Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.

Note: some of the claims that you are asked to prove are false. For these claims please provide a counterexample.

(1) Find a compact convex \(A \subseteq \mathbb{R}^n \) (for an \(n \) of your choice) and a nonempty, upper-hemicontinuous correspondence \(\Gamma: A \rightrightarrows A \) that does not have a fixed point.

(2) Suppose that \(Y \subseteq \mathbb{R}^L \) is convex. Let \(K \) be a convex compact subset of \(\mathbb{R}^L \), and \(\bar{Y} = K \cap Y \). Show that if \(\bar{y} \in \bar{Y}^*(p) \) and \(\bar{y} \) is in the interior of \(K \) then \(y \in Y^*(p) \).

(3) Denote \(\mathcal{P} = \{(p_1, p_2) : p_1 \geq 0, p_2 \geq 0, p_1 + p_2 = 1\} \). Let \(Z^*: \mathcal{P} \to \mathbb{R}^2 \) be a continuous function (not a correspondence!) such that \(p \cdot Z^*(p) \leq 0 \). Prove that there exists a \(p \in \mathcal{P} \) such that \(Z^*(p) \in \mathbb{R}^2 \). You may not use any fixed point theorems in this proof. Hint: the intermediate value theorem may be useful.

(4) Suppose \(Y \subseteq \mathbb{R}^L \) is compact. Show that the correspondence \(Y^*: \mathbb{R}^L \rightrightarrows \mathbb{R}^L \) given by \(Y^*(p) = \arg\max_y p \cdot y \) is
 (a) Upper-hemicontinuous. I.e., for every \(p^n \to p \) and \(y^n \to y \) such that \(y^n \in Y^*(p^n) \) it holds that \(y \in Y^*(p) \).
 (b) Lower-hemicontinuous. I.e., for every \(p^n \to p \) and \(y \in Y^*(p) \) there is a sequence \(y^n \to y \) such that \(y^n \in Y^*(p^n) \).

(5) Prove that if \(\Gamma: A \rightrightarrows B \) and \(\Gamma': A \rightrightarrows C \) are nonempty, compact, upper-hemicontinuous correspondences then so is the correspondence \(\Gamma + \Gamma' \) from \(A \) to \(B + C \) that maps \(a \in A \) to \(\Gamma(a) + \Gamma'(a) \). Here addition is Minkowski addition.