 1]$ and $z = ax' + (1 - a)x'' \in X$.

(a) Show that if \succ is LNS, and if X is connected, then X cannot be compact. Hint: use the theorem stated in class which guarantees that \succ, as a closed preference on the closed connected set X, is represented by a continuous utility function $u : X \to \mathbb{R}$.

(b) Show that if \succ is LNS and if $x^* \in X^*(p, w)$ then $p \cdot x^* = w$, and that, more generally, if $x \succeq x^*$ then $p \cdot x \geq w$.

(c) Show that if \succ is convex and X is convex then $X^*(p, w)$ is convex (whenever it is non-empty).

(3) Let $(X_i, \succ_i, (e_i)_i)$ be the consumption sets, preferences and endowments of an exchange economy. Suppose that each X_i is closed and that each \succ_i is closed and LNS.

Recall that $(x_i)_i$ and p form a competitive equilibrium if $x_i \in X_i^*(p, p \cdot e_i)$ for all i, and if $\sum_i x_i = \sum_i e_i$.

Recall also that $(x_i)_i$ is Pareto optimal if $x_i \in X_i$ for all i, and if for every $(x'_i)_i$ such that $\sum_i x'_i = \sum_i e_i$ and $x'_i \succeq_i x_i$ for all i it holds that $x_i \succeq_i x'_i$ for all i.

(a) Prove that if $(x_i)_i$ and p form an equilibrium then $(x_i)_i$ is Pareto optimal.

(b) Prove that if $(x_i)_i$ is Pareto optimal then there exists a p such that $(x_i)_i$ and p form an equilibrium.

(4) Recall that the support function of a compact convex $Y \subset \mathbb{R}^n$ is given by $v_Y(p) = \max_{y \in Y} p \cdot y$.

Omer Tamuz. Email: tamuz@caltech.edu.
(a) Prove that $Y' \subseteq Y$ iff $v_{Y'}(p) \leq V_Y(p)$ for all p.

(b) For $\lambda > 0$ and $Y \subseteq \mathbb{R}^n$ denote $\lambda Y = \{\lambda y : y \in Y\}$. Prove that $v_{\lambda Y}(p) = \lambda v(p)$.